scholarly journals Selective HDAC3 Inhibition Induces Apoptosis in B Cell Lymphoma through Protein Acetylation

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1583-1583
Author(s):  
Hiroyuki Matsui ◽  
Kotaro Shirakawa ◽  
Hsin-Yi Chang ◽  
Anamaria Daniela Sarca ◽  
Yasuhiro Kazuma ◽  
...  

Abstract Acetylation is a reversible process under the control of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Acetyl proteome analysis revealed that acetylation regulates various cellular processes through both histone and non-histone proteins (Choudhary et al., Science, 2008). Subsets of diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) have inactivating mutations of HATs, CBP and p300 (Pasqualucci et al., Nature, 2011). In addition, p300 mutation is a poor prognostic factor in FL patients (Pastore et al., Lancet Oncol, 2015). In a mouse model, CBP deficiency promotes B cell lymphomagenesis through H3K27 deacetylation of enhancer mediated by the HDAC3, which forms repressor complex with Bcl-6, SMRT and NCoR (Jiang et al., Cancer Discov, 2016). Human HDACs consist of 18 isoenzymes that are classified into 4 classes (I-IV). Among the 4 classes, class I includes 4 HDACs (HDAC1, 2, 3 and 8) that are ubiquitous. Four HDAC inhibitors are FDA approved for the treatment of cutaneous T cell lymphoma (romidepsin, vorinostat), peripheral T cell lymphoma (belinostat) and multiple myeloma (panobinostat). These inhibitors mainly target class I and class II HDACs, each with a different specificity. This non-specific nature of current HDAC inhibitors limits their efficacy and causes adverse effects, therefore, several selective HDAC inhibitors has been developed. Selective HDAC3 inhibition restricts myeloma cell growth in vitro and in vivo more efficiently than selective HDAC1 or HDAC2 inhibition, allowing for DNMT1 acetylation, accelerating its degradation by the proteasome (Harada et al., Leukemia, 2017). However, the efficacy of selective HDAC3 inhibition against B cell lymphoma remains unclear. We first knocked down HDAC3 by shRNA in a B-cell lymphoma cell line (KIS1). We found that selective HDAC3 knock down suppressed cell growth and induced apoptosis. We next tested selective HDAC3 inhibitors (RGFP966 and AA-1) using five B cell lymphoma cell lines (Raji, Ramos, KIS1, SUDHL-6 and Granta519). We confirmed that these inhibitors reduced cell viability in all treated cell lines, significantly increased the number of apoptotic cells in Ramos, KIS1 and SUDHL-6 and induced cell cycle arrest in Raji and Granta519, rather than apoptosis. Lentiviral shRNA against HDAC3 or the inhibitors also led to the cleavage and subsequent activation of caspase9 and caspase3. These results show that HDAC3 inhibition induces apoptosis by activating the intrinsic apoptotic pathway. To clarify how HDAC3 inhibitors affect global protein acetylation and how they induce apoptosis in B cell lymphoma, we conducted acetyl proteome analysis using LC-MS/MS. Briefly, we immunoprecipitated acetyl lysine peptides from whole cell lysates of SUDHL-6 with or without RGFP966 treatment, and analyzed them by mass spectrometry. We identified 673 and 1,328 acetylation sites in RGFP966 treated and untreated samples, respectively, and 1,425 acetylation sites in total. Among these 1,425 sites, 153, including histones and HATs, were more than two fold upregulated in the RGFP966 treated sample. To identify which cellular processes are affected by RGFP966 treatment, we performed Gene Ontology (GO) enrichment analysis of the proteins with upregulated acetylation. GO enrichment analysis revealed that bromodomain, glycolysis and unfolded protein binding were significantly enriched terms upon RGFP966 treatment. Our data show that selective HDAC3 inhibition is also effective against B cell lymphoma and that protein folding and metabolic processes as well as epigenetic mechanisms might be involved in activation of the intrinsic apoptosis pathway upon HDAC3 inhibition. We discuss how acetylation of these proteins leads to cell growth inhibition and apoptosis in B cell lymphoma. Disclosures Takaori-Kondo: Bristol-Myers Squibb: Honoraria; Pfizer: Honoraria; Celgene: Honoraria, Research Funding; Novartis: Honoraria; Janssen Pharmaceuticals: Honoraria.

2020 ◽  
Vol 21 (12) ◽  
pp. 4377
Author(s):  
Soo Jin Kim ◽  
U Ji Kim ◽  
Hae Yong Yoo ◽  
Yong June Choi ◽  
Keon Wook Kang

Double-hit lymphoma (DHL) and double-expressor lymphoma (DEL) are aggressive forms of lymphoma that require better treatments to improve patient outcomes. CKD-581 is a new histone deacetylase (HDAC) inhibitor that exhibited a better safety profile in clinical trials compared to other HDAC inhibitors. Here, we demonstrate that CKD-581 inhibited the class I–II HDAC family via histone H3 and tubulin acetylation. CKD-581 treatment also up-regulated the phosphorylation of histone H2AX (γH2AX, DNA double-strand break marker), and reduced levels of MYC and anti-apoptotic proteins such as BCL-2, BCL-6, BCL-XL, and MCL-1 in DH/DE-diffuse large B cell lymphoma (DLBCL) cell lines. Ultimately, CKD-581 also induced apoptosis via poly(ADP ribose) polymerase 1 (PARP1) cleavage. In a DLBCL SCID mouse xenograft model, CKD-581 exhibited anti-cancer effects comparable with those of rituximab (CD20 mAb). Our findings suggest that CKD-581 could be a good candidate for the treatment of DLBCL.


2016 ◽  
Vol 36 (2) ◽  
pp. 1069-1075 ◽  
Author(s):  
Wenxiu Yang ◽  
Yi Li ◽  
Pinhao Li ◽  
Lingling Wang

Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 396-402 ◽  
Author(s):  
Mika Inomata ◽  
Hiroyuki Tagawa ◽  
Yong-Mei Guo ◽  
Yoshihiro Kameoka ◽  
Naoto Takahashi ◽  
...  

Abstract Aberrant overexpression of the miR-17-92 polycistron is strongly associated with B-cell lymphomagenesis. Recent studies have shown that miR-17-92 down-regulates the proapoptotic protein Bim, leading to overexpression of Bcl2, which likely plays a key role in lymphomagenesis. However, the fact that Jeko-1 cells derived from mantle cell lymphoma exhibit both homozygous deletion of BIM and overexpression of miR-17-92 suggests other targets are also involved in B-cell lymphomagenesis. To identify essential target(s) of miR-17-92 in lymphomagenesis, we first transfected miR-17-92 into 2 genetically distinct B-cell lymphoma cell lines: Raji, which overexpress c-Myc, and SUDHL4, which overexpress Bcl2. Raji transfected with miR-17-19b-1 exhibited down-regulated expression of Bim and a slight up-regulation in Bcl2 expression. On the other hand, SUDHL4 transfectants showed aggressive cell growth reflecting facilitated cell cycle progression at the G1 to S transition and decreased expression of CDKN1A mRNA and p21 protein (CDKN1A/p21) that was independent of p53 expression. Conversely, transfection of antisense oligonucleotides against miR-17 and miR-20a into Jeko-1 led to up-regulation of CDKN1A/p21, resulting in decreased cell growth with G1 to S arrest. Thus, CDKN1A/p21 appears to be an essential target of miR-17-92 during B-cell lymphomagenesis, which suggests the miR-17-92 polycistron has distinct targets in different B-cell lymphoma subtypes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2942-2942
Author(s):  
Zhong Zheng ◽  
Peng-Peng Xu ◽  
Li Wang ◽  
Hui-Jin Zhao ◽  
Wei Li Zhao

Abstract MicroRNAs (miRs), a class of 19- to 23-nucleotide non-coding RNA molecules, are involved in tumorigenesis by regulating tumor cells and microenvironment. Our study revealed serum miR21 expression in a large cohort of B-cell lymphoma patients and the biological function of miR21 both in vitro and in vivo. Comparing with healthy volunteers, serum miR21 was significantly increased in patients with B-cell lymphoma (Figure 1A). As revealed by immunohistochemistry in 50 tumor samples of DLBCL, CD31-positive microvessels were more frequently observed in high miR21 group than in low miR21 group (Figure 1B). High miR21 expression patients displayed more peripheral blood Treg cells than low miR21 expression patients, instead of natural killer (NK) cells (Figure 1C). We futher study the biological function of miR21, B-lymphoma cell SU-DHL-4 were transfected with miR21 mimics and treated with chemotherapeutic agents. Under the monoculture condition, as compared to the control mimics, ectopic expression of miR21 significantly diminished the cytotoxic effect of doxorubicin and cisplatin, but sensitized lymphoma cells to ABT-199. Under the direct co-culture system, mimicking lymphoma microenvironment, miR21 overexpression resulted in lymphoma cell resistance to chemotherapeutic agents, but sensitivity to ABT-199 in the direct co-culture system. ABT-199 remarkably downregulated miR21 expression in both the monoculture system and the direct co-culture system, irrespective to Bcl-2 expression. To clarify the underlying mechanism of miR21-mediated sensitization of ABT-199 on B-cell lymphoma, we studied the effect of miR21 on HUVEC sorted from the direct co-culture system. Co-culturing with miR21-overexpressing lymphoma cells significantly stimulated HUVEC growth, which was retarded by ABT-199 (Figure 2A). As detected by ELISA, VEGFA was increased by miR21 transfection and reduced by ABT-199 in both control siRNA-transfected HUVEC and Bcl-2 siRNA-transfected HUVEC (Figure 2B). Accordingly, similar changes of tube formation and endothelial cell migration towards lymphoma cells were present (Figure 2C). We hereafter studied the effect of miR21 on Treg cells sorted from the direct co-culture system. Consistent with change of VEGFA, co-culturing with miR21-overexpressing lymphoma cells significantly increased VEGFR2 expression on Treg cells, which were decreased by ABT-199 (Figure 2D). ABT-199-induced downregulation of VEGFA/VEGFR2 signaling was associated with Treg cell growth inhibition, resulting in reduction of immunosuppressive cytokine TGF-¦Â and molecule IL-2 (Figure 2E and 2F). In the direct co-culture system, miR21 overexpression induced ICOS expression on Treg cells and ICOSL expression on HUVEC and, both of which were inhibited by ABT-199 (Figure 3A). To confirm the role of ICOS/ICOSL axis, antibody against ICOS was added to the direct co-culture system. Pharmacological inhibition of ICOS/ICOSL interaction significantly abrogated the sensitivity of miR21-overexpressing cells to ABT-199, as well as HUVEC and Treg cell growth (Figure 3B). Blockade of ICOS/ICOSL also interfered the action of ABT-199 on VEGFA/VEGFR2 signaling between Treg cells and endothelial cells (Figure 3C). Murine xenograft model was established with subcutaneous injection of B-lymphoma cells, ABT-199 particularly retarded the growth of miR21-overexpressing tumors, consistent with the inhibition of ICOS/ICOSL axis, VEGFA/VEGFR2 signaling, tumor angiogenesis and Treg cell growth. Collectively, these data demonstrated that miR21 plays an oncogenic role in B-cell lymphoma by modulating tumor microenvironment and supported clinical rationale for using miR21 as a biomarker to select chemoresistant B-lymphoma patients who may benefit from treatments containing ABT-199. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Vol 17 (1) ◽  
pp. 1934578X2110730
Author(s):  
Ho-Sung Lee ◽  
In-Hee Lee ◽  
Kyungrae Kang ◽  
Sang-In Park ◽  
Minho Jung ◽  
...  

Gastric cancer (GC) is one of the most common and deadly malignant tumors worldwide. While the application of herbal drugs for GC treatment is increasing, the multicompound–multitarget pharmacological mechanisms involved are yet to be elucidated. By adopting a network pharmacology strategy, we investigated the properties of the anticancer herbal drug FDY003 against GC. We found that FDY003 reduced the viability of human GC cells and enhanced their chemosensitivity. We also identified 8 active phytochemical compounds in FDY003 that target 70 GC-associated genes and proteins. Gene ontology (GO) enrichment analysis suggested that the targets of FDY003 are involved in various cellular processes, such as cellular proliferation, survival, and death. We further identified various major FDY003 target GC-associated pathways, including PIK3-Akt, MAPK, Ras, HIF-1, ErbB, and p53 pathways. Taken together, the overall analysis presents insight at the systems level into the pharmacological activity of FDY003 against GC.


2021 ◽  
Author(s):  
Jieke Cui ◽  
Rong Guo ◽  
Yingjun Wang ◽  
Yue Song ◽  
Xuewen Song ◽  
...  

Abstract Background: Diffuse large B-cell lymphoma (DLBCL) is one of the most common causes of cancer death worldwide, and responds badly to the existing treatment. Thus, identifying the novel therapeutic targets of DLBCL are urgent. Methods and results: In this study, we found that the T-lymphokine-activated killer cell-originated protein kinase (TOPK) was highly expressed in DLBCL cells and tissues. The TOPK expression were analyzed by bioinformatics analysis, immunohistochemistry (IHC) and western blot analysis. TOPK knockdown inhibited cell growth and induced apoptosis of DLBCL cells with MTS and flow cytometry. Further experiments demonstrated that acetylshikonin, the targeted compound of TOPK, could attenuate the cell growth and aggravate the cell apoptosis through TOPK/extra cellular signal-regulated kinase (ERK)-1/2 signaling using MTS, flow cytometry and western blot analysis. In addition, we demonstrated that TOPK overexpression significantly reduced the acetylshikonin effect on cell proliferation and apoptosis in U2932 and OCI-LY8 cells using MTS, flow cytometry and western blot analysis. Conclusions: Taken together, the present study suggests that the targeted inhibition of TOPK by acetylshikonin may be a promising approach to the treatment of DLBCL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4181-4181
Author(s):  
Lan Pham ◽  
Juan Chen ◽  
Archie Tamayo ◽  
Jerry Bryant ◽  
David Yang ◽  
...  

Abstract Non-Hodgkin Lymphoma (NHL) is the most common hematological malignancy, with B-cell lymphoma (NHL-B) accounting for 85% of all lymphomas. In the United States, there are ~500,000 lymphoma patients currently living with this disease and ~20,000 lymphoma-related deaths occur annually. The current overall cure rate for B-cell lymphoma is estimated at ~30%, indicating that new innovative therapeutic approaches are needed to significantly reduce the high mortality rate, particularly of relapsed/refractory (r/r) NHL-B. The poor quality of life in patients suffering from chronic diseases like cancer has forced many patients to pursue alternative treatment options, including medicinal cannabinoids (CB), in order to improve their clinical prospect/outcomes. Medicinal cannabinoids have been legalized in 23 states and DC for several medical conditions such as cachexia, chronic pain, epilepsy and other similar disorders characterized by seizures, glaucoma, HIV- AIDS, Multiple Sclerosis, muscle spasticity and GI enteritis. Lately however, cannabis has been shown to have a broader biologic activity spectrum with various cannabis compounds functioning as ligands binding the two principle cannabinoid-specific G protein-coupled receptors (GPCR) CB1 (in neural cells), and CB2, in immune lymphoid, particularly B cells, but have also been identified, showing aberrant expression in a wide variety of important human cancers. This suggests not only a wider spectrum of cellular usage of cannabinoids and their cognate receptors, but also their potential utility as novel therapeutic targets. Gene expression profiling data has demonstrated, however, that B-cell lymphoma is one of the top three cancers (glioma and gastric are the other two) showing high expression of CB1 and CB2 receptors. Our studies showed that CB1 receptor is highly expressed in aggressive NHL-B, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL) cells in comparison to normal unstimulated (G0) B cells, and that targeting CB1 using an siRNA approach leads to cell growth inhibition. Furthermore, pharmacological approaches targeting CB1 with small molecule antagonists (Rimonabant and Otenabant) inhibited lymphoma cell viability, leading to the induction of apoptosis and G2M cell cycle arrest. Using proteomic approach via reverse-phase protein array (RPPA), we have demonstrated that lymphoma cells treated with the CB1 antagonist Rimonabant showed a robust effect on apoptosis (increases in caspase 3 and 7, Bad, and bak), cell cycle (increases in p27 and cyclin D1), DNA damage (increases in gH2AX), and autophagy (increases in LC3A) associated proteins. In addition, Rimonabant treatment also inhibited several growth and survival pathways, including STAT3, SRC, and b-catenin, while enhancing the PI3K/ATK pathway. Of note, Rimonabant treatment also activated the DNA damage response (DDR) pathway through stimulating two checkpoint kinases (Chk1 and Chk2). Blocking Rimonabant-induced Chk1 and Chk2 with a selective ATP-competitive inhibitor of Chk1 and Chk2 leads to a robust synergistic effect on cell growth inhibition and apoptotic induction, suggesting that blocking the DDR pathway with Chk kinase inhibitors prevents cells recovering from rimonabant-induced DNA damage. These findings suggest that targeting the cannabinoid receptors and the DDR pathway represents a new therapeutic strategy against resistant r/r NHL-B cells. Disclosures Pham: Vyripharm Biopharmaceuticals: Research Funding. Bryant:Vyripharm Biopharmaceuticals: Equity Ownership. Yang:Vyripharm Biopharmaceuticals: Employment.


Sign in / Sign up

Export Citation Format

Share Document