scholarly journals Drug Sensitivity Screening on Multiple Myeloma for Precision Cancer Therapy

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4677-4677 ◽  
Author(s):  
Deepak Balaji balaji Thimiri Govinda Raj ◽  
Mariaserena Giliberto ◽  
Andrea Cremaschi ◽  
Sigrid Strand Skånland ◽  
Alexandra Gade ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is considered incurable and MM patients eventually relapse despite use of many promising approved drugs in standard-of-care treatment. It has been challenging to design precision medicine protocols to tailor personalized treatment for MM patients that relapse despite availability of novel drugs. In-vitro drug screening has been hampered by lack of in-vitro culture protocols that mimic tumor microenvironment and that accommodates for low cell number. Here, we report our novel MM proliferation protocol along with an in-vitro functional screening platform, that allow us to assess drug sensitivity on MM patient samples with a customized panel of 30 myeloma drugs. Using our novel drug sensitivity screening platform, we aim to identify efficient drugs for individual patients with progressive disease and select the best treatment option. Methods Previously, we have established culture settings that mimic the tumor microenvironment for MM (Wang D. et al Leukemia 2017). Here, we implemented a novel protocol that allowed primary MM cells to proliferate in a 384 well-format. Stimulated CD138+ MM cells were tested against a customized library of 30 clinically approved drugs including proteasome inhibitors (PI) and drugs that are in clinical trials. CD138+ MM cells were cultured in 384-well format in the presence of individual drugs in a concentration range over 6 logs for 72 hours (3 days). To define drugs that inhibit malignant plasma cell growth, we used the cell-based assays CellTiter-Glo® luminescent cell viability assay and CellTox™ green cytotoxicity assay as readouts by assessing drug sensitivity at day 3. We performed MM drug screening on 18 patient samples and 6 healthy B-cell (BC) control samples. We performed drug screening on myeloma cells SK-MM2 (patient derived cell line) for 527 drugs at 5 concentrations. We are currently performing drug screening on 11 MM cell lines which represents diverse cancer stage. For each patient sample, a Drug Sensitivity Score (DSS) was calculated for every drug using the IC50 value, slope and the area under the curve (AUC). Next, DSS values for the full MM patient cohort were compared to those of healthy controls to generate a selective DSS (sDSS) for each drug (sDSS = DSSpatient - average DSShealthy). Drugs which had sDSS >5 were considered clearly more effective for patient samples in the in vitro test. MM patient samples were assessed for sDSS score using our screening data and we ranked all the drugs by their sDSS score. We have generated sDSS score for both CTG (cell viability) and CTxG (cell toxicity) datasets. Results and conclusion To date we have performed MM drug sensitivity screening on 18 MM patient samples and 6 healthy B cells donors. We adopted a quantitative scoring approach using sDSS to rank drugs that are selective and effective in inhibiting myeloma cells. Based on our drug sensitivity analysis, proteasome inhibitors such as bortezomib and carfilzomib were more effective in inhibiting myeloma cell proliferation compared to other drugs in all 18 patient samples as well as in the 6 healthy donors. Surprising, doxorubicin showed the highest average sDSS score in 10 patients with score 12.96 followed by prednisolone with average sDSS score 6.73 (Figure 1), while proteasome inhibitor bortezomib showed average sDSS score of 4.14 and carfilzomib showed average sDSS score of 1. In addition, we observed that samples from dexamethasone-treated patients showed lower sDSS score for dexamethasone in the in vitro drug screening compared to samples from untreated patients (MM0905 and MM0706). Based on the screening data and clustering analysis, we concluded that the observed diversity in drug effectiveness between patient samples supports the hypothesis of tumor heterogeneity and creates a basis for exploring the possibility to individualize treatment choices. Figure 1: Selective Drug Sensitivity Screening (sDSS) score for 30 drugs for 13 MM patient samples. HB, Healthy donor B cells (Euclidean distance, Ward linkage method) Disclosures Schjesvold: Novartis: Honoraria; Oncopeptides: Consultancy; Janssen: Consultancy, Honoraria, Research Funding; Adaptive: Consultancy; Bayer: Consultancy; Bristol Myers Squibb: Consultancy; Takeda: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Abbvie: Honoraria.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4676-4676
Author(s):  
Deepak Balaji balaji Thimiri Govinda Raj ◽  
Andrea Cremaschi ◽  
Sigrid Strand Skånland ◽  
Alexandra Gade ◽  
Fredrik H. Schjesvold ◽  
...  

Abstract Introduction Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in adults and is currently considered incurable. Although current treatment regimens prolong life for patients, CLL eventually relapses. Efficient therapies may require a personalized approach that combines targeting cancer cells and the tumor microenvironment by restoring the patient's own anti-tumor immunity. However, a major limitation is that no efficient approach exists to identify the most effective drugs for each patient and cancer stage. With the aim to support future introduction of individualized treatment for patients, we assessed the sensitivity of CLL patient samples to several drug candidates using our in vitro functional drug sensitivity screening platform. Methods We have established novel in vitro culture settings that mimic the CLL tumor microenvironment and allow proliferation of CLL cells for 5 days. Using our unique method, we performed drug screening on 26 patient samples and 10 healthy donors against a customized, annotated library of 516 drugs including kinase inhibitors, proteasome inhibitors, B-cell pathway inhibitors and several other approved drug classes. Primary patient samples were cultured in 384 well-plates with the presence of individual drugs over a concentration range over 5 logs. Drug sensitivity was assessed using CellTiter-Glo® luminescent cell viability assay and CellTox™ green cytotoxicity assay on day 5. Drug Sensitivity Score (DSS) was then calculated for each drug using the IC50 value, slope and area under the curve (AUC). DSSs for CLL patient samples were next compared with DSS of healthy donors for the full patient sample cohort screened so far to generate a selective DSS (sDSS = DSSpatient - DSShealthy) for each patient. Drugs which have sDSS >5 were considered clearly more effective for patient samples in the in vitro test system. CLL samples were assessed for sDSS using our screening data and we ranked all the drugs by their score. Results In order to find drug candidates for targeted therapies in CLL patients, we performed in vitro drug sensitivity screening on 13 IgVH unmutated and 13 IgVH mutated CLL patient samples, as well as 10 healthy donors (due to the lower number of cells healthy donors were pooled into two samples of 5 donors each). Our in vitro assay showed that proteasome inhibitors, kinase inhibitors and several approved CLL drug candidates were considered sensitive in the majority of patient samples. This included venetoclax, the Bcl-2 inhibitor ABT-737, doxorubicin, acalabrutinib, other kinase inhibitors (sunitinib, volasertib, trametinib, copanlisib) and proteasome inhibitors (carfilzomib, bortezomib). Selective drug sensitivity scores of the top 5 drugs in all patient samples (73 drugs in total) are shown in the heatmap (Figure 1). Venetoclax showed a higher sDSS score in 10 of the 20 patients with an average sDSS score of 22.3 followed by ABT-737 (Bcl-2 inhibitor) with an average sDSS score of 19.7. By performing hierarchical clustering analysis (Euclidean distance, Ward linkage method), we observed unsupervised clustering of patient samples irrespective of the IgVH mutation status. We are currently expanding the analysis by classifying the patient samples by age, sex and mutation status. Conclusion Our novel CLL culture method that allows cell proliferation along with our established functional in-vitro drug sensitivity screening platform enabled us to screen a number of patient samples and evaluate the sensitivity of a library of approved drugs and investigational drug candidates for CLL. Our analysis shows that several drugs may be effective for CLL and can be tested in drug combinations in order to identify synergistic effects. As a future perspective, we want to combine machine learning strategies with the experimental drug screening strategies to identify drug combinations and validate drug candidates by xenografting and in precision medicine clinical trials. Figure 1: Selective Drug Sensitivity Screening (sDSS) score for top 3 drugs (44 drugs) for 20 CLL patient samples. Green label is IgVH mutated CLL patient samples and blue label is IgVH unmutated patient samples. Disclosures Schjesvold: Oncopeptides: Consultancy; Abbvie: Honoraria; Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Adaptive: Consultancy; Bayer: Consultancy; Bristol Myers Squibb: Consultancy; Takeda: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 601-601
Author(s):  
Rodger E. Tiedemann ◽  
Yuan Xiao Zhu ◽  
Jessica Schmidt ◽  
Hongwei Yin ◽  
Quick Que ◽  
...  

Abstract Abstract 601 A paucity of validated kinase targets in human multiple myeloma (MM) has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in MM tumor lines bearing common t(4;14), t(14;16) and t(11;14) translocations to identify critically vulnerable kinases in MM tumor cells without regard to preconceived mechanistic notions. Primary screening was performed in duplicate using an 1800-oligo siRNA library in a single-siRNA-per-well format. siRNA were transfected at low concentration (13nM) to minimize off-target effects using conditions that resulted in transfection of >95% cells and <5% background cytotoxicity. After 96 hours, viability was measured by ATP-dependent luminescence. Fifteen kinases were consistently vulnerable in MM cells, including AKT1, AK3L1, AURKA, AURKB, CDC2L1, CDK5R2, FES, FLT4, GAK, GRK6, HK1, PKN1, PLK1, SMG1, and TNK2. While several kinases (PLK1, HK1) were equally vulnerable in epithelial cells, others and particularly the G-protein coupled receptor kinase, GRK6, appeared selectively vulnerable in MM. GRK6 inhibition is selectively lethal to KMS11, OPM1, H929, KMS18 and OCI-MY5 myeloma cells and has minimal effect on 293, MCF7, SF767, A375 or A549 epithelial cells. Persistent expression of FLAG-GRK6 via cDNA rescued KMS11 cells from the lethal effect of a 3'UTR-targeted GRK6 siRNA, but not from control siRNA, validating identification of GRK6 as an essential myeloma survival kinase. Furthermore, concordant results were obtained using four different exon-based GRK6 siRNA, all of which induced GRK6 silencing and similar inhibition of KMS11 proliferation and viability. Significantly, GRK6 is ubiquitously expressed in lymphoid tissues and myeloma, but by comparison appears absent or only weakly expressed in most primary human somatic tissues. From co-immunoprecipitation experiments we demonstrate that GRK6 is highly expressed in myeloma cells via direct association with the HSP90 chaperone. Inhibition of HSP90 with geldanamycin blocks GRK6 protein expression. Importantly, direct GRK6 silencing causes rapid and selective suppression of STAT3 phosphorylation that is associated with sustained reductions in total MCL1 protein levels and MCL1 phosphorylation (within 24 hours), providing a potent mechanism for the cytotoxicity of GRK6 inhibition in MM tumor cells. GF109203X is an inhibitor of both protein kinase C and of GRK6 that causes near total inhibition of these kinases in vitro at distinct concentrations of 0.1μM and 1-10μM respectively. Notably, GF109203X was substantially cytotoxic to 10/14 myeloma tumor lines at concentrations most consistent with GRK6 inhibition (5-20μM), and was selectively more cytotoxic to myeloma tumor cells than to non-myeloma cell lines (P=0.01), highlighting the potential of GRK6 as a pharmaceutical target for selective therapeutic intervention in myeloma. As mice that lack GRK6 are healthy, inhibition of GRK6 represents a uniquely targeted novel therapeutic strategy in human multiple myeloma. Disclosures: Perkins: MMRC: Employment. Reeder:Celgene: Research Funding; Millennium: Research Funding. Fonseca:Otsuka: Consultancy; BMS: Consultancy; Amgen: Consultancy; Medtronic: Consultancy; Genzyme: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 277-277 ◽  
Author(s):  
Inger S. Nijhof ◽  
Willy A. Noort ◽  
Jeroen Lammerts van Bueren ◽  
Berris van Kessel ◽  
Joost M. Bakker ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable malignancy of clonal plasma cells. Although the new generation of immunomodulatory agents, such as lenalidomide (LEN), and the potent proteasome inhibitor bortezomib (BORT) have significantly improved the overall survival of MM patients, all chemotherapy strategies are eventually hampered by the development of drug-resistance. The outcome of patients who are refractory to thalidomide, lenalidomide (LEN) and bortezomib (BORT) is very poor. Set out with the idea that targeted immunotherapy with human antibodies may offer new perspectives for MM patients, we have recently developed daratumumab (DARA), a CD38 human antibody with broad-spectrum killing activity, mainly via ADCC (antibody dependent cellular cytotoxicity) and CDC (complement dependent cytotoxicity). In our previous preclinical studies and in current clinical phase I/II trials, DARA induces marked anti-MM activity. Based on these encouraging results, we now explored the potential activity of DARA for patients who are refractory to LEN- and/or BORT. In a recently developed human-mouse hybrid model that allows the in vivo engraftment and outgrowth of patient-derived primary myeloma cells in immune deficient Rag2-/-gc-/- mice, single dose DARA treatment appeared to effectively inhibit the malignant expansion of primary MM cells derived from a LEN- and BORT-refractory patient, indicating the potential efficacy of DARA even in LEN/BORT refractory patients. To substantiate the conclusions of these in vivo data, we conducted in vitro assays, in which full BM-MNCs from LEN (n=11) and LEN/BORT (n=8) refractory patients were treated with DARA alone or the combination of DARA with LEN or BORT to induce MM cell lysis. As expected, LEN alone induced no or little lysis of MM cells in the LEN-refractory patients and also BORT was not able to induce any lysis in the BORT-refractory patients. On the contrary, DARA induced substantial levels of MM cell lysis in all LEN and LEN/BORT-refractory patients. This lysis was significantly enhanced by combination with LEN or BORT. The combination of DARA and BORT improved MM lysis by additive mechanisms. However, LEN improved DARA-mediated lysis of MM cells in a synergistic manner through the activation of effector cells involved in DARA-mediated ADCC. In conclusion, our results demonstrate that DARA is also effective against multiple myeloma cells derived from LEN- and BORT-refractory patients. Especially LEN seems to improve responses in a synergistic manner. Our results provide a rationale for clinical evaluation of DARA in combination with LEN to achieve more effective results in LEN- and BORT-refractory patients. Disclosures: Lammerts van Bueren: Genmab: Employment. Bakker:Genmab: Employment. Parren:Genmab: Employment. van de Donk:Celgene: Research Funding. Lokhorst:Genmab A/S: Consultancy, Research Funding; Celgene: Honoraria; Johnson-Cilag: Honoraria; Mudipharma: Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3436-3436
Author(s):  
Amit Kumar Mitra ◽  
Taylor S Harding ◽  
Brian Van Ness

Abstract Proteasome inhibitors (PI) are effective chemotherapeutic agents in the treatment of multiple myeloma (MM), used alone or in combination with other anti-cancer agents, such as alkylating agents, topoisomerase inhibitors, corticosteroids, histone deacetylase inhibitors (HDACis) and immunomodulatory drugs (IMiDs). Bortezomib (Velcade/Bz) was the first PI to be approved by US-FDA for the treatment of relapsed and refractory MM. Other second generation PIs include carfilzomib (Kyprolis/Cz), ixazomib/Iz and oprozomib (Opz). Wide inter-individual variation in response to treatment with PIs is a major limitation in achieving consistent therapeutic effect in MM. Yet few studies have compared the efficacy of all four PIs in a range of myeloma subtypes. In our current study, we performed comprehensive in vitro chemosensitivity profiling of response to four (4) PIs (Bz, Cz, Ix and Opz) in a panel of forty-five (45) human myeloma cells lines (HMCLs) generated through the immortalization of primary multiple myeloma cells (MMCs) and representing the biological and genetic heterogeneity of MM with regards to chromosomal abnormalities, oncogene mutations (e.g. Ras), tumor suppressor variations (e.g. p53), cell surface phenotypes, or growth factor response. Cells were treated with increasing concentrations of Bz, Cz, Ix and Opz as single agents and cell viability assays were performed using CellTiter-Glo luminescent cell viability assay to generate survival curves and determine the half maximal inhibitory concentration (IC50) values by calculating the nonlinear regression using sigmoidal dose-response equation (variable slope). Our results in comparing the cellular responses to PI treatment among HMCLs showed wide range of variability in IC50 values identifying some lines which were highly sensitive and some lines relatively refractory to PI treatment. Pearson product-moment correlation (PPMC) test demonstrated statistically significant (adjusted p values < 0.001) positive correlation between IC50 values of the following drug pairs: Bz vs Opz (r = 0.82); and Ix vs Opz (r = 0.88); Bz vs Ix (r = 0.65); Cz vs Opz (r = 0.69) and Cz vs Ix (r = 0.63). Subgroup analysis revealed significant correlation between carfizomib IC50 and chromosome number (p < 0.05). Furthermore, it was interesting to note that although all 4 drugs belong to the same drug class (PI), not all cell lines responded the same across all PI treatments. This demonstrates tumor heterogeneity even in response to inhibitors of the same class, and further demonstrates tumors refractory to one PI may still respond to another. We are currently examining genetic characteristics that are associated with response among the four PIs, and analysis of these characteristics will be presented. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2848-2848
Author(s):  
Vijay Ramakrishnan ◽  
Jessica Haug ◽  
Teresa Kimlinger ◽  
Timothy Halling ◽  
Linda Wellik ◽  
...  

Abstract Abstract 2848 Poster Board II-824 Background: Multiple myeloma remains incurable with current therapies and novel approaches based on disease biology are needed. IL-6 is a critical cytokine involved in myeloma cell proliferation and survival and exerts its activity primarily through the JAK/STAT pathway. In addition to IL6, other cytokines are also believed to cross talk with the JAK/STAT pathway, making it a crucial interface for survival signals. It has been implicated in myeloma cell interaction with the microenvironment and resistance to apoptotic stimuli from different drugs, and represents a potential therapeutic target. We examined the pre-clinical activity of a novel JAK2 tyrosine kinase inhibitor TG101209. Methods: TG101209 (N-tert-butyl-3-(5-methyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-ylamino)-benzenesulfonamide) was synthesized by TargeGen Inc. (San Diego, CA, USA). Stock solutions were made in DMSO, and subsequently diluted in RPMI-1640 medium for use. MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum (20% serum for primary patient cells) supplemented with L-Glutamine, penicillin, and streptomycin. Cytotoxicity was measured using the MTT viability assay and proliferation using thymidine uptake. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI) for cell lines and using Apo2.7 in primary patient cells. CD45 expression was estimated using flow cytometry and cells were gated by their CD45 expression to assess differential effects of the drug. Immunoblotting was done on cell extracts at various time points following incubation with the drug in order to study the cell signaling pathways. Results: TG101209 resulted in a dose and time dependent inhibition of cell growth in the MM cell lines tested. Most of the cytotoxicity was evident by 48 hours, with minimal increase seen up to 96 hours of incubation. At 48 hours of incubation, the median inhibitory concentration was between 2 and 4uM with similar IC50 seen for myeloma cell lines sensitive or resistant to conventional therapies. The IC50s were maintained when the cells were treated in co-culture with stromal cells or in the presence of IL6, IGF or VEGF. Increasing doses of IL6 was not able to rescue the cells from the drug. Dose dependent decrease in proliferation of the cell lines was evidenced by decreased thymidine incorporation. Apoptotic changes in cells following drug treatment was confirmed by flow cytometry for Annexin and PI. Cleavage of caspases 3, 8 and 9 were confirmed on flow cytometry. Addition of the pan-caspase inhibitor zvad-fmk did not prevent drug-induced apoptosis confirming non-caspase mediated mechanisms of cell death as well. Primary myeloma cells from several patients were treated with increasing doses of the drug and IC50 similar to cell lines were seen in 8/10 patient samples tested. Interestingly, evaluation of U266 cell lines, which have a mix of CD45+ and negative cells as well as primary patient cells demonstrated more profound cytotoxicity and anti-proliferative activity of the drug on the CD45+ population relative to the CD45- cells. Immunoblotting studies demonstrated significant down regulation of IL-6 induced pSTAT3 with minor effects on the pERK and pAkt. The effect on pSAT3 was sustained compared to that on pERK and pAkt. This was accompanied by significant down regulation of Bcl-xL. Studies in a mouse model of myeloma are planned. Conclusion: These studies demonstrate significant in-vitro activity of JAK2 inhibition in multiple myeloma. In particular, the preferential targeting of CD45 cells, considered to reflect the proliferative compartment in myeloma holds out the promise for more sustained impact on the disease from a therapeutic standpoint. This is likely explained by the increased sensitivity of the CD45 cells to cytokines as a result of higher expression of different cytokine receptors as has been previously shown. This leads to increased activity of and dependence of the cells on the JAK-STAT pathway and likely explains the increased effect of the pathway inhibition. These studies form the framework for clinical evaluation of the drug in the setting of myeloma. Disclosures: Kumar: CELGENE: Research Funding; MILLENNIUM: Research Funding; BAYER: Research Funding; GENZYME: Research Funding; NOVARTIS: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1843-1843
Author(s):  
Holly Stessman ◽  
Linda B. Baughn ◽  
Aaron G. Sarver ◽  
Aatif Mansoor ◽  
Tzu G. Wu ◽  
...  

Abstract Abstract 1843 The proteasome inhibitor bortezomib (Bz) has been used extensively and with much success in the treatment of multiple myeloma (MM) patients; however, patients eventually relapse, many as non-responders to subsequent treatments with Bz making drug resistance a significant problem. Here we utilized cell lines created using a iMycCa/Bcl-xL transgenic mouse model of MM (Cheung, et al. J Clin Invest (2004) 113: 1763) to identify 1) gene expression signatures of Bz response, 2) differences in gene expression between sensitive and resistant cell lines, and 3) cytogenetic abnormalities associated with Bz sensitive and resistant phenotypes. The iMycCa/Bcl-xL transgenic mice develop plasma cell tumors with 100% penetrance and have shown strikingly strong similarities to human MM by extensive gene expression profiling (GEP), spectral karyotyping and histology (Boylan, et al. Cancer Res (2007) 67: 4069). Six cell lines created from these mice were dose escalated with Bz over approximately six months to create Bz resistant (BzR) cell lines with approximately 5–8 fold increase in IC50 to Bz compared to their sensitive counterparts. The BzR characteristics were stable, as lines grown in the absence of drug for as long as 6 months maintained drug resistance upon subsequent challenge. Notably, BzR lines showed cross resistance to other investigational proteasome inhibitors (MLN9708 and carfilzomib) while maintaining sensitivity to other chemotherapeutic agents (dexamethasone and melphalan), suggesting a common mechanism of emerging resistance to proteasome inhibitors. The results of GEP of these mouse tumor cell lines treated with Bz were compared with a recently published human drug trial where GEP was completed prior to and 48 hours after a “test dose” of Bz was administered to patients (Shaughnessy, et al. Blood (2011), ahead of print). In the mouse tumor cell lines, 116 genes were differentially expressed upon in vitro Bz treatment (p=0.001, ≥1.5 fold change). Between the mouse and human drug response data sets was an overlapping common 27-gene signature (p=1×10−25, Fishers exact test) of Bz-induced expression changes that has not previously been described. Time points were collected in these mouse cell line GEP experiments at 0, 2, 8, 16, and 24 hours after Bz treatment. A comparison of the Bz sensitive and derived BzR lines prior to drug treatment revealed a 50 gene signature (p=0.05, ≥2 fold change) that distinguishes three pairs of sensitive and resistant lines. Gene-set enrichment analyses have revealed significant pathways that are differentially regulated in the sensitive and resistant responses. Additional GEP differences were seen when time course expression patterns were examined from Bz sensitive compared to resistant tumor lines. Thus, GEP signatures that distinguish tumor lethality from resistance were identified both prior to Bz treatment, as well as in the early response to Bz. In addition, array comparative genomic hybridization on 4 pairs of mouse Bz sensitive and established BzR lines revealed not only gross differences in copy number between the differentially responding groups of cells but copy number abnormalities that may be unique to the emerging resistance. Taken together, these data indicate that this model is useful for the identification of good and poor Bz response signatures in MM. These signatures are currently being evaluated in human tumor cells from single agent bortezomib phase II and phase III clinical trials. Because the in vitro adapted tumor mouse lines can be genetically manipulated using lentiviral vectors, this model can be used as a preclinical platform to validate existing gene models with respect to Bz response, something that cannot be done using human patients. Subsequent transfer of manipulated lines into syngeneic, immunocompetent recipients can further test Bz response in vivo presenting a significant advantage of this robust mouse MM model system over other in vitro systems. Disclosures: Stessman: Millennium: The Takeda Oncology Company: Research Funding. Mansoor:Millennium: The Takeda Oncology Company: Research Funding. Janz:Millennium: The Takeda Oncology Company: Research Funding. Van Ness:Millennium: The Takeda Oncology Company: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1885-1885 ◽  
Author(s):  
David G. Coffey ◽  
Andrew J. Cowan ◽  
Timothy S Martins ◽  
Damian J. Green ◽  
Edward N. Libby ◽  
...  

Background: The response to treatment for patients with relapsed/refractory multiple myeloma (MM) is highly variable. This may in part be related to the broad genomic heterogeneity that has been reported across individual patients. We hypothesize that in vitro functional drug screening and correlated genomic analyses of patient tumor cells is feasible and may improve clinical treatment response. To address this, we developed a custom high-throughput drug sensitivity (HTS) assay enabling simultaneous testing of 170 chemotherapy drugs and targeted inhibitors, as well as correlative gene expression and mutational analysis by next-generation sequencing. We report on the feasibility of this approach in a clinical trial enrolling patients with relapsed/refractory MM (NCT03389347). Patients and Methods: Twenty patients with relapsed/refractory MM or secondary plasma cell leukemia were enrolled in the study and 15 (9 female, 6 male) had a sufficient number of plasma cells for HTS. The average number of prior treatment regimens among the tested patients was 5.8 (range 3-11) and all had previously received a proteasome inhibitor and immunomodulatory drug and 8 had prior autologous stem cell transplants. Nine patients had stage III disease by the Revised International Staging System (R-ISS) and 4 had stage II disease. Eight patients exhibited high-risk cytogenetics, including 4 patients with del(17p), 5 patients with t(4;14), and 2 patients with t(14;16). The sources of plasma cells utilized for the HTS assay included bone marrow aspirate or core biopsies, soft tissue biopsies of plasmacytomas, and blood samples from patients with circulating plasma cells. Additional blood and bone marrow samples were obtained for RNA sequencing, whole-exome sequencing, and targeted sequencing of circulating tumor DNA. The CLIA approved HTS assay was performed at the Quellos HTS Core at the University of Washington using CD138+plasma cells isolated by magnetic bead separation. Tumor cells were tested against a panel of 170 drugs that includes conventional agents and targeted inhibitors, some FDA approved and others investigational. Cell viability was assessed at 72 hours by a luminescent cell viability assay (Cell Titer Glo, Promega) and drug response was determined using the concentration of experimental compound required to achieve 50% in vitro response inhibition (IC50) and area under the dose-response curve (AUC). Results: We report that the HTS assay can be completed in a median of 5 days from sampling (range 4-6 days), establishing feasibility. The mean percentage of bone marrow plasma cells among patients who could be tested was 56% compared to 5% for patients who had insufficient cells. We observed heterogeneity in patient genomic profiles and in vitro drug responses. The drugs with the highest in vitro response include those commonly used in MM such as bortezomib, ixazomib, carfilzomib, and panobinostat, as well as those under investigation including venetoclax and selinexor. Sensitivity was observed for drugs that have not been investigated for the treatment of MM including alvocidib and omacetaxine. Progression on prior therapy was not consistently predictive of in vitro drug responses and could be a consequence of some myeloma cells retaining sensitivity. Correlative genomic analyses were associated with in vitro drug responses for a subset of compounds. Among the 8 patients who received individualized therapy guided by the assay, 6 had an evaluable response and 5 (83%) achieved effective disease control (stable disease or better). Updated clinical treatment outcomes will be reported at the ASH conference. Conclusions: In this study, we successfully demonstrate the feasibility of a CLIA approved HTS assay capable of delivering actionable results in time to inform individualized treatment decisions for patients with MM. Correlative gene expression and mutational analysis are associated with in vitro drug response. Finally, we demonstrate that some of the patients who received treatment guided by the results of the HTS assay achieved a clinical response. These data suggest that using functional drug screening to predict sensitivity or resistance to both approved and experimental agents warrants further testing. Validation of the HTS assay in a larger population of MM patients holds the potential to improve treatment outcomes. Disclosures Cowan: Cellectar: Consultancy; Janssen: Consultancy, Research Funding; Abbvie: Research Funding; Celgene: Consultancy, Research Funding; Juno: Research Funding; Sanofi: Consultancy. Green:Celgene: Consultancy; Cellectar Biosciences: Research Funding; GSK: Consultancy; Juno Therapeutics: Consultancy, Patents & Royalties, Research Funding; Seattle Genetics: Research Funding. Libby:Alnylam: Consultancy; Abbvie: Consultancy; Pharmacyclics and Janssen: Consultancy; Akcea: Consultancy. Silbermann:Janssen, Sanofi: Other: Consultant/Advisor. Becker:The France Foundation: Honoraria; Accordant Health Services/Caremark: Consultancy; AbbVie, Amgen, Bristol-Myers Squibb, Glycomimetics, Invivoscribe, JW Pharmaceuticals, Novartis, Trovagene: Research Funding. OffLabel Disclosure: We will discuss in-vitro sensitivity testing of drugs that have not been approved for the treatment of multiple myeloma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3987-3987
Author(s):  
Ines Tagoug ◽  
Lars Jordheim ◽  
Anne-Laure Huber ◽  
Stephanie Herveau ◽  
Eva Matera ◽  
...  

Abstract Abstract 3987 Multiple Myeloma (MM) is a clonal plasma cell disorder whose growth and proliferation are linked to a variety of growth factors, including insulin-like growth factor type 1 (IGF-1). Bortezomib, the first-in-class proteasome inhibitor, has displayed significant antitumor activity in multiple myeloma and has been suggested to induce apoptotsis by reducing NF-κB signalling. Other cytotoxic mechanisms have been suggested, including increased reticulum stress leading to an unfolded protein response. We analyzed the impact of recombinant IGF-1 combined with the proteasome inhibitor bortezomib on human plasma cell lines in vitro and in vivo and on fresh human myeloma cells ex vivo. Using an MTT assay, we found that IGF-1 enhanced the cytotoxic activity of bortezomib in vitro against the LP1, RPMI8226, U266 and MM1.S lines, at a concentration of IGF-1 of 100 ng/mL. This potentiating effect was confirmed on MM1.S cells using a flow cytometric analysis of annexin V staining, and showed that the enhanced toxicity could be inhibited by the presence of a monoclonal antibody directed against the IGF-1 receptor (IGF1-R). IGF-1 was also found to enhance the cytotoxic activity of other proteasome inhibitors against MM1.S cells, including MG115, MG132, PSI and epoximicin. In vivo studies were performed in SCID mice bearing MM1.S xenografts. Mice received weekly administrations of bortezomib (0.5 mg/kg, i.p.) with or without recombinant IGF-1 (0.03 mg/kg, i.p.). The co-administration of IGF-1 with bortezomib significantly delayed tumor growth in comparison to that observed in mice treated with bortezomib alone. Fresh human myeloma cells exposed to bortezomib ex vivo displayed a larger annexin V positive fraction when they were co-incubated with IGF-1 then when they were exposed to bortezomib alone. This effect, which could be observed in subpopulations of CD45 hi and CD45 lo cells, could be reversed by an antibody directed against IGF-1R. Thus in each of these situations, IGF-1 increased the sensitivity of multiple myeloma cells to the cytotoxic effect of bortezomib. Analysis of pro- and anti-apoptotic proteins in MM1.S cells by immunoblotting showed that the addition of IGF-1 to bortezomib significantly enhanced the content o Bax, Bad and Bak and significantly reduced the content of Bcl2, BclX-L and Bfl-1. Exploration the NFkB pathway showed that exposure to IGF-1 and bortezomib induced a reduction of IkBalpha, an increase in phosphor-IKBalpha as well as a decrease in NFkB p65. Other observations made with the IGF-1/bortezomib combination include an increase in the content of cleaved caspase 3 and in P21 protein. Cell cycle distributions of cells exposed to bortezomib alone or the IGF-1/bortezomib combination were similar. Preliminary data showed an increased content of CHOP protein, suggesting that the IGF-1/bortezomib combination might enhance reticulum stress in MM1.S cells, thus leading to an Unfolded Protein Response (UPR) and to cell death. These results suggest that IGF-1 sensitizes myeloma cells to proteasome inhibitors by contributing to the enhancement of the reticulum stress. Overall these results suggest that exposure of myeloma cells to one of their key growth factors, IGF-1, significantly enhanced their sensitivity to bortezomib as well as to other proteasome inhibitors. This phenomenon appears to involve several pathways and may be dependent on the high baseline level of reticulum stress present in myeloma cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document