scholarly journals Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1ε

Blood ◽  
2014 ◽  
Vol 123 (26) ◽  
pp. 4064-4076 ◽  
Author(s):  
Saradhi Mallampati ◽  
Baohua Sun ◽  
Yue Lu ◽  
Haiqing Ma ◽  
Yun Gong ◽  
...  

Key Points RAG1/2 and casein kinase 1 ε are key effectors of Sox4 function in progenitor B cells. Sox4 induces B-cell differentiation by suppressing Wnt/β-catenin signaling and activating immunoglobulin gene recombination.

2017 ◽  
Vol 37 (24) ◽  
Author(s):  
Toru Tamahara ◽  
Kyoko Ochiai ◽  
Akihiko Muto ◽  
Yukinari Kato ◽  
Nicolas Sax ◽  
...  

ABSTRACT The transcription factor Bach2 regulates both acquired and innate immunity at multiple steps, including antibody class switching and regulatory T cell development in activated B and T cells, respectively. However, little is known about the molecular mechanisms of Bach2 regulation in response to signaling of cytokines and antigen. We show here that mammalian target of rapamycin (mTOR) controls Bach2 along B cell differentiation with two distinct mechanisms in pre-B cells. First, mTOR complex 1 (mTORC1) inhibited accumulation of Bach2 protein in nuclei and reduced its stability. Second, mTOR complex 2 (mTORC2) inhibited FoxO1 to reduce Bach2 mRNA expression. Using expression profiling and chromatin immunoprecipitation assay, the Ccnd3 gene, encoding cyclin D3, was identified as a new direct target of Bach2. A proper cell cycle was lost at pre-B and mature B cell stages in Bach2-deficient mice. Furthermore, AZD8055, an mTOR inhibitor, increased class switch recombination in wild-type mature B cells but not in Bach2-deficient cells. These results suggest that the mTOR-Bach2 cascade regulates proper cell cycle arrest in B cells as well as immunoglobulin gene rearrangement.


Blood ◽  
2014 ◽  
Vol 123 (7) ◽  
pp. 1012-1020 ◽  
Author(s):  
Chuanxin Huang ◽  
Huimin Geng ◽  
Isaac Boss ◽  
Ling Wang ◽  
Ari Melnick

Key Points BCL6 and BACH2 cooperatively regulate GC B-cell development. The cooperative action of BCL6 and BACH2 is through both transcriptional and biochemical mechanisms.


2002 ◽  
Vol 9 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Zhe-Xiong Lian ◽  
Hiroto Kita ◽  
Tomoyuki Okada ◽  
Tom Hsu ◽  
Leonard D. Shultz ◽  
...  

Reductions in populations of both Pre-B cell (Hardy fractions D) and Pro-B cells (Hardy fractions B–C) have been described in association with murine lupus. Recent studies of B cell populations, based on evaluation of B cell differentiation markers, now allow the enumeration and enrichment of other stage specific precursor cells. In this study we report detailed analysis of the ontogeny of B cell lineage subsets in New Zealand black (NZB) and control strains of mice. Our data suggest that B cell development in NZB mice is partially arrested at the fraction A Pre–Pro B cell stage. This arrest at the Pre-Pro B cell stage is secondary to prolonged lifespan and greater resistance to spontaneous apoptosis. In addition, expression of the gene encoding the critical B cell development transcription factor BSAP is reduced in the Pre–Pro B cell stage in NZB mice. This impairment may influence subsequent B cell development to later stages, and thereby accounts for the down-regulation of the B cell receptor componentIgα(mb-1). Furthermore, levels of expression of theRug2, λ5andIgβ(B29) genes are also reduced in Pre–Pro B cells of NZB mice. The decreased frequency of precursor B cells in the Pre–Pro B cell population occurs at the most primitive stage of B cell differentiation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2422-2422
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Takao Sudo ◽  
Tomohiko Ishibashi ◽  
Yukiko Doi ◽  
...  

Abstract A large body of research has demonstrated that the maternal immune system is elaborately regulated during pregnancy to establish immunological tolerance to the fetus. Although our previous works have revealed that female sex hormones, particularly estrogen, play pivotal roles in suppressing maternal B-lymphopoiesis, the precise molecular mechanisms that mediate their functions are largely unknown. Because T and B lymphocytes function coordinately in the adaptive immune system, the inhibition of B-lymphopoiesis during pregnancy should be involved, at least in part, in “maternal-fetal immune tolerance.” Understanding the molecular mechanisms of tolerance would contribute to the development of new methods to inhibit immune responses after organ transplantation, such as rejection by the host or graft-versus-host diseases. The goal of our present study is to identify the molecular pathways through which estrogen exerts its suppressive effect on B-lymphopoiesis. We performed global analyses of estrogen-inducible genes in bone marrow (BM) stromal cells and identified the secreted frizzled-related protein (sFRP) family. A sFRP1-immunoglobulin G (Ig) fusion protein inhibited early differentiation of B-cells originating from BM-derived hematopoietic stem/progenitor cells (HSPC) in culture (Yokota T. et al. Journal of Immunol, 2008). Conversely, sFRP1 deficiency in vivo caused dysregulation of HSPC homeostasis in BM and aberrant increase of peripheral B lymphocytes (Renström J. et al. Cell Stem Cell, 2009). Therefore, in the present study we generated sFRP1 transgenic chimera (TC) mice that produced high levels of circulating sFRP1 after birth to examine the influence of sFRP1 on adult lymphopoiesis in vivo. Further, we generated sFRP5 TC mice using the same procedure to determine whether there were functional differences or redundancies between sFRP1 and sFRP5. The two are most closely related isoforms among the sFRP family and are known to play redundant roles during embryonic development; however, their physiological function in the immune system is largely unknown. Unexpectedly, while only subtle change was detected in the lymphoid lineage of sFRP1 TC mice, we found that the number of B cells was significantly reduced in the sFRP5 TC mice. The frequency of B cells, which normally account for approximately 50% of peripheral leukocytes of wild-type (WT) mice, was reduced to less than 20% in the sFRP5 TC mice. The suppression was likely specific to the B lineage, because overexpression of sFRP5 did not affect myeloid, T, or NK cells. Compared with WT littermates, the body size of sFRP5 TC mice was slightly, but significantly smaller. Thymocyte counts were not affected. In contrast, the number of splenocytes, particularly those of the B lineage, significantly decreased. In BM of sFRP5 TC mice, early B-cell differentiation was inhibited, resulting in the accumulation of cells whose phenotype corresponds to those of common lymphoid progenitors (CLPs). Gene array analyses of the accumulated CLPs indicated that sFRP5 affects the expression of adaptive immune system-related genes. Further, the sFRP5 overexpression was found to induce the expression of Wnt and Notch-related molecules that regulate the integrity of HSPCs. To determine the physiological involvement of sFRP5 in the inhibition of early B-cell differentiation, we exploited mice lacking sFRP5. It is noteworthy that, although the level of sFRP5 expression was minimal in steady-state BM, it was markedly induced after estrogen treatment. We injected water-soluble β-estradiol into WT or sFRP5-null mice for 4 days and evaluated their lympho-hematopoiesis 12 h after the last injection. While the highly HSPC-enriched Lineage- Sca-1+ c-kitHi Flt3- fraction of WT mice was resistant to the treatment, the same fraction of sFRP5-null mice showed a declining trend. Further, although the CLP fraction was significantly reduced in both strains, CLPs of sFRP5-null mice were more sensitive to estrogen than those of WT. We also performed gene expression analyses of WT and sFRP5-null mice after the estrogen treatment. We found that estrogen induced the expression of Hes1 in HSPCs of WT but not sFRP5-null mice. Thus, we conclude that estrogen-inducible sFRP5 blocks the differentiation of HSPCs in BM to B-lymphocytes in the presence of high levels of estrogen, at least in part by activation of the Notch pathway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (12) ◽  
pp. 2039-2046 ◽  
Author(s):  
Bin E. Li ◽  
Tao Gan ◽  
Matthew Meyerson ◽  
Terence H. Rabbitts ◽  
Patricia Ernst

Key Points MLL1 does not require interaction with menin to maintain hematopoietic stem cell homeostasis. Menin and MLL1 are both critical during B-cell differentiation, but largely through distinct pathways.


2017 ◽  
Vol 214 (7) ◽  
pp. 2059-2071 ◽  
Author(s):  
Kenia Ubieta ◽  
Mireia Garcia ◽  
Bettina Grötsch ◽  
Steffen Uebe ◽  
Georg F. Weber ◽  
...  

The role of AP-1 transcription factors in early B cell development and function is still incompletely characterized. Here we address the role of Fra-2 in B cell differentiation. Deletion of Fra-2 leads to impaired B cell proliferation in the bone marrow. In addition, IL-7–stimulated pro–B cell cultures revealed a reduced differentiation from large pre–B cells to small B cells and immature B cells. Gene profiling and chromatin immunoprecipitation sequencing analyses unraveled a transcriptional reduction of the transcription factors Foxo1, Irf4, Ikaros, and Aiolos in Fra-2–deficient B cells. Moreover, expression of IL7Rα and Rag 1/2, downstream targets of Irf4 and Foxo1, were also reduced in the absence of Fra-2. Pro–B cell proliferation and small pre–B cell differentiation were fully rescued by expression of Foxo1 and Irf4 in Fra-2–deficient pro–B cells. Hence, Fra-2 is a key upstream regulator of Foxo1 and Irf4 expression and influences proliferation and differentiation of B cells at multiple stages.


1998 ◽  
Vol 187 (8) ◽  
pp. 1325-1334 ◽  
Author(s):  
Stephen H. Clarke ◽  
Larry W. Arnold

Murine phosphatidyl choline (PtC)–specific B cells in normal mice belong exclusively to the B-1 subset. Analysis of anti-PtC (VH12 and VH12/Vκ4) transgenic (Tg) mice indicates that exclusion from B-0 (also known as B-2) occurs after immunoglobulin gene rearrangement. This predicts that PtC-specific B-0 cells are generated, but subsequently eliminated by either apoptosis or differentiation to B-1. To investigate the mechanism of exclusion, PtC-specific B cell differentiation was examined in mice expressing the X-linked immunodeficiency (xid) mutation. xid mice lack functional Bruton's tyrosine kinase (Btk), a component of the B cell receptor signal transduction pathway, and are deficient in B-1 cell development. We find in C57BL/ 6.xid mice that VH12 pre-BII cell selection is normal and that PtC-specific B cells undergo modest clonal expansion. However, the majority of splenic PtC-specific B cells in anti-PtC Tg/xid mice are B-0, rather than B-1 as in their non-xid counterparts. These data indicate that PtC-specific B-0 cell generation precedes segregation as predicted, and that Btk function is required for efficient segregation to B-1. Since xid mice exhibit defective B cell differentiation, not programmed cell death, these data are most consistent with an inability of PtC-specific B-0 cells to convert to B-1 and a single B cell lineage.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 318-318
Author(s):  
Clayton Smith ◽  
Michelle Glozak ◽  
Maura Gasparetto ◽  
Rachel Rempel ◽  
Jos Domens ◽  
...  

Abstract The E2Fs are important mediators of cell cycle control, DNA synthesis and apoptosis in many cell types. Recently E2F4 has been shown to play a role in hematopoietic cell growth and development (Rempel et al. Mol Cell, 6 p293, 2000). Here we report the effects of loss of E2F4 specifically on B-cell development. E2F4−/− mice have a partial block in early B-cell development prior to immunoglobulin gene rearrangement. The block is intrinsic to B-cell progenitors rather than secondary to micro-environmental effects since it occurs following transplant of E2F4−/− marrow into wild type recipients. Increases in apoptosis and abnormalities in cell cycle progression were found in B220+CD43+ B-cells of E2F4−/− mice indicating that E2F4 plays an important role in these processes in early B-cells. Expression of a variety of genes important in B-cell development including E2A, RAG, IL-7, EBF and Pax-5 were decreased in early E2F4−/− B-cells. In contrast, Id1 and Id2, regulators of a variety of genes critical to B-cell development, were relatively over-expressed in early E2F4−/− B-cells while Id3 was relatively under-expressed in these cells. E2F binding sites were identified in the Id2 and Id3 promoters and E2F4 was found to directly bind to these promoters in splenic B-cells. These findings suggest that E2F4 may also regulate early B-cell development by directly and indirectly modulating expression of the genes critical to B-cell differentiation. Together, these observations indicate that E2F4 is a critical mediator of early B-cell development via its effects on multiple pathways including those involved with apoptosis, cell cycle progression and differentiation. These findings also suggest that the E2Fs may serve to link cell survival and proliferation pathways to differentiation pathways in early B-cells and perhaps other cells aswell.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 797-797 ◽  
Author(s):  
Cihangir Duy ◽  
Ignacio Moreno de Alboran ◽  
Hassan Jumaa ◽  
Markus Muschen

Abstract Myc and Bcl6 represent classical proto-oncogenes in B-cell malignancies, mainly through translocation into the immunoglobulin (Ig) heavy chain locus in Burkitt’s (MYC) and diffuse large B cell lymphoma (BCL6). While BCL6 was previously established as a factor regulating differentiation of germinal center B cells, the function of MYC and BCL6 in early B-cell development was not previously studied. Investigating requirements for the differentiation of pre-B cells into immature B-cells, we found that both withdrawal of IL7 from murine pre-B-cell cultures and inhibition of BCR-ABL1 in BCR-ABL1-transformed pre-B-cells terminates self-renewal and initiates differentiation into Ig light chain-expressing immature B-cells. Interestingly, IL7 and BCR-ABL1 are exchangeable at this checkpoint: Both IL7 and BCR-ABL1 promote self-renewal and prevent differentiation of pre-B-cells. While inhibition of BCR-ABL1 usually induces apoptosis and partial differentiation, both effects were entirely suppressed by IL7. These findings indicate that IL7 may confer resistance to BCR-ABL1 inhibitors in patients with BCR-ABL1-transformed acute lymphoblastic leukemia. Likewise, inhibition of either IL7 or BCR-ABL1 signaling resulted in complete silencing of Myc expression and strong de novo expression of Bcl6. Because expression of Myc and Bcl6 are mutually exclusive at the pre-B to immature B-cell checkpoint, we tested whether the two proto-oncogenes have distinct functions at this transition. Interestingly, forced expression of Myc rendered BCR-ABL1-transformed pre-B-cells resistant to induction of differentiation upon inhibition of BCR-ABL1. Besides downregulation of Myc, also de novo expression of Bcl6 is critical for the pre-B to immature B-cell differentiation: shmiR-mediated silencing of Bcl6 suppressed B-cell differentiation even if Myc was downregulated. However, forced expression of Bcl6 alone only modestly induced differentiation of pre-B cells if Myc was not downregulated. To test the interplay between Myc and Bcl6 at the pre-B to immature B cell transition more systematically, we analyzed bone marrow pre-B cells from Mycfl/fl mice. Mycfl/fl pre-B cells that also carry MxCre deleted the Myc locus on both alleles upon stimulation with IFNß. As controls, Mycfl/fl pre-B cells without MxCre were used. Pre-B cells were also transduced with a retroviral vector encoding Bcl6/GFP or GFP alone. Upon Myc deletion, more than 80 precent of the Bcl6/GFP transduced pre-B cells underwent differention as compared to 25 percent GFP-transduced pre-B cells. In the absence of Myc deletion, about 15 percent of Bcl6/GFP-transduced pre-B cells initiated differentiation as compared to 5 percent of GFP-transduced pre-B cells. These findings establish that Myc and Bcl6 have critical and antagonistic functions in early B cell development and that both downregulation of Myc together with upregulation Bcl6 are required to initiate differentiation of pre-B cells. The MYC/BCL6 balance may also be a target of leukemic transformation of human pre-B cells: The ratio of MYC/BCL6 mRNA levels in normal human pro- and pre-B cells at 0.52 is dramatically increased in various subtypes of acute lymphoblastic leukemia (6.4 for BCR-ABL1-, 2.6 for E2A-PBX1-, 14.4 for MLL-AF4- and 3.3 for TEL-AML1-transformed acute lymphoblastic leukemia).


Blood ◽  
2013 ◽  
Vol 121 (10) ◽  
pp. 1769-1782 ◽  
Author(s):  
Isabel Ferreirós-Vidal ◽  
Thomas Carroll ◽  
Benjamin Taylor ◽  
Anna Terry ◽  
Ziwei Liang ◽  
...  

Key Points We identify genes that are bound and regulated by Ikaros in pre-B cells. Ikaros dosage drives the differentiation of cycling (Fr.C') to resting (Fr.D) pre-B cells.


Sign in / Sign up

Export Citation Format

Share Document