scholarly journals PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia

Blood ◽  
2015 ◽  
Vol 126 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Fabienne McClanahan ◽  
Bola Hanna ◽  
Shaun Miller ◽  
Andrew James Clear ◽  
Peter Lichter ◽  
...  

Key Points In vivo PD-L1 blockade prevents CLL development in the Eµ-TCL1 adoptive transfer model. In vivo PD-L1 blockade normalizes T-cell and myeloid cell populations and immune effector functions.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3298-3298
Author(s):  
Bola Hanna ◽  
Fabienne McClanahan ◽  
Nadja Zaborsky ◽  
Claudia Dürr ◽  
Verena Kalter ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells that is characterized by apoptosis resistance and dysfunctional immune system. The chronic nature and slow development of the disease indicates a contribution of CLL-induced inflammation in the disease course. Previous reports suggested a potential role of myeloid cells in mediating these defects. However, the composition and function of CLL-associated myeloid cells have not been thoroughly investigated in an in vivo system. Here, we used the well-established CLL mouse model, Eµ-TCL1 mice (TCL1), to characterize changes within myeloid cell populations along with CLL development and the influence of their depletion on disease progression and immune dysfunction. We have recently shown that CLL development in TCL1 mice is associated with massive changes within myeloid cell populations. In the peritoneal cavity (PC) of leukemic mice we observed an infiltration of monocytes and an M2-like skewing of macrophages according to phenotypical and signaling signatures. Along this line, monocytes infiltrated the spleens of leukemic animals, both in primary CLL and adoptive transfer models, which is most likely due to high CCL2 serum levels. These monocytes lost the inflammatory Ly6Chi subset and were severely skewed towards Ly6Clow patrolling monocytes, accompanied by high expression of adhesion and angiogenic molecules like ICAM1, PECAM1 and MMP14. Gene expression profiling of splenic myeloid cells from TCL1 mice revealed an enrichment of various genes involved in dendritic cell (DC) maturation and MHC-II-mediated antigen presentation. However, the numbers of MHC-IIhi mature DCs and macrophages were significantly decreased, suggesting a monocyte differentiation arrest leading to impaired anti-tumor immune response. The observed transcriptional upregulation of multiple inflammatory cytokines like TNF-α, CXCL9, CXCL10 and CXCL16 in monocytes was confirmed by serum cytokine arrays, and is likely due to the overexpression of the pro-inflammatory regulator TREM-1. In addition, TCL1 monocytes upregulated the expression of several inhibitory molecules like PD-L1, IL-10, IL1ra and IL4i1 suggesting an impaired immune function. While CLL-induced immune dysfunction is a well-established phenomenon, the contribution of myeloid cells in this context was not clear. We therefore sought to determine the in vivo effects of myeloid cell depletion on CLL development and its associated immune defects. For that purpose we used liposomal clodronate to selectively ablate macrophages and monocytes from young wild-type mice adoptively transferred with murine CLL. Our data clearly show control of CLL development in clodronate-treated mice relative to control liposomes as demonstrated by decreased spleen weight (1.09 vs. 0.54 g, p < 0.0001) and a significant drop in tumor load, defined as CD5+CD19+ cells, in spleen (60.58% vs. 42.25%), peripheral blood (43% vs 11.8%), PC (66.2% vs 3.1%), lymph nodes (4.9% vs 1.2%) and bone marrow (1.9% vs 0.8%). In addition, we observed changes in immune effector cells in response to myeloid cell depletion suggesting better immune status in treated mice. Interestingly, the loss of macrophages/monocytes was compensated by increased splenic monocyte proliferation as shown by EdU incorporation in vivo. In contrast to control mice, the repopulating monocytes upon clodronate treatment were largely inflammatory Ly6Chi monocytes. In summary, our data show that skewing of myeloid cells actively contributes to CLL development via; 1) enhancing the survival of leukemic cells, and 2) suppressing anti-tumor immune functions. In the absence of monocytes and macrophages, disease development is delayed in mice adoptively transferred with murine CLL. Therefore, we suggest that targeting non-malignant myeloid cells in CLL might serve as a novel strategy for CLL immunotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5463-5472 ◽  
Author(s):  
Davide Bagnara ◽  
Matthew S. Kaufman ◽  
Carlo Calissano ◽  
Sonia Marsilio ◽  
Piers E. M. Patten ◽  
...  

AbstractChronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γcnull mice under the influence of activated CLL-derived T lymphocytes. By cotransferring autologous T lymphocytes, activated in vivo by alloantigens, the survival and growth of primary CFSE-labeled CLL cells in vivo is achieved and quantified. Using this approach, we have identified key roles for CD4+ T cells in CLL expansion, a direct link between CD38 expression by leukemic B cells and their activation, and support for CLL cells preferentially proliferating in secondary lymphoid tissues. The model should simplify analyzing kinetics of CLL cells in vivo, deciphering involvement of nonleukemic elements and nongenetic factors promoting CLL cell growth, identifying and characterizing potential leukemic stem cells, and permitting preclinical studies of novel therapeutics. Because autologous activated T lymphocytes are 2-edged swords, generating unwanted graph-versus-host and possibly autologous antitumor reactions, the model may also facilitate analyses of T-cell populations involved in immune surveillance relevant to hematopoietic transplantation and tumor cytoxicity.


Blood ◽  
2013 ◽  
Vol 122 (19) ◽  
pp. 3288-3297 ◽  
Author(s):  
Annelise Soulier ◽  
Sandra M. Blois ◽  
Shivajanani Sivakumaran ◽  
Farnaz Fallah-Arani ◽  
Stephen Henderson ◽  
...  

Key Points Murine dendritic cell populations are highly proficient in amplifying local glucocorticoid concentrations. This property is critical in regulating dendritic cell survival and functions in vivo.


Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


2020 ◽  
Vol 12 (15) ◽  
pp. 1415-1430
Author(s):  
Jing Qiu ◽  
Shikhar Sharma ◽  
Robert A Rollins ◽  
Thomas A Paul

Immune dysfunction in the tumor microenvironment occurs through epigenetic changes in both tumor cells and immune cells that alter transcriptional programs driving cell fate and cell function. Oncogenic activation of the histone methyltransferase EZH2 mediates gene expression changes, governing tumor immunogenicity as well as differentiation, survival and activation states of immune lineages. Emerging preclinical studies have highlighted the potential for EZH2 inhibitors to reverse epigenetic immune suppression in tumors and combine with immune checkpoint therapies. However, EZH2 activity is essential for the development of lymphoid cells, performing critical immune effector functions within tumors. In this review, we highlight the complexity of EZH2 function in immune regulation which may impact the implementation of combination with immunotherapy agents in clinic.


Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 582-595 ◽  
Author(s):  
Marwan Kwok ◽  
Nicholas Davies ◽  
Angelo Agathanggelou ◽  
Edward Smith ◽  
Ceri Oldreive ◽  
...  

Key PointsATR inhibition is synthetically lethal to TP53- or ATM-defective CLL cells. ATR targeting induces selective cytotoxicity and chemosensitization in TP53- or ATM-defective CLL cells in vitro and in vivo.


Blood ◽  
2014 ◽  
Vol 124 (7) ◽  
pp. 1070-1080 ◽  
Author(s):  
Sonia Guedan ◽  
Xi Chen ◽  
Aviv Madar ◽  
Carmine Carpenito ◽  
Shannon E. McGettigan ◽  
...  

Key Points ICOS-based CARs program bipolar TH17/TH1 cells with augmented effector function and in vivo persistence. The expression of selected CAR endodomains can program T cells for their subsequent differentiation fates and effector functions.


2021 ◽  
Author(s):  
Isaiah Turnbull ◽  
Anja Fuchs ◽  
Kenneth Remy ◽  
Michael Kelly ◽  
Elfaridah Frazier ◽  
...  

Abstract The global COVID-19 pandemic has claimed the lives of more than 450,000 US citizens. Dysregulation of the immune system underlies the pathogenesis of COVID-19, with inflammation mediated local tissue injury to the lung in the setting of suppressed systemic immune function. To define the molecular mechanisms of immune dysfunction in COVID-19 we utilized a systems immunology approach centered on the circulating leukocyte phosphoproteome measured by mass cytometry. COVID-19 is associated with wholesale activation of a broad set of signaling pathways across myeloid and lymphoid cell populations. STAT3 phosphorylation predominated in both monocytes and T cells and was tightly correlated with circulating IL-6 levels. High levels of STAT3 phosphorylation was associated with decreased markers of myeloid cell maturation/activation and decreased ex-vivo T cell IFN-gamma production, demonstrating that during COVID-19 dysregulated cellular activation is associated with suppression of immune effector cell function. Collectively, these data reconcile the systemic inflammatory response and functional immunosuppression induced by COVID-19 and suggest STAT3 signaling may be the central pathophysiologic mechanism driving immune dysfunction in COVID-19.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 925-925
Author(s):  
Stefania Gobessi ◽  
Francesca Belfiore ◽  
Sara Bennardo ◽  
Brendan Doe ◽  
Luca Laurenti ◽  
...  

Abstract Abstract 925 One of the most relevant prognostic factors in chronic lymphocytic leukemia (CLL) is expression of the protein tyrosine kinase ZAP-70. Typically, patients whose leukemic cells express ZAP-70 at 30–100% of the levels in normal T cells have aggressive disease, whereas patients whose leukemic cells do not express ZAP-70 or express only low levels of this protein have indolent disease. Previously, we and others demonstrated that ZAP-70 modulates B-cell receptor signaling and thus affects the capacity of the leukemic cells to respond to antigen stimulation. However, a direct link between an altered antigen response and CLL pathogenesis has still not been established and, more importantly, the question whether ZAP-70 directly contributes to the aggressiveness of the disease or is just a marker of aggressive CLL still remains to be answered. We have now addressed these issues by analyzing in vivo the impact of forced expression of ZAP-70 on the development and behavior of leukemias that arise in the Eμ-TCL1 transgenic (tg) mouse model of CLL. This model is characterized by the development of antigen-driven leukemias that resemble human CLL in many aspects but are always ZAP-70-negative. To force the expression of ZAP-70 in TCL1 leukemias, we generated two tg lines with targeted expression of ZAP-70 in the B cell compartment (ZAP70high and ZAP70low) and crossed them with Eμ-TCL1 tg mice. B cells in ZAP70high tg mice express similar levels of ZAP-70 as normal mouse T cells, whereas the levels of ZAP-70 in B cells of ZAP70lowtg mice are approximately 10 times lower. Both cohorts of Eμ-TCL1/ZAP70 double tg mice developed characteristic TCL1 leukemias. Eμ-TCL1/ZAP70low tg mice developed leukemias with onset and rate of progression similar to their ZAP-70-negative littermates, indicating that low levels of ZAP-70 do not alter the development and behavior of the disease. Surprisingly, Eμ-TCL1/ZAP70high tg mice developed leukemias with an approximately 2 month delay compared to their ZAP-70-negative Eμ-TCL1 tg littermates, which was contrary to the expectation that high ZAP-70 expression will accelerate leukemia development. The delay in leukemia development was especially evident at 6 months of age, when leukemic cells could be detected in the PB of 77% (10/13) of Eμ-TCL1 tg mice and only 24% (4/17) of Eμ-TCL1/ZAP70hightg mice (P=0.011). Since ZAP-70 expression can affect the migratory and adhesion capacity of human CLL cells in vitro, we first investigated if the delayed appearance of leukemic cells in the PB of Eμ-TCL1/ZAP70high tg mice could be due to increased retention of the leukemic cells in the lymphoid tissues. Assessment of tumor burden in the spleen, peritoneal cavity (PC), bone marrow and PB of 7 months old mice showed that the number of tumor cells in each compartment was significantly lower in Eμ-TCL1/ZAP70hightg mice than their Eμ-TCL1 littermates, suggesting that the delay in leukemia appearance is not caused by increased tissue retention but rather by reduced tumor growth. To investigate if ZAP-70 impairs tumor growth by affecting proliferation, we performed in vivo BrdU incorporation analysis of leukemic cells from spleen and PC of Eμ-TCL1 and Eμ-TCL1/ZAP70high tg mice. Spleen and PC samples were analyzed because they are the major sites of leukemia proliferation in Eμ-TCL1 tg mice. Interestingly, while the percentage of proliferating leukemic cells in the spleens of Eμ-TCL1 and Eμ-TCL1/ZAP70high tg mice was similar (mean % of BrdU+ cells ±SD: 6.81 ±1.67 and 6.15 ±2.92, respectively; P=n.s.), the percentage of proliferating leukemic cells in the PC of Eμ-TCL1/ZAP70high tg mice was significantly lower (mean % of BrdU+cells ±SD: 1.74 ±1.05 and 0.56 ±0.39, respectively; P=0.024). In summary, this study shows that ZAP-70 expression, per se, is unable to accelerate leukemia development and progression in an established in vivo model of CLL and suggests that ZAP-70 is not directly responsible for the greater disease severity in the poor prognosis subset of CLL. In addition, this study reveals that ZAP-70 in certain tissue environments can function as a negative regulator of leukemic cell proliferation, contrary to the widespread perception of ZAP-70 as a positive regulator of leukemic cell responses. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1601-1601
Author(s):  
Ioanna Triviai ◽  
Thomas Stuebig ◽  
Birte Niebuhr ◽  
Kais Hussein ◽  
Asterios Tsiftsoglou ◽  
...  

Abstract Primary Myelofibrosis (PMF) is a chronic myeloproliferative neoplasm of alleged stem cell origin. To define the characteristics of malignant PMF stem cells previous studies have focused on the isolation and xenotransplantation of circulating and/or splenic, PMF patient - derived CD34+ stem/progenitor cells. Despite the reported engraftment of CD34+ cell pool, former analyses failed to reproduce major PMF parameters attributed to abnormal human myeloid cell differentiation. The focus of our work was to identify the stem cell population responsible for initiation and development of PMF. To assess the presence of malignant stem cells we analyzed peripheral blood of 30 PMF patients for expression of LT-HSC antigen CD133. To exclude committed myeloid and lymphoid circulating progenitors we performed lineage depletion of PBMCs and isolated CD133+ and/or CD34+ stem cells. Variable CD133+/CD34 ± and CD133-/CD34+ stem cell fractions from 15 PMF patients were assessed for their clonogenic potential in semisolid media and for reproduction of PMF morbidity in a xenotransplantation mouse model. JAK2V617F mutation was used as a genetic marker to track clonal evolution both in vitro and in vivo. In patients' PBMC we detected the consistent presence of a CD133+ population ranging from 0.3% to >30%, which varies in the expression of CD34. CD133 marks overlapping but also distinct cell populations as compared to CD34. To determine the differentiation potential of disparate stem cell populations, CD133+CD34+, CD133-CD34+ and CD133+CD34- cells were subfractionated from PB of 7 patients and assessed for clonogenic capacity. Strikingly, CD133+CD34+ cells exhibited multipotent, bipotent, and unipotent myeloid (including erythroid) and endothelial-like output, whereas CD133-CD34+ cells gave rise predominantly to lineage-restricted granulocyte/monocyte (GM) progenitors or endothelial-like progenitors. Thus, in contrast to circulating CD133-/CD34+ cells in PMF patients, CD133+ cells have a broader and more robust differentiation capacity to all myeloid cell types, including megakaryocyte /erythrocyte lineages. Four JAK2V617F+ patient samples were used to assess mutation burden at the single-cell level from representative colony types. Obtained results demonstrate an early acquisition of JAK2V617F mutation in the primitive CD133+ stem cell compartments, but also revealed an unexpected variability in the genotypes of emerging progenitors. Homozygous JAK2617F/617F progenitors were detectable in all analyzed patient samples, even if a relative low JAK2V617F burden (30%) was determined from the initial pool of CD133+ cells. A disproportionately high incidence of a homozygous JAK2V617F genotype was observed in erythroid progenitors, indicating a skewing for this lineage. Homozygosity was additionally detected in megakaryocytic and multipotent progenitors. In vivo xenotransplantation experiments of various subfractions confirm the origin of multipotent JAK2V617F+ progenitors from CD133+/CD34± stem cells. Transplantation of PMF patient-derived CD133+/CD34± stem cells in immuno-compromised mice induces abnormal human JAK2V617F+ erythroid, megakaryocytic, and monocytic differentiation, splenomegaly, bone marrow/splenic fibrosis and anemia, reproducing many aspects of PMF development. Our data provide the first evidence for the existence of a CD133+ LT-HSC population responsible for development of PMF. It is for the first time demonstrated that JAK2V617F mutation in PMF occurs at the level of a multipotent stem cell, from which all abnormal myeloid cells emanate during evolution of the disease. Identification of the stem cell compartment involved in the triggering and progression of PMF provides the basis to elucidate the nature of the complex niche interactions in myeloproliferative neoplasms. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document