scholarly journals BCL-2 Inhibitor Venetoclax (ABT-199) and MEK Inhibitor GDC-0973 Synergise to Target AML Progenitors and Overcome Drug Resistance with the Use of PET Scanning in a Mouse Model of HR-MDS to Monitor Response to Treatment

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5497-5497 ◽  
Author(s):  
Rose Ann Padua ◽  
Laure Sarda-Mantel ◽  
Mathieu Chiquet ◽  
Claire Kappel ◽  
Patricia Krief ◽  
...  

Abstract Introduction: Targeted drugs are needed for HR-MDS/AML, particularly in elderly patients and Venetoclax, approved for some CLL, gives promising results in elderly AML. Assays to predict response to treatment may enable us to deliver personalized treatment. We sought to determine the most informative assay to predict response; viability assays can directly measure the effects of reagents on growth. Progenitor assays can potentially determine if the reagents can target diseased primitive cells. PET scanning can be used to follow response to treatment. Methods: Peripheral blood (PB) or bone marrow (BM) from 7 MDS/AML patients were incubated in a) no treatment, b) ABT-199 (1 µM) (Abbvie), c) GDC-0973 (1 µM) (Genentech) or d) ABT-199+GDC-0973 (1 µM of each) and assessed for viability using the MTT assay (n=2); cell death followed using the Incucyte® Zoom System (Essen Bioscience) (n=2) or methocult progenitor assays (Stem Cell Technologies) (n=4). Having shown that RAS:BCL-2 co-localization correlated with prognosis in MDS/AML patients (Leuk Res 37:312-9, 2013), immunofluorescence was undertaken. A micro PET device dedicated to mice was used to measure BM blast proliferation. After injection of 18F-FLT(a thymidine analogue) in mice untreated (n=7) or ABT-199 (75mg/kg)+GDC-0973(10mg/kg) treated (n=5) normal FVB/N, HR-MDS mice treated with vehicle (n=4), 2-month old HR-MDS before (n=5) and 3-month old before (n=4) and after ABT-199 (75mg/kg)+GDC-0973(10mg/kg) treatment (n=8), PET imaging was performed (Inveon Siemens Medical Systems), analyzed for signal and quantified. Results: Patient details and results are summarized on Table 1. Using the MTT assay 2 PB patient samples were found to be sensitive to ABT-199 treatment (Figure 1A, AS, p=0.00042 and YA, 0.00002) and more sensitive to the combination compared to untreated (AS, p=0.00007 and YA, 0.000003). With the incucyte the BM of one patient (AE) was found to be resistant to both ABT-199 and GDC-0973, but sensitive to the combination (Figure 1B). PB and BM from patient JA were assayed for apoptosis with the incucyte and were found to be sensitive to ABT-199 with increased apoptosis, resistant to GDC-0973 with decreased apoptosis and sensitive to the combination. Four bone marrow samples were tested in the 4 conditions using the progenitor assay (Figure 1C). Three patients were sensitive to GDC-0973, inhibiting any colony formation and the fourth had reduced colony numbers. In this assay patient JA appeared to be sensitive to GDC-0973 treatment whereas the incucyte assay scored this sample to be resistant to apoptosis; thus the cytotoxic effects of GDC-0973 may not be via apoptopsis. As the progenitor assay is likely to score the primitive disease population, this assay may prove more informative than the others without prior selection. One patient (DH) was clearly resistant to ABT-199, whereas the other three (JA, CB and FL) had reduced colony growth. All patients were sensitive to the combination treatment and inhibited colony growth. The RAS:BCL-2 co-localization in the PB revealed no complex in either the Mito or PM upon treatment with ABT-199 alone and some localization in the Mito with GDC-0973. With both ABT-199 and GDC-0973, there were hardly any cells confirming the cytotoxic effects of the combination. As we have previously shown that PM co-localization of the complex is associated with drug resistance (Blood 130:2613, 2017Suppl), we used the combination on our HR-MDS mouse model, where the complex co-localizes in the PM and followed the mice by PET scanning (Figure 1D). Weak signal was visualized in the femurs of untreated and ABT-199+GDC-0973 treated FVB/N mice (FBR 1.17+/-0.34 and 1.02+/-0.08 respectively). Mild PET signal was seen in the femurs of 2 month-old HR-MDS mice, (FBR 1.79+/-0.98). Intense PET signal was seen in the femurs and proximal humerus of HR-MDS mice treated with vehicle (3 month-old, FBR=2.35+/-1.32). Low PET signals were seen in the femurs of 5/8 HR-MDS mice treated with ABT-199+GDC-0973 (FBR=1.93+/-0.84). FBRs of the 3 groups of HR-MDS mice were significantly higher than those of FBV/N groups. Conclusion: Combined Venetoclax (ABT-199) and GDC-0973 targets MDS/AML progenitors and can potentially overcome drug resistance with the disruption of the RAS:BCL-2 complex. Bone marrow disease progression in HR-MDS mice can be monitored with 18F-FLT-PET imaging; PET data shows that the combination slows down disease progression. Disclosures Padua: Abbvie: Research Funding; Genentech: Research Funding. Giraudier:Novartis: Research Funding. Konopleva:Stemline Therapeutics: Research Funding. Andreeff:Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer ; Reata: Equity Ownership; Celgene: Consultancy; Jazz Pharma: Consultancy; Oncolyze: Equity Ownership; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; SentiBio: Equity Ownership; Astra Zeneca: Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1931-1931
Author(s):  
Cinzia Federico ◽  
Barbara Muz ◽  
Jennifer Sun ◽  
Kinan Alhallak ◽  
Justin King ◽  
...  

Abstract Proteasome inhibitors (PIs) have improved the treatment of multiple myeloma (MM) and prolonged patient survival, but several challenges remain to overcome drug-resistance and toxicity. Bone marrow microenvironment (BMM) drives tumor progression and PIs-resistance in MM; and agents that inhibit the interaction between MM and BMM have been shown to re-sensitize MM cells to therapy. However, the synchronized in vivo delivery of BMM-targeting agents with PIs has been a challenge so far. Nanoparticles offer a valuable platform to encapsulate drugs, and if functionalized, they can facilitate specific delivery to tumor, thus improving treatment efficacy and reducing off-target effects. Within the BMM, the endothelium plays a relevant tumor promoting role. By analyzing the expression of an array of markers in normal and in MM-related endothelium, we found high levels of P-selectin expression on MM-activated endothelial cells (ECs) than normal cells and on ECs collected from the BM of either MM patients or MM-bearing mice compared to their respectively healthy BMMNCs. We next sought to develop lipid nanoparticles (LNPs) targeting the MM-related endothelium, loaded with both PI and BMM-targeting agent for synchronized delivery and reversal of the BMM-induced drug resistance. At this aim, we developed targeted LNPs towards P-selectin by decorating their surface with P-selectin-glycoprotein-ligand-1 (PSGL-1). PSGL-1-targeted LNPs showed specific binding to recombinant P-selectin than identically non-targeted particles, and to MM-associated endothelium compared to healthy endothelium, both in vitro and in vivo. To reverse BMM-induced resistance, LNPs were loaded with bortezomib (BTZ) together with a BMM disrupting agent, ROCK-inhibitor (Y-27632) that inhibits the downstream signaling of the RhoA GTPase pathway, known to be instrumental to the interaction of MM cells with BMM. Consequently, we tested the effect of synchronized delivery of BTZ and Y-27632 in the same LNP on MM cell survival in co-culture with the BMM in vitro. While Y-27632-loaded LNPs did not affect cell proliferation, LNPs loaded with both Y-27632 and BTZ enhanced responsiveness of MM cells to BTZ, compared to BTZ-loaded LNPs, thus overcoming the BMM-induced resistance. Mechanistically, we observed more significant inhibition of PI3K and MAPK signaling, decrease of pRb and up-regulation of p21 and induction of pro-apoptotic pathway (caspase-3, caspase-9 and PARP) by drug-loaded LNPs, compared to free drugs. In addition, drug-loaded LNPs were able to decrease adhesion and impair the migration of MM cells to ECs. We also investigated the in vivo efficacy of BTZ/Y-27632-loaded PSGL-1-targeted LNPs in a humanized murine model of MM. The synchronized delivery of both agents using dual drug-loaded PSGL-1-targeted LNPs delayed the MM tumor progression and prolonged survival significantly more than all the controls. The synchronized delivery of both agents using dual drug-loaded PSGL-1-targeted LNPs delayed the MM tumor progression and prolonged survival significantly more than all the controls (vehicle, BTZ and Y-27632 alone or in combination as free drugs, or encapsulated in non-targeted or in PSGL-1-targeted LNPs) demonstrating that both P-selectin targeting and combination of Y-27632 with BTZ reverses the BMM-induced drug resistance and enhances the efficacy of therapy in vivo. Altogether, our data demonstrate the ability of PSGL-1-decorated LNPs to specifically target MM-BMM; to efficiently encapsulate and deliver drugs to tumor tissue; to overcome BMM-induced drug resistance in vitro and in vivo, to reduce tumor growth and prolong overall survival. This study provides the preclinical basis for future clinical trials using MM-BMM-targeted nanomedicine able to enhance the effect of PIs or other drugs for the treatment of MM. Disclosures Roccaro: GILEAD: Research Funding; AMGEN: Other: Advisory Board. Vij:Karyopharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jansson: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees. Azab:Cellatrix LLC: Equity Ownership, Other: Founder and owner; Targeted Therapeutics LLC: Equity Ownership, Other: Founder and owner; Ach Oncology: Research Funding; Glycomimetics: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Rasoul Pourebrahimabadi ◽  
Zoe Alaniz ◽  
Lauren B Ostermann ◽  
Hung Alex Luong ◽  
Rafael Heinz Montoya ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease that develops within a complex microenvironment. Reciprocal interactions between the bone marrow mesenchymal stem/stromal cells (BM-MSCs) and AML cells can promote AML progression and resistance to chemotherapy (Jacamo et al., 2014). We have recently reported that BM-MSCs derived from AML patients (n=103) highly express p53 and p21 compared to their normal counterparts (n=73 p<0.0001) (Hematologica, 2018). To assess the function of p53 in BM-MSCs, we generated traceable lineage specific mouse models targeting Mdm2 or Trp53 alleles in MSCs (Osx-Cre;mTmG;p53fl/fl and Osx-Cre;mTmG;Mdm2fl/+) or hematopoietic cells (Vav-Cre;mTmG;p53fl/fl and Vav-Cre;mTmG;Mdm2fl/+). Homozygote deletion of Mdm2 (Osx-Cre;Mdm2fl/fl) resulted in death at birth and displayed skeletal defects as well as lack of intramedullary hematopoiesis. Heterozygote deletion of Mdm2 in MSCs was dispensable for normal hematopoiesis in adult mice, however, resulted in bone marrow failure and thrombocytopenia after irradiation. Homozygote deletion of Mdm2 in hematopoietic cells (Vav-Cre;Mdm2fl/fl) was embryonically lethal but the heterozygotes were radiosensitive. We next sought to examine if p53 levels in BM-MSCs change after cellular stress imposed by AML. We generated a traceable syngeneic AML model using AML-ETO leukemia cells transplanted into Osx-Cre;mTmG mice. We found that p53 was highly induced in BM-MSCs of AML mice, further confirming our findings in primary patient samples. The population of BM-MSCs was significantly increased in bone marrow Osx-Cre;mTmG transplanted with syngeneic AML cells. Tunnel staining of bone marrow samples in this traceable syngeneic AML model showed a block in apoptosis of BM-MSCs suggesting that the expansion of BM-MSCs in AML is partly due to inhibition of apoptosis. As the leukemia progressed the number of Td-Tomato positive cells which represents hematopoietic lineage and endothelial cells were significantly decreased indicating failure of normal hematopoiesis induced by leukemia. SA-β-gal activity was significantly induced in osteoblasts derived from leukemia mice in comparison to normal mice further supporting our observation in human leukemia samples that AML induces senescence of BM-MSCs. To examine the effect of p53 on the senescence associated secretory profile (SASP) of BM-MSCs, we measured fifteen SASP cytokines by qPCR and found significant decrease in Ccl4, Cxcl12, S100a8, Il6 and Il1b upon p53 deletion in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) compared to p53 wildtype mice. To functionally evaluate the effects of p53 in BM-MSCs on AML, we deleted p53 in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) and transplanted them with syngeneic AML-ETO-Turquoise AML cells. Deletion of p53 in BM-MSCs strongly inhibited the expansion of BM-MSCs in AML and resulted in osteoblast differentiation. This suggests that expansion of BM-MSCs in AML is dependent on p53 and that deletion of p53 results in osteoblast differentiation of BM-MSCs. Importantly, deletion of p53 in BM-MSCs significantly increased the survival of AML mice. We further evaluated the effect of a Mdm2 inhibitor, DS-5272, on BM-MSCs in our traceable mouse models. DS-5272 treatment of Osx-cre;Mdm2fl/+ mice resulted in complete loss of normal hematopoietic cells indicating a non-cell autonomous regulation of apoptosis of hematopoietic cells mediated by p53 in BM-MSCs. Loss of p53 in BM-MSCs (Osx-Cre;p53fl/fl) completely rescued hematopoietic failure following Mdm2 inhibitor treatment. In conclusion, we identified p53 activation as a novel mechanism by which BM-MSCs regulate proliferation and apoptosis of hematopoietic cells. This knowledge highlights a new mechanism of hematopoietic failure after AML therapy and informs new therapeutic strategies to eliminate AML. Disclosures Khoury: Angle: Research Funding; Stemline Therapeutics: Research Funding; Kiromic: Research Funding. Bueso-Ramos:Incyte: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy. OffLabel Disclosure: Mdm2 inhibitor-DS 5272


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-47
Author(s):  
Josu de la Fuente ◽  
Dirk-Jan Eikema ◽  
Paul Bosman ◽  
Robert F Wynn ◽  
Miguel Díaz ◽  
...  

Congenital sideroblastic anaemias (CSA) are a rare group of disorders characterized by the presence of pathologic iron deposits within the mitochondria of erythroid precursors (ring sideroblasts) in the bone marrow due to heterogenous germline mutations leading to defects in mitochondrial heme synthesis, iron-sulfur (Fe-S) cluster biogenesis, or protein synthesis. Patients present with anaemia and relative reticulocytopenia, and systemic iron overload secondary to chronic ineffective erythropoiesis, leading to end-organ damage. The disease is heterogenous underlying the genetic variability and the variable response to treatment. Although a number of CSA patients have received a bone marrow transplant, the outcomes and toxicities are not known. This status makes it very difficult to understand the role of BMT in the management of CSA. A search in the EBMT database identified 28 patients receiving a HSCT for CSA between 1998 to 2018 by 24 participating centres. The median year of transplantation was 2014 (IQR 2004-2016). The distribution was equal between males (n=14) and females (n=14). The median age at transplantation was 7 years of age (3-10 years). Fifteen patients had a sibling HSCT (88%), one a family matched donor HSCT (6%) and one an unrelated matched (6%), the type of transplant being unknown in others (n=11). The source of stem cells was bone marrow in 20 cases (74%), peripheral blood in 4 cases (15%), cord blood in 2 (7%) and combined bone marrow and cord in one (4%). Five cases had a Bu/Cy based conditioning regimen, 4 had Bu/fludarabine based regimen and three fludarabine/treosulfan based conditioning with the rest having a variety of approaches. Eighty-six percent of cases had serotherapy with ATG or alemtuzumab. The median follow-up was 31.6 months (95% CI, 12.2-74.1%). The overall survival at 12 and 24 months was 88% (76-100) and 82% (66-99), respectively (figure 1). The median neutrophil engraftment was 18 (15-21) days and platelet engraftment >20 x 109/L was 29 (20-51) days, with a graft failure incidence of 7% (0-17) at 12 months. Two patients suffered from VOD. There were four deaths, three of which were related to transplant complications. The event free survival (survival without graft failure, relapse and second transplant) at 12 and 24 months was 85% (72-99) (figure 2). Six patients developed acute GvHD grade II and one case grade III; giving a grade II/III incidence of 28% (10-46). There was one case of limited and one of chronic GvHD, giving an incidence of 11% (0-26%) at 12 months and 24 months. In conclusion, whilst HSCT for CSA is a rare occurrence, these data demonstrate that HSCT for this condition is feasible and the outcomes are in keeping with those obtained for transplantation for transfusion dependent anaemias during the same time-period. Disclosures Handgretinger: Amgen: Honoraria. Moraleda:Gilead: Consultancy, Other: Travel Expenses; Jazz Pharmaceuticals: Consultancy, Research Funding; Novartis: Consultancy, Other: Travel Expenses; Sandoz: Consultancy, Other: Travel Expenses; Takeda: Consultancy, Other: Travel Expenses. Risitano:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Alnylam: Research Funding; Alexion: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Jazz: Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees; Samsung: Membership on an entity's Board of Directors or advisory committees; Amyndas: Consultancy; RA pharma: Research Funding; Biocryst: Membership on an entity's Board of Directors or advisory committees; Apellis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Achillion: Membership on an entity's Board of Directors or advisory committees; Pfizer: Speakers Bureau. Peffault De Latour:Amgen: Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Apellis: Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 804-804 ◽  
Author(s):  
Mark Bustoros ◽  
Chia-jen Liu ◽  
Kaitlen Reyes ◽  
Kalvis Hornburg ◽  
Kathleen Guimond ◽  
...  

Abstract Background. This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods. Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al., Blood 2014. The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and Dexamethasone at days 1, 8, 15, and 22. This induction phase is followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle is defined as 28 consecutive days, and therapy is administered for a total of 24 cycles total. Bone marrow samples from all patients were obtained before starting therapy for baseline assessment, whole exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle to isolate cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Stem cell collection is planned for all eligible patients. Results. In total, 26 of the planned 56 patients were enrolled in this study from February 2017 to April 2018. The median age of the patients enrolled was 63 years (range, 41 to 73) with 12 males (46.2%). Interphase fluorescence in situ hybridization (iFISH) was successful in 18 patients. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 11 patients (61.1%). The median number of cycles completed was 8 cycles (3-15). The most common toxicities were fatigue (69.6%), followed by rash (56.5%), and neutropenia (56.5%). The most common grade 3 adverse events were hypophosphatemia (13%), leukopenia (13%), and neutropenia (8.7%). One patient had grade 4 neutropenia during treatment. Additionally, grade 4 hyperglycemia occurred in another patient. As of this abstract date, the overall response rate (partial response or better) in participants who had at least 3 cycles of treatment was 89% (23/26), with 5 Complete Responses (CR, 19.2%), 9 very good partial responses (VGPR, 34.6%), 9 partial responses (34.6%), and 3 Minimal Responses (MR, 11.5%). None of the patients have shown progression to overt MM to date. Correlative studies including WES of plasma cells and single-cell RNA sequencing of the bone microenvironment cells are ongoing to identify the genomic and transcriptomic predictors for the differential response to therapy as well as for disease evolution. Furthermore, we are analyzing the cfDNA and CTCs of the patients at different time points to investigate their use in monitoring minimal residual disease and disease progression. Conclusion. The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma. The high response rate, convenient schedule with minimal toxicity observed to date are promising in this patient population at high risk of progression to symptomatic disease. Further studies and longer follow up for disease progression are warranted. Disclosures Bustoros: Dava Oncology: Honoraria. Munshi:OncoPep: Other: Board of director. Anderson:C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Ghobrial:Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 883-883
Author(s):  
Yu-Tzu Tai ◽  
Betty Y Chang ◽  
Sun-Young Kong ◽  
Mariateresa Fulciniti ◽  
Guang Yang ◽  
...  

Abstract Abstract 883 Specific expression of Bruton's tyrosine kinase (Btk) in osteoclasts (OC), but not osteoblasts (OB), suggests its role in regulating osteoclastogenesis. Although Btk is critical in B cell maturation and myeloid function, it has not been characterized in plasma cell malignancies including multiple myeloma (MM) and Waldenström Macroglobulinemia (WM). We here investigate effects of PCI-32765, an oral, potent, and selective Btk inhibitor with promising clinical activity in B-cell malignancies, on OC differentiation and function within MM bone marrow (BM) microenvironment, as well as on MM and WM cancer cells. We further define molecular targets of Btk signaling cascade in OCs and MM in the BM milieu. In CD14+ OC precursor cells, RANKL and M-CSF stimulate phosphorylation of Btk in a time-dependent fashion; conversely, PCI-32765 abrogates RANKL/M-CSF-induced activation of Btk and downstream PLCγ2. Importantly, PCI-32765 decreased number of multinucleated OC (>3 nuclei) by tartrate-resistant acid phosphatase (TRAP) staining and the secretion of TRAP5b (ED50 = 17 nM), a specific mature OC marker. It increased size of OCs and number of nuclei per OC, with significantly defective bone resorption activity as evidenced by diminished pit formation on dentine slices. Moreover, lack of effect of Dexamethasone on OC activity was overcome by combination of Dexamethasone with PCI-32765. PCI-32765 significantly reduced cytokine and chemokine secretion from OC cultures, including MIP1α, MIP1β, IL-8, TGFβ1, RANTES, APRIL, SDF-1, and activin A (ED50 = 0.1–0.48 nM). It potently decreased IL-6, SDF-1, MIP1α, MIP1β, and M-CSF in CD138-negative cell cultures from active MM patients, associated with decreased TRAP staining in a dose-dependent manner. In MM and WM cells, immunoblotting analysis confirmed a higher Btk expression in CD138+ cells from majority of MM patients (4 out of 5 samples) than MM cell lines (5 out of 9 cell lines), whereas microarray analysis demonstrated a higher expression of Btk and its downstream signaling components in WM cells than in CD19+ normal bone marrow cells. PCI-32765 significantly inhibits SDF-1-induced adhesion and migration of MM cells. It further blocked cytokine expression (MIP1a, MIP-1β) at mRNA level in MM and WM tumor cells, correlated with inhibition of Btk-mediated pPLCγ2, pERK and NF-kB activation. Importantly, PCI-32765 inhibited growth and survival triggered by IL-6 and coculture with BM stromal cells (BMSCs) or OCs in IL-6-dependent INA6 and ANBL6 MM cells. Furthermore, myeloma stem-like cells express Btk and PCI-32765 (10–100 nM) blocks their abilities to form colonies from MM patients (n=5). In contrast, PCI-32765 has no adverse effects on Btk-negative BMSCs and OBs, as well as Btk-expressing dendritic cells. Finally, oral administration of PCI-32765 (12 mg/kg) in mice significantly suppresses MM cell growth (p< 0.03) and MM cell-induced osteolysis on implanted human bone chips in a humanized myeloma (SCID-hu) model. Together, these results provide compelling evidence to target Btk in the BM microenvironment against MM and WM., strongly supporting clinical trials of PCI-32765 to improve patient outcome in MM and WM. Disclosures: Chang: Pharmacyclics Inc: Employment. Buggy:Pharmacyclics, Inc.: Employment, Equity Ownership. Elias:Pharmacyclics Inc: Consultancy. Treon:Millennium: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals, Inc.: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol-Myers Squibb: Consultancy; Actelion: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2810-2810
Author(s):  
Srdan Verstovsek ◽  
Michael R. Savona ◽  
Ruben A. Mesa ◽  
Stephen Oh ◽  
Hua Dong ◽  
...  

Abstract Background: Simtuzumab (SIM) is a humanized monoclonal antibody that inhibits lysyl oxidase-like molecule 2 (LOXL2), an extracellular matrix enzyme that catalyzes the covalent cross-linking of collagen and is widely expressed across many fibrotic diseases. In pre-clinical models, inhibition of LOXL2 blocks fibroblast activation, which plays an important role in the development of organ fibrosis. In Phase 1 studies, SIM was well-tolerated in patients (pts) with advanced solid tumors, liver fibrosis, and idiopathic pulmonary fibrosis (IPF). A Phase 2, open-label study to determine the efficacy of SIM alone (Stage 1) and combined with ruxolitinib (rux) (Stage 2) in pts with primary myelofibrosis (PMF) and post-ET/PV MF was initiated. Methods: Eligible pts had intermediate-1, intermediate-2, or high risk disease and Eastern Cooperative Oncology Group performance status of <2. The primary endpoint was rate of clinical response as defined by a reduction in bone marrow fibrosis score following 24 weeks of treatment with SIM. Patients were randomized in a 1:1 ratio to receive 200 mg or 700 mg SIM by intravenous infusion every 2 weeks as monotherapy (Stage 1, n=24) or combined with rux (Stage 2, n=30). Patients received SIM for up to 24 weeks. Bone marrow biopsies and aspirates were performed approximately every 3 months. Bone marrow fibrosis scoring was performed and quantified at local investigator sites using the European Consensus on Grading Bone Marrow Fibrosis. Myelofibrosis symptoms were evaluated using the Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF) and changes in hematologic parameters and splenomegaly were assessed. Results: Between 7/14/11 and 9/22/14, 54 pts were randomized and treated (200 mg SIM [n=12], 700 mg SIM [n=12], 200 mg SIM/rux [n=15], and 700 mg SIM/rux [n=15]). In Stage 1, 0 subjects (0%) in the SIM 200 mg group and 2 subjects (16.7%; 90% CI 3.0%, 43.8%) in the SIM 700 mg group showed a reduction in bone marrow fibrosis score from Baseline to Week 24. In Stage 2, 1 subject (6.7%; 90% CI 0.3%, 27.9%) in the SIM 200 mg/rux group and 2 subjects (13.3%, 90% CI 2.4%, 36.3%) in the SIM 700 mg/rux group showed a reduction in bone marrow fibrosis score from Baseline to Week 24. In an exploratory analysis, similar numbers of subjects showed increases in bone marrow fibrosis scores. SIM treatment was not associated with meaningful improvements in hematologic parameters or reductions in MPN-SAF score or spleen size. The most frequent adverse events were those commonly associated with MF, including constitutional symptoms and reductions in hematological parameters. Conclusions: SIM treatment alone or in combination with rux is safe but does not reliably reduce bone marrow fibrosis in pts with MF. The reason for reduction of marrow fibrosis in some patients and increase in others is unclear and may be sampling variability. Clinical studies of SIM in IPF and liver fibrosis are ongoing. Disclosures Savona: Karyopharm: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; TG Therapeutics: Research Funding; Astex Pharmaceuticals, Inc: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Mesa:Incyte Corporation: Research Funding; CTI Biopharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Pfizer: Research Funding; Promedior: Research Funding; Genentech: Research Funding; NS Pharma: Research Funding; Gilead: Research Funding. Oh:CTI Biopharma: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees. Dong:Gilead Sciences: Consultancy, Equity Ownership. Thai:Gilead Sciences: Employment, Equity Ownership. Gotlib:Allakos, Inc.: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1882-1882 ◽  
Author(s):  
Samuel A Danziger ◽  
Mark McConnell ◽  
Jake Gockley ◽  
Mary Young ◽  
Adam Rosenthal ◽  
...  

Abstract Introduction The multiple myeloma (MM) tumor microenvironment (TME) strongly influences patient outcomes as evidenced by the success of immunomodulatory therapies. To develop precision immunotherapeutic approaches, it is essential to identify and enumerate TME cell types and understand their dynamics. Methods We estimated the population of immune and other non-tumor cell types during the course of MM treatment at a single institution using gene expression of paired CD138-selected bone marrow aspirates and whole bone marrow (WBM) core biopsies from 867 samples of 436 newly diagnosed MM patients collected at 5 time points: pre-treatment (N=354), post-induction (N=245), post-transplant (N=83), post-consolidation (N=51), and post-maintenance (N=134). Expression profiles from the aspirates were used to infer the transcriptome contribution of immune and stromal cells in the WBM array data. Unsupervised clustering of these non-tumor gene expression profiles across all time points was performed using the R package ConsensusClusterPlus with Bayesian Information Criterion (BIC) to select the number of clusters. Individual cell types in these TMEs were estimated using the DCQ algorithm and a gene expression signature matrix based on the published LM22 leukocyte matrix (Newman et al., 2015) augmented with 5 bone marrow- and myeloma-specific cell types. Results Our deconvolution approach accurately estimated percent tumor cells in the paired samples compared to estimates from microscopy and flow cytometry (PCC = 0.63, RMSE = 9.99%). TME clusters built on gene expression data from all 867 samples resulted in 5 unsupervised clusters covering 91% of samples. While the fraction of patients in each cluster changed during treatment, no new TME clusters emerged as treatment progressed. These clusters were associated with progression free survival (PFS) (p-Val = 0.020) and overall survival (OS) (p-Val = 0.067) when measured in pre-transplant samples. The most striking outcomes were represented by Cluster 5 (N = 106) characterized by a low innate to adaptive cell ratio and shortened patient survival (Figure 1, 2). This cluster had worse outcomes than others (estimated mean PFS = 58 months compared to 71+ months for other clusters, p-Val = 0.002; estimate mean OS = 105 months compared with 113+ months for other clusters, p-Val = 0.040). Compared to other immune clusters, the adaptive-skewed TME of Cluster 5 is characterized by low granulocyte populations and high antigen-presenting, CD8 T, and B cell populations. As might be expected, this cluster was also significantly enriched for ISS3 and GEP70 high risk patients, as well as Del1p, Del1q, t12;14, and t14:16. Importantly, this TME persisted even when the induction therapy significantly reduced the tumor load (Table 1). At post-induction, outcomes for the 69 / 245 patients in Cluster 5 remain significantly worse (estimate mean PFS = 56 months compared to 71+ months for other clusters, p-Val = 0.004; estimate mean OS = 100 months compared to 121+ months for other clusters, p-Val = 0.002). The analysis of on-treatment samples showed that the number of patients in Cluster 5 decreases from 30% before treatment to 12% after transplant, and of the 63 patients for whom we have both pre-treatment and post-transplant samples, 18/20 of the Cluster 5 patients moved into other immune clusters; 13 into Cluster 4. The non-5 clusters (with better PFS and OS overall) had higher amounts of granulocytes and lower amounts of CD8 T cells. Some clusters (1 and 4) had increased natural killer (NK) cells and decreased dendritic cells, while other clusters (2 and 3) had increased adipocytes and increases in M2 macrophages (Cluster 2) or NK cells (Cluster 3). Taken together, the gain of granulocytes and adipocytes was associated with improved outcome, while increases in the adaptive immune compartment was associated with poorer outcome. Conclusions We identified distinct clusters of patient TMEs from bulk transcriptome profiles by computationally estimating the CD138- fraction of TMEs. Our findings identified differential immune and stromal compositions in patient clusters with opposing clinical outcomes and tracked membership in those clusters during treatment. Adding this layer of TME to the analysis of myeloma patient baseline and on-treatment samples enables us to formulate biological hypotheses and may eventually guide therapeutic interventions to improve outcomes for patients. Disclosures Danziger: Celgene Corporation: Employment, Equity Ownership. McConnell:Celgene Corporation: Employment. Gockley:Celgene Corporation: Employment. Young:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Reiss:Celgene Corporation: Employment, Equity Ownership. Davies:MMRF: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; TRM Oncology: Honoraria; Abbvie: Consultancy; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Copeland:Celgene Corporation: Employment, Equity Ownership. Fox:Celgene Corporation: Employment, Equity Ownership. Fitch:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment, Equity Ownership. Barlogie:Celgene: Consultancy, Research Funding; Dana Farber Cancer Institute: Other: travel stipend; Multiple Myeloma Research Foundation: Other: travel stipend; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend; Millenium: Consultancy, Research Funding; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC. Trotter:Celgene Research SL (Spain), part of Celgene Corporation: Employment, Equity Ownership. Hershberg:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Dervan:Celgene Corporation: Employment, Equity Ownership. Ratushny:Celgene Corporation: Employment, Equity Ownership. Morgan:Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document