scholarly journals PPM1D Mutations Are Rare in De Novo and Therapy-Related Acute Myeloid Leukemia

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1472-1472
Author(s):  
Mutlu Kartal-Kaess ◽  
Tilmann Bochtler ◽  
Bianca Kraft ◽  
Michael Kirsch ◽  
Bettina Maier ◽  
...  

Abstract Background: Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition characterized by somatic mutations in peripheral blood mononuclear cells (PBMC) of otherwise healthy adults that has been associated with increased risk of developing hematological malignancies. Clonal hematopoiesis has been shown to be present in patients with therapy-related myeloid neoplasms (therapy-related acute myeloid leukemia, t-AML) / therapy-related myelodysplastic syndrome, t-MDS) at the time of their primary cancer diagnosis and before exposure to treatment. Such clones expand under selective pressure from cytotoxic treatment for the primary cancer and can subsequently give rise to overt myeloid neoplasms. Somatic mutations in the gene encoding the TP53-inducible protein phosphatase Mg2+/Mn2+ 1D (PPM1D) were initially reported in PBMC of patients with solid tumors (breast, ovary, lung) and lymphoma. They are associated with older age and seem to reflect prior exposure to cytotoxic treatment. Moreover, the mutations, all of which are nonsense or frameshift mutations in exon 6, have been described as one of the most recurrent mutations in CHIP and to be frequent in t-MDS. Methods and results: To resolve this issue and to determine whether clones harboring PPM1D mutations that expand into CHIP after cytotoxic therapy for solid tumors drive leukemogenesis and might be useful as markers to identify patients at risk for t-MDS/t-AML development, we performed PPM1D mutational analysis in 87 patients with de novo AML and in 49 patients with t-AML. As mutations in TP53 as a representative DNA damage response gene are rare in de novo AML, we enriched our de novo AML patient cohort towards poor risk cases with complex karyotypes in order to increase the chance of identifying PPM1D mutations. Patients with core-binding factor AML were excluded from the analysis. Using the published frequency of 15% PPM1D mutations in t-MDS (Lindsley RC et al., N Engl J Med 2017;376(6):536-547) as surrogate for the expected frequency in t-AML, a minimum of 44 t-AML patients was determined to be required to allow for the detection of mutations of PPM1D in t-AML (Chi square with Fisher's exact test for independent groups, α-error 0.05, power 0.8). We performed focused mutational analysis by targeted Sanger sequencing of PPM1D exon 6 on DNA from bone marrow mononuclear cells or PBMC at diagnosis of de novo or t-AML samples taken prior to treatment initiation. Overall, only one patient with de novo AML (1/87, 1.2%) proved mutation positive. He was diagnosed with AML, FAB M4, at the age of 57 years and harbored a complex karyotype with marker chromosomes in the absence of a TP53 mutation. Unexpectedly, none of the 49 patients with t-AML harbored a mutation in PPM1D. Conclusion: In this study, we found that PPM1D mutations, which frequently occur in CHIP especially following prior cytotoxic therapy, are uncommon in AML, whether de novo or after prior cytotoxic therapy. These data are in contrast to previous observations on a high frequency of PPM1D mutations in t-MDS samples relative to primary MDS (15% vs. 3%, Lindsley RC et al., N Engl J Med 2017;376(6):536-547). Our findings suggest that while cytotoxic therapy favors the expansion of PPM1D-mutant CHIP clones, possibly even up to the development of t-MDS, mutations in PPM1D seem to be irrelevant for progression to t-AML. Disclosures Stoelzel: Neovii: Speakers Bureau. Rollig:Bayer: Research Funding; Janssen: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding. Ehninger:GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding; Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership.

Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 453-459 ◽  
Author(s):  
Richard A. Larson

Abstract The diagnosis of therapy-related myeloid leukemia (t-MDS/t-AML) identifies a group of high-risk patients with multiple and varied poor prognostic features. These neoplasms are thought to be the direct consequence of mutational events induced by cytotoxic therapy. Their outcomes have historically been poor compared with those of people who develop acute myeloid leukemia (AML) de novo. The question arises whether a diagnosis of t-AML per se indicates a poor prognosis, or whether their bad outcomes result from other clinical and biologic characteristics. Because of lingering damage from prior cytotoxic therapy and, in some cases, the persistence of their primary disorder, patients with t-AML are often poor candidates for intensive AML therapy. The spectrum of cytogenetic abnormalities in t-AML is similar to de novo AML, but the frequency of unfavorable cytogenetics, such as a complex karyotype or deletion or loss of chromosomes 5 and/or 7, is higher in t-AML. Survival varies according to cytogenetic risk group, with better outcomes observed in patients with t-AML with favorable-risk karyotypes. Treatment recommendations should be based on performance status and karyotype. Patients with t-AML should be enrolled on front-line chemotherapy trials, appropriate for de novo AML patients with similar disease characteristics. Allogeneic hematopoietic cell transplantation can cure some patients with t-AML. Most important , the molecular and genetic differences that appear to determine the phenotype and the outcome of these patients need to be investigated further.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2481-2481
Author(s):  
Courtney D. DiNardo ◽  
Ross L. Levine ◽  
Kathleen J Propert ◽  
Alison W. Loren ◽  
Elisabeth Paietta ◽  
...  

Abstract Abstract 2481 Purpose: Cancer-associated IDH mutations produce the metabolite 2-hydroxyglutarate (2HG), but the clinical utility of serum 2HG measurements has not been previously established. We studied whether 2HG measurements in AML patients correlate with the presence of IDH mutations and whether diagnostic or remission 2HG measurements predict survival. Patients and Methods: Serum samples from 223 previously untreated adults (≤ 60 years of age) with de novo AML from the Eastern Cooperative Oncology Group E1900 clinical trial (62 IDH mutated, 161 IDH wild-type) were analyzed for 2HG concentration by reverse-phase liquid chromatography coupled to mass spectrometry (GC-MS). Results: Pretreatment 2HG levels ranged from 10 to 30000 ng/ml and were significantly elevated in IDH-mutant samples (median 3004.1 ng/ml), as compared to the wild-type cohort (median 61.2 ng/ml) (p < 0.0005). 2HG levels did not differ among the specific IDH1 or IDH2 allelic variants. In ROC analysis, a discriminatory level of 700 ng/ml segregated patients with and without IDH mutations with 86.9% sensitivity and 90.7% specificity. On repeat mutational analysis of 13 IDH wild-type samples with 2HG levels >700 ng/ml, IDH mutations were identified in nine samples, most often at low allele burden. IDH mutant patients with 2HG levels ≤ 200 ng/ml at complete remission experienced improved overall survival compared to those with higher 2HG levels (HR 3.5, p = 0.02) (Figure 1). Conclusion: We establish a firm association between IDH mutations and elevated serum 2HG concentration in AML. These data confirm that peripheral blood measurement of an oncometabolite provides useful diagnostic and prognostic information for cancer therapy, and furthermore can inform patient selection of IDH mutant targeted therapies. Disclosures: Levine: Agios Pharmaceuticals: Research Funding. Straley:Agios Pharmaceuticals: Employment. Yen:Agios Pharmaceuticals: Employment. Agresta:Agios Pharmaceuticals: Employment. Carroll:Agios Pharmaceuticals: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2582-2582 ◽  
Author(s):  
Frauke Bellos ◽  
Bruce H. Davis ◽  
Naomi B. Culp ◽  
Birgitte Booij ◽  
Susanne Schnittger ◽  
...  

Abstract Background Nucleoside analogs depend on cellular hENT1 expression for entry into cells and cytotoxic activity. Studies suggest low cellular hENT1 levels correlate with poor response to such chemotherapies in solid tumors, data on AML and MDS is scarce. Aim To examine hENT1 expression by multiparameter flow cytometry (MFC) in newly diagnosed AML and MDS and correlate results to morphologic, cytogenetic (CG) and molecular genetic (MG) findings. To examine hENT1 expression with respect to clinical outcome in AML patients (pts) treated with intensive cytarabine-based chemotherapy (CHT). Methods We studied pts with newly diagnosed AML (n=145) and MDS (n=96), 133/108 male/female, median age 67.3 (AML) and 73.3 years (MDS). CG was done in 130 AML and 86 MDS. Pts included 107 de novo AML, 9 t-AML, 29 s-AML; FAB: 9 M0, 27 M1, 50 M2, 9 M3, 21 M4, 8 M4eo, 7 M5, 14 not classified; by CG (MRC): 21 favorable, 75 intermediate, 34 adverse. 91 were de novo MDS, 5 t-MDS; 1 RARS, 17 RCMD-RS, 37 RCMD, 3 5q- syndrome, 3 RAEB-1, 5 RAEB-2, 1 CMML, 24 not classified; 2 IPSS-R very low, 55 IPSS-R low, 8 IPSS-R intermediate, 8 IPSS-R high, 13 IPSS-R very high. hENT1 expression was quantified by a novel four color intracellular staining assay using monoclonal antibodies against hENT1, CD45, CD64 and myeloperoxidase. Median fluorescence intensities (MFI) of hENT1 were determined in myeloid progenitors (MP), granulocytes (G) and monocytic cells (Mo) and correlated to hENT1 MFI in lymphocytes to derive hENT1 index (index). Results No correlation of index to age, gender, hemoglobin level or counts for blasts, WBC or platelets was detected. In AML, we generally saw higher index by trend in the more favorable prognostic subgroups. M3/t(15;17)/PML-RARA+ displayed higher index in MP than non-M3 AML (4.24 vs 2.56, p<0.001). G index was lower in M0 (3.01) vs M1, M2, M4 and M4eo (5.66, 4.34, 5.35, 4.77; p=0.01, 0.028, 0.004, 0.043, respectively) and in M2 compared to M1 and M4 (4.34. vs 5.66 and 5.35, p=0.01 and 0.033, respectively). M2 showed lower MP index than M5 (2.42 vs 2.99, p=0.016). Considering CG, index in MP was higher in favorable vs intermediate and adverse pts (3.05 vs 2.58 and 2.53, p=0.034 and 0.023, respectively), Mo index was higher ín favorable vs adverse pts (3.17 vs 2.71, p=0.044). By MG, higher index in Mo and G was observed in RUNX1-RUNX1T1+ AML (4/83, 4.32 vs 3.04, p=0.01; 8.16 vs 4.60, p=0.002, respectively). Higher index for MP was found in FLT3-ITD mutated (mut) (18/111; 3.19 vs 2.62, p=0.012), CEPBA mut (4/26, 3.15 vs 2.35, p=0.004) and for Mo in NPM1 mut AML (23/104; 3.72 vs 2.84, p=0.02), whereas lower index for MP was found in RUNX1mut pts (13/65; 2.17 vs 2.59, p=0.031). De novo AML displayed higher MP index than s-AML (2.7 vs 2.28, p=0.008). Using lowest quartile of index for MP (2.1185) as cut-off, AML pts in the MRC intermediate group treated with CHT (n=38) had inferior OS if MP index was below vs above this cut-off (OS at 6 months 63% vs. 95%, p=0.017, median follow up 4.6 months). MDS showed lower Mo and MP index than AML (2.68 vs 2.96, p=0.021, 1.84 vs 2.65, p<0.001, respectively). By IPSS-R, significance was reached for higher index in Mo and MP in very low risk compared to low risk pts (3.39 vs 2.54, p=0.013 and 4.07 vs 1.78, p<0.001, respectively), MP in very low compared to intermediate and high risk pts (4.07 vs 1.95, p=0.004; 4.07 vs 1.76, p=0.002), and MP and G in very low vs very high risk pts (4.07 vs 1.71, p=0.005; 5.86 vs 3.85, p=0.001, respectively). IPSS-R intermediate vs poor and very poor showed lower G index (5.47 vs 3.59, p=0.018 and vs 3.85, p=0.034 respectively). Conclusion AML with genetic and molecular genetic good risk profile had higher hENT1 expression in MP, G and Mo, suggesting a causal mechanism for better response to CHT and better outcome. Consequently, AML with poor risk molecular genetics (RUNX1 mut) showed lower levels of hENT1 in MP. The detection of higher levels in FLT3-ITD mut pts is in line with reportedly good response to CHT, overall worse outcome being mostly due to early relapses. Strikingly, we saw differences in outcome in pts treated with CHT according to hENT1 expression with shorter OS in pts with low index for MP. Higher index in de novo AML than s-AML and MDS may be causal for better response to nucleoside-based CHT in de novo AML. Data for MDS may be interpreted accordingly, lower risk cases showing higher index in MP, G and Mo. Further analyses are needed to explore hENT1 expression in AML and MDS more comprehensively. Disclosures: Bellos: MLL Munich Leukemia Laboratory: Employment. Davis:Trillium Diagnostics, LLC: Equity Ownership. Culp:Trillium Diagnostics, LLC: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4093-4093 ◽  
Author(s):  
Fiorella Schischlik ◽  
Jelena D. Milosevic Feenstra ◽  
Elisa Rumi ◽  
Daniela Pietra ◽  
Bettina Gisslinger ◽  
...  

Abstract Fusion oncogenes resulting from chromosomal aberrations are common disease drivers in myeloid malignancies. The most prominent example is BCR-ABL1 fusion present in chronic myeloid leukemia, which together with essential thromobocythemia (ET), primary myelofibrosis (PMF) and polycythemia vera (PV) belongs to the classic myeloproliferative neoplasms (MPN). The BCR-ABL1 negative MPNs are driven by somatic mutations in JAK2, MPL and CALR. MPN patients can progress to acute myeloid leukemia (AML) but the transformation process is not well understood. Studies using standard karyotyping and SNP microarrays have shown that disease progression is characterized by an increase in karyotype complexity. We aimed to identify novel fusion oncogenes in patients with BCR-ABL1 negative MPN during chronic phase and disease progression in high-throughput and cost-efficient manner using RNA-seq technology. In addition this approach enabled us to perform RNA-seq variant calling for identification of gene mutations on the same cohort of patients. Whole transcriptome sequencing was performed on 121 patients (112 chronic phase MPN and 9 secondary AML samples) and 23 healthy controls in a 100 base pair paired-end manner. The cohort consisted of 44% PMF, 22% ET, 12% PV and 6% secondary AML patients. The output of three fusion detection tools (Defuse, Tophat-fusion and SOAPfuse) was combined in order to increase sensitivity. Extensive filtering steps were applied in order to enrich for cancer specific fusion events, including filtering for fusions appearing in healthy individuals, filtering for read-throughs and false positives with external databases and manual inspection of sequencing reads. The outcome of analysis for Defuse, Tophat-fusion and SOAPfuse resulted in the total of 52, 54 and 38 candidate fusions, respectively. Candidate fusions were Sanger-sequenced and for Tophat-fusion and Defuse the validation rate was 60%, while for SOAPfuse only 20% could be validated. Approximately 70% of the fusion candidates were not shared among the 3 tools which underlines the importance of selecting the union of all calls from each tool rather than the intersect. We did not observe clustering of breakpoints along the genome. Most fusion candidates could be detected in PMF which corresponds to the disease entity that was most represented in the cohort (44% of patients). No enrichment for fusions was found in 7 triple negative (no JAK2, CALR, MPL mutations) cases. 42% of chromosomal aberrations were translocations, followed by duplication (31%), inversion (14%) and deletion events (11%). Among the intragenic fusions, approximately half had genomic breakpoints less than 1 Mb apart. 70% of validated fusions were out of frame, while 28% were in frame. In the leukemic samples a higher abundance of fusions was found (4/9). Typical fusions for de novo AML were not detected within secondary AML (sAML) samples. We did not detect a recurrent fusion oncogene in our patient cohort. In a PMF patient with JAK2-V617F mutation we identified a BCR-ABL1 fusion, indicating a clonal exchange which was consistent with patient's phenotype. Another PMF patient exhibited an inversion event involving the first exon of CUX1, causing a CUX1 loss of function. Other fusions in chronic MPN patients affected genes involved in histone modifications (SMYD3-AHCTF1, KDM4B-CYHR1). In post-MPN AML patients we identified a somatic in frame-fusion involving INO80D and GPR1 and a fusion truncating the first 3 exons of RUNX2 (XPO5-RUNX2). The high quality of RNA sequencing data, allowed us to set up a variant detection workflow that will be compared with matched samples that have been exome sequenced. Preliminary results could demonstrate that mutations in the JAK2 gene in a cohort of 96 patients were all correctly recalled, emphasizing its sensitivity. Fusion events among patients in chronic phase MPN are rare and the majority of these events imply loss of function of both fusion gene partners. This approach adds valuable information on the true frequency of inactivation of genes such as CUX1 in patients, as small inversions like the one described above would not be detectable by other methods. Detection of a subclone with BCR-ABL1 fusion underlines the strength of the fusion detection workflow for diagnostic purposes. Typical de novo AML fusions were not found in sAML and further suggests that de novo AML and sAML are distinct disease entities on a genetic level. Disclosures Gisslinger: Janssen Cilag: Honoraria, Speakers Bureau; Sanofi Aventis: Consultancy; AOP ORPHAN: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Novartis: Honoraria, Research Funding, Speakers Bureau; Geron: Consultancy. Kralovics:AOP Orphan: Research Funding; Qiagen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2629-2629
Author(s):  
Yuki Nishida ◽  
Jo Ishizawa ◽  
Vivian Ruvolo ◽  
Michael Andreeff

Abstract Background TP73 is one of the TP53 family transcription factors and generates two isoforms, the transactivation p73 (TAp73) and the N-terminally truncated ΔNp73. TAp73 shares a homologous N-terminal activation domain with p53 and has similar pro-apoptotic function to p53. ΔNp73 lacks an activation domain and has activities distinct from TAp73. ΔNp73 has a dominant negative effect on the DNA binding of TAp73 and more importantly, of p53, since the DNA binding domain is homologous with that of TAp73 and highly similar to that of p53. In acute myeloid leukemias (AML), TP73 has been reported to be expressed except in acute promyelocytic leukemias. However, the association of TP73 isoforms with clinical and genetic characteristics and the regulation of the isoforms in AML have not been explored. Results We determined copy numbers of ΔNp73 and TAp73 mRNA levels in 78 AML samples including 31 de novo AML using droplet digital PCR (ddPCR), which allows to determine the absolute quantity of the isoforms expressed, and investigated their clinical and biological relevance. ΔNp73 and TAp73 expression was detected in 93.6% and 98.7% of AML samples at variable levels (mean ± SEM, 10.6 ± 5.0, and 106.6 ± 33.7 copies/µL, for ΔNp73 and TAp73, respectively). ΔNp73 and TAp73 mRNA levels were highly correlated (R2 = 0.72, P < 0.0001). Normal peripheral blood mononuclear cells and CD34+ hematopoietic cells showed little or no ΔNp73 and TAp73 expression (0.09 ± 0.09 and 0.42 ± 0.35 copies/µL, respectively), demonstrating that expression of ΔNp73 and TAp73 is 100 - 1,000 fold higher in AML as compared to normal hematopoietic cells. These data collectively suggests that transcriptional systems of both isoforms in AML cells are abnormally activated. Disease status (de novo or relapsed/refractory) and cytogenetic abnormalities did not correlate with ΔNp73 and TAp73 levels. However, AML with IDH1/2 mutations had 8.5-fold lower ΔNp73 expression than those with wild-type IDH1/2 (1.8 ± 0.8 vs 15.4 ± 7.7 copies/µL, P = 0.0069), with a similar trend for TAp73 (49.0 ± 20.3 vs 138.6 ± 51.4 copies/µL, P = 0.056). For de novo AML samples, those with DNMT3a and NRAS mutations had significantly higher ΔNp73, but not TAp73, than those without these mutations (21.6 ± 18.2 vs 2.5 ± 1.2 copies/µL, P = 0.017 and 5.6 ± 2.5 vs 9.7 ± 8.0 copies/µL, P = 0.047, respectively). These findings suggest that ΔNp73 and TAp73 can be differentially regulated in AML based on mutation status. To further explore the regulation of TP73 isoforms, we used MDM2 inhibitor Nutlin-3a to induce p53 which is a transcriptional inducer of ΔNp73. Indeed, MDM2 inhibition increased p73 protein levels, and knockdown of both TAp73 and ΔNp73 in AML cells enhanced apoptosis induction by Nutlin-3a (specific annexin V induction by 5 uM Nutlin-3a, 21.9 ± 1.3% vs 61.3 ± 5.2%, P = 0.0084 in OCI-AML3 cells with vector control vs Shp73, respectively), possibly due to the silencing of ΔNp73. AML cells with IDH1/2 mutations are more dependent on Bcl-2 than those without (Chan, Nat Med 2015). Intriguingly, (R)-2HG, the oncometabolite of mutant IDH1/2, reduced both TAp73 and ΔNp73 in AML cells and increased susceptibility to the Bcl-2 inhibitor ABT-199. These results imply a potential mechanism that regulates p73 isoforms by histone methylation or other epigenetic modifications in AML. Conclusion Absolute quantitation of TP73 isoforms by ddPCR revealed high expression in AML cells compared to normal hematopoietic cells. The repressed expression of TP73 isoforms in AML cells with IDH1/2 mutations or by the oncometabolite (R)-2HG suggests that epigenetic modifications through (R)-2HG can regulate TP73 transcription and enhance the anti-leukemia effect by Bcl-2 inhibition. Finally, downregulation of TP73 isoforms enhances the efficacy of MDM2 inhibitor in AML, suggesting a potential therapeutic strategy to enhance MDM2 inhibitor-mediated p53 activation. Disclosures Andreeff: Amgen: Consultancy, Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Astra Zeneca: Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer ; SentiBio: Equity Ownership; Reata: Equity Ownership; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1434-1434
Author(s):  
Gail J. Roboz ◽  
Melissa L. Larson ◽  
S. Eric Rubenstein ◽  
Scott R Solomon ◽  
Gary J. Schiller ◽  
...  

Abstract Background: CPX-351 (Vyxeos®) is a dual-drug liposomal encapsulation of cytarabine and daunorubicin at a synergistic ratio. In a large randomized, open-label, multicenter, phase 3 study of CPX-351 versus conventional cytarabine/daunorubicin chemotherapy (7+3 regimen) in adults aged 60-75 years with newly diagnosed high-risk/sAML, patients treated with CPX-351 had significantly longer survival times and higher remission rates (Lancet JE, et al. J Clin Oncol. 2018). Based on these results, CPX-351 was approved by the US FDA in 2017 for the treatment of adults with newly diagnosed therapy-related AML or AML with myelodysplasia-related changes (AML-MRC). This abstract reports the results of an EAP study that provided expanded access to CPX-351 for older patients who met the eligibility criteria for the phase 3 study and collected additional data on safety and efficacy. Methods: In this phase 4, single-arm, open-label EAP, patients were between 60-75 years of age and had confirmed high-risk/sAML (therapy-related AML [tAML], AML with a history of myelodysplasia [MDS] or chronic myelomonocytic leukemia [CMML], or de novo AML with MDS karyotype). Patients could receive up to 2 cycles of induction with CPX-351 100 units/m2 (cytarabine 100 mg/m2 + daunorubicin 44 mg/m2) on Days 1, 3, and 5 (2nd induction: Days 1 and 3). Patients with complete remission (CR) or CR with incomplete platelet or neutrophil recovery (CRi) could receive up to 4 cycles of consolidation with CPX-351 65 units/m2 (cytarabine 65 mg/m2 + daunorubicin 28.6 mg/m2) on Days 1 and 3. The primary endpoint was safety, and the secondary endpoint was the rate of CR+CRi. Results: Overall, 52 patients received ≥1 dose of CPX-351 and were included in the safety analysis. Among these patients, the median age was 70 years (range: 55-75) and 23% had an Eastern Cooperative Oncology Group score of 2. Median time since diagnosis was 0.30 months (range: 0.03-36.14) months. Patients with AML-MRC accounted for 77% of the safety analysis population, including those with antecedent MDS with prior hypomethylating agent (HMA) treatment (25%), antecedent MDS without prior HMA treatment (21%), antecedent CMML (8%), and de novo AML with MDS karyotype (23%); 23% of patients had tAML. All patients received 1 induction cycle and 25% received 2 induction cycles; 17%, 8%, 4%, and 2% of patients received 1, 2, 3, and 4 consolidation cycles, respectively. CR+CRi was achieved in 23 patients (44% [95% CI: 31%, 59%]), including 15 with CR (29% [95% CI: 17%, 43%]) and 8 with CRi (15% [95% CI: 7%, 28%]; Table). The median time to remission was 37 days (range: 15-72). At the end of the study, 47 (90%) of patients were still alive and 11 (21%) patients received transplant. All patients were alive at Day 30, and the mortality rate at Day 60 was 6%. The safety profile observed in this EAP study was consistent with that of the phase 3, randomized study (Table). Treatment-emergent adverse events (TEAEs) of any grade occurred in 96% of patients, including 44% of patients with an TEAE deemed related to treatment; the only treatment-related AE that occurred in >10% of patients was febrile neutropenia (31%). Only 2 patients (4%) discontinued treatment due to an AE (ejection fraction decrease and intercranial hemorrhage [n = 1 each]). Five patients (10%) had grade 5 AEs during the study, including disease progression, multiple organ dysfunction syndrome, acute respiratory distress syndrome, aspiration, and intracranial hemorrhage (n = 1 each). Conclusions: The data from this EAP study were consistent with results from the randomized, phase 3 study. The safety profile in the EAP study was similar to that observed in the phase 3 study and there was a similar CR+CRi rate (44% vs 48%, respectively) in this high-risk/sAML population. Disclosures Roboz: Sandoz: Consultancy; Cellectis: Research Funding; Argenx: Consultancy; Bayer: Consultancy; Daiichi Sankyo: Consultancy; Novartis: Consultancy; Aphivena Therapeutics: Consultancy; Sandoz: Consultancy; AbbVie: Consultancy; Pfizer: Consultancy; Roche/Genentech: Consultancy; Novartis: Consultancy; Celgene Corporation: Consultancy; Celltrion: Consultancy; Jazz Pharmaceuticals: Consultancy; Roche/Genentech: Consultancy; Eisai: Consultancy; Otsuka: Consultancy; Astex Pharmaceuticals: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy; Janssen Pharmaceuticals: Consultancy; Eisai: Consultancy; Otsuka: Consultancy; Orsenix: Consultancy; Celltrion: Consultancy; AbbVie: Consultancy; Daiichi Sankyo: Consultancy; Aphivena Therapeutics: Consultancy; Bayer: Consultancy; Argenx: Consultancy; Jazz Pharmaceuticals: Consultancy; Astex Pharmaceuticals: Consultancy; Cellectis: Research Funding; Orsenix: Consultancy; Pfizer: Consultancy. Rubenstein:Alexion: Consultancy, Honoraria, Speakers Bureau; Cyclacel: Other: Travel support; Astex: Other: Travel support. Schiller:Celator/Jazz Pharmaceuticals: Research Funding; Pharmacyclics: Research Funding. An:Jazz Pharmaceuticals: Employment. Mancino:Jazz Pharmaceuticals: Employment. Chiarella:Celator/Jazz Pharmaceuticals: Employment, Equity Ownership. Louie:Celator/Jazz Pharmaceuticals: Employment, Equity Ownership, Patents & Royalties. Lin:Jazz Pharmaceuticals: Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1500-1500
Author(s):  
Junke Wang ◽  
Alyssa I. Clay-Gilmour ◽  
Ezgi Karaesmen ◽  
Abbas Rizvi ◽  
Qianqian Zhu ◽  
...  

Abstract The first two authors and last two authors contributed equally. Genome-wide association studies (GWAS) have identified risk loci for Acute Lymphoblastic Leukemia (ALL), Chronic Lymphoblastic Leukemia (CLL) and Non-Hodgkin Lymphoma, however an Acute Myeloid Leukemia (AML) GWAS has not been published to date. We performed a GWAS to identify AML and Myelodysplastic Syndrome (MDS) risk loci using a nested case-control study design in the DISCOVeRY-BMT cohorts which includes almost 2000 AML and MDS patients as cases and 2813 unrelated donors as controls. Genotyping was performed using the Illumina Human OmniExpress BeadChip and imputed using the Haplotype Reference Consortium, yielding > 8 million high-quality variants for statistical analysis. Logistic regression models with AML (de novo AML with normal cytogenetics, de novo AML with abnormal cytogenetics and therapy-related AML) and MDS cases and European American healthy donor controls adjusted for age and sex were used to test the association of each SNP with disease status. To identify the strongest association signal with disease we conducted a summary statistic SNP-based association analysis (ASSET) using non-overlapping AML and MDS cases implemented in R statistical software. ASSET uses an exhaustive search for SNPs with small but common pleiotropic effects across groups of traits while accounting for the multiple tests required by the subset search, as well as any shared controls between groups. This approach allowed us to further investigate the heterogeneity within AML subtypes and to gain increased power by pooling subtypes that show pleiotropic effects. ASSET genome wide (GW) significance is defined as P<5.0x10-8, however, we present results of each subset analysis. ASSET analyses identified an association of T allele at rs12203592, Interferon Regulatory Factor 4 (IRF4), with increased risk of de novo AML and MDS (Figure 1) (OR=1.37; 95% CI, 1.25-1.51, Pmeta=1.59x10-10). The variant has been reported significant in GWAS of skin pigmentation, hair color, non-melanoma skin cancer, squamous cell carcinoma, actinic keratosis, and childhood ALL; GW case-control studies of neuroblastoma and breast cancer show suggestive association signals (P<5 x 10-6). IRF4 belongs to the IRF family of transcription factors and is a key regulator of differentiation stages in hematopoiesis. The T allele at rs12203592 is associated with significantly increased expression of IRF4 in whole blood and lung tissue and in vitro mouse studies have shown the T allele to be associated with higher levels of IRF4 transcription. rs12203592 is <80bp from an IRF4 transcription start site and in an important position within NF-κB motifs in multiple blood and immune cell lines, supporting the hypothesis that this SNP modulates NF-κB repression of IRF4 expression. Another variant in the IRF4 regulatory region, rs62389423 (A allele), showed a putative association with subsets of de novo AML and MDS (OR=1.36; 95% CI,1.21-1.52, Pmeta=1.2x10-7). Although not in linkage disequilibrium with rs12203592, the A allele has also been previously associated with susceptibility to skin cancer and melanoma in multiple GWAS. Analysis of 596 UKbiobank CLL cases and >300,000 controls, shows the A allele correlates with a 50% increased risk of CLL (95% CI, 1.32-1.73, P= 2.4x10-9).Several other GWAS also show an association between additional IRF4 variants and CLL. Analyses in individual subtypes also revealed an intronic variant, rs10098598, in RAD21 to be associated with de novo AML (OR=2.18; 95% CI, 1.60-2.97; Pmeta=8.9x10-7). RAD21, on8q24, a region known to be associated with multiple cancer types, is involved in DNA double-stranded break repair and in chromatid cohesion in mitotic cells. Loss of function would theoretically lead to chromosomal instability and tumorigenesis. Components of the cohesion complex (including RAD21) are somatically mutated in ~12% of de novo AML and MDS patients, where it is frequently an early event. We provide the first GW evidence of association between a common variant and AML susceptibility. This SNP has been shown to be associated with multiple phenotypes, suggesting that there are pleiotropic effects at work. Our RAD21 finding is consistent with the role of cohesion in leukemogenesis and provides some evidence of its role in de novo AML susceptibility. Replication and further subset analyses with genome-wide data in >2000 AML cases are ongoing. Disclosures Griffiths: Alexion Inc.: Honoraria, Research Funding; Astex/Otsuka Pharmaceuticals: Honoraria, Research Funding; Celgene, Inc: Honoraria, Research Funding; Novartis, Inc.: Research Funding; Pfizer, Inc.: Research Funding. McCarthy:Bristol Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Janssen: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3852-3852
Author(s):  
Ja Min Byun ◽  
Dong-Yeop Shin ◽  
Youngil Koh ◽  
Sung-Soo Yoon ◽  
Junshik Hong ◽  
...  

Background: Understanding leukemic stem cell (LSC) is important for acute myeloid leukemia (AML) treatment. As such, understanding the relationship between LSC and genetically defined sub-clones can, in turn, help to understand the heterogeneity of AML. However, to date, there are only a few reports specifically focusing on this topic. To this end, we conducted this study to (1) examine the phenotypic diversity of AML-LSC, (2) explore the association between AML-LSC phenotypes and gene mutations, and (3) investigate the prognostic implications of AML-LSCs. Methods: Mononuclear cells (MNCs) were isolated from the patient's bone marrow aspirates by ficoll gradient centrifugation and cryopreserved in serum-free medium. Stored cells were thawed to Iscove's Modified Dulbecco's Medium (IMDM) and washed with fluorescence-activated cell sorting (FACS) buffer [1% FBS, Dulbecco's Phosphate-Buffered Saline (DPBS)]. Cells were stained with following anti-human monoclonal antibodies: CD45-APC/cy7, CD34-APC, CD38-BV421, CD90-PE, CD123-PE/Cy7, CD45RA-PerCP/Cy5.5. Analyses were performed on a FACSCanto II (HTS) (BD Bioscience) and FlowJo V 10.0 (BD Bioscience) program. For sequencing, the DNA capture probes for 76 target genes were designed using the Agilent SureDesign web-based application. The target regions included protein coding exons with 10 bp intron flanking regions and hot spot regions of the 20 genes involved in recurrent translocations. DNA was extracted on a Chemagic 360 instrument (Perkin Elmer, Baesweiler, Germany). The genomic DNA was sheared using Covaris S220 focused‐ultrasonicator (Covaris, Woburn, MA). We used 50ng of total input genomic DNA. A library preparation was performed according to Agilent's SureSelectQXT Target Enrichment protocol. Paired-end 150-bp sequencing was using NextSeq 550 Dx platform (Illumina, San Diego, CA). Targeted sequencing raw data was obtained in FASTQ format. Results: In secondary AML patients, MPP-like LSC was significantly higher than de-novo AML (p=0.0037), and was higher in MPN-AML than in MDS-AML (p=0.0485). There was no correlation between age and LSC phenotype, though CD34+CD38- subpopulation was enriched in younger patients (<65 yrs). Mutations of KRAS and NRAS were frequently observed in MPP-like LSC dominant patients (3/14 and 4/14), TP53 and ASXL1 mutations in LMPP-like LSC dominant patients (4/12 and 4/12) , and CEBPA, DNMT3A and IDH1 (6/12, 4/12, and 3/12) mutations in GMP-like LSC dominant patients. Furthermore, as shown in Figure, KRAS mutation was significantly associated with the percentage of MPP-like LSC phenotype (p=0.0540), and TP53 mutation with the percentage of LMPP-like LSC phenotype (p=0.0276). When the patients were separated according to the combined risk including next generation sequencing data, the poorer the prognosis, the higher the LMPP-like LSC expression (p=0.0052). The importance of our study lies in that we showed for a given AML patients there is a dominant LSC phenotype and LSCs are associated with clinical outcomes, supporting the significance of cancer stem cell model for human AML. First of all, based on detailed characterization of the surface immunophenotype of AML LSCs we found that AML show evidence of a hierarchical cellular organization. We also recognized that the composition of LSC phenotypes is associated with AML phenotypes. For example, secondary AML patients showed higher fraction of MPP-like LSCs compared to de novo AML patients. In this regard, the higher expression of MPP-like LSCs could explain the poor response to standard treatments traditionally associated with secondary AML. Furthermore, the higher expression of MPP-like LSCs in post-MPN AML compared to post-MDS AML could explain the dismal prognosis associated with post-MPN AML, despite the relative indolent clinical course in their chronic phase and the presence of druggable target. Conclusion: In conclusion, our findings provide better insights into the characteristics and clinical implications of LSC. Although in a small scale, we provide evidence that specific LSC phenotypes are associated with certain mutations thus should be in the AML risk stratification process. Figure Disclosures Yoon: Janssen: Consultancy; Kyowa Hako Kirin: Research Funding; Genentech, Inc.: Research Funding; Yuhan Pharma: Research Funding; MSD: Consultancy; Amgen: Consultancy, Honoraria; Novartis: Consultancy, Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2565-2565
Author(s):  
Maria Theresa Krauth ◽  
Christiane Eder ◽  
Tamara Alpermann ◽  
Wolfgang Kern ◽  
Claudia Haferlach ◽  
...  

Abstract Background Translocation t(8;21) with the resulting RUNX1-RUNX1T1 rearrangement is one of the most common chromosomal abnormalities in acute myeloid leukemia (AML). Although it is generally associated with a favourable prognosis, many additional genetic lesions may impact on outcome. Aim To assess the frequency and clinical impact of additional mutations and chromosomal aberrations in AML with t(8;21)/RUNX1-RUNX1T1. Methods We analyzed 139 patients (pts) who were referred to our laboratory for diagnosis of AML between 2005 and 2012 (65 females, 74 males; median age 53.3 years, range 18.6 - 83.8 years). All pts were proven to have t(8;21)/RUNX1-RUNX1T1 by a combination of chromosome banding analysis, fluorescence in situ hybridisation and RT-PCR. Analysis of mutations in ASXL1, FLT3-TKD, KIT (D816, exon8-11), NPM1, IDH1 and IDH2, KRAS, NRAS, CBL, and JAK2 as well as of MLL-PTD and FLT3-ITD was performed in all pts. Results 107/139 pts were classified according to FAB criteria (77.0%). 34/107 had AML M1 (31.8%) and 73/107 AML M2 (68.2%). 117/139 had de novo AML (84.2%), 22/139 had therapy-related AML (t-AML) (15.8%). 69/139 (49.6%) pts had at least one molecular alteration in addition to RUNX1-RUNX1T1, 23/69 (33.3%) had two or more additional mutations. Most common were mutations (mut) in KIT (23/139; 16.5%), followed by NRAS (18/139; 12.9%) and ASXL1 (16/139; 11.5%). FLT3-ITD and mutations in FLT3-TKD, CBL, and KRAS were found in 4.3% - 5.0% of all pts, whereas mutations in IDH2 and JAK2 were detectable in 3.6% and 2.9%, respectively. IDH1 mutations were found in only 0.7% (1/139). NPM1mut and MLL-PTD were mutually exclusive of RUNX1-RUNX1T1. FLT3-ITD as well as FLT3-TKD were exclusive of ASXL1 mutations. With exception of FLT3-ITD, which was only present in de novo AML, there was no difference in mutation frequencies between de novo AML and t-AML. 69.8% (97/139) pts had at least one chromosomal aberration in addition to t(8;21)(q22;q22). Most frequent was the loss of either X- or Y-chromosome (together 46.8%), followed by del(9q) (15.1%), and trisomy 8 (5.8%). FLT3-ITD, FLT3-TKD and trisomy 8 were found to be mutually exclusive. The number of secondary chromosomal aberrations did not differ significantly between pts with de novo AML and t-AML, showing only a trend towards higher frequency of -Y, del(9q), and trisomy 8 in pts with t-AML. Survival was calculated in pts who received intensive treatment (n=111/139, 79.9%; median follow-up 26.9 months; 2-year survival rate 73.4%). With exception of KITD816 mutation, which had a negative impact on overall survival in pts with de novo AML (2-year survival rate 64.2% vs. 82.3%, p=0.03), none of the other 13 mutations significantly influenced outcome, not even in case of 2 or more coexistent mutations. Also, no influence of additional chromosomal aberrations on survival was found. In selected cases (n=21/139), we compared dynamic changes in the patterns of genetic lesions at diagnosis and at relapse. In 14/21 (66.7%) pts the initial molecular mutation pattern changed at relapse. Mutations commonly gained at relapse were KIT mutations (6/21, 28.6%), followed by ASXL1 and IDH1R132 (each 2/21, 9.5%). FLT3-ITD, CBL, NRAS and JAK2 mutations emerged in 1/21 patients (4.8%) each. Loss of a mutation at relapse has been observed in KIT, ASXL1, and NRAS (each 2/21, 9.5%), as well as in KRAS, FLT3-ITD and FLT3-TKD (each 1/21, 4.8%). Concerning chromosomal alterations at relapse, 7/21 pts (33.3%) showed a change of their initial cytogenetic pattern, mostly shifting to a more complex karyotype (gain of chromosomal aberrations: 5/21, 23.8%; loss of chromosomal aberrations: 2/21, 9.5%). In all cases, t(8;21)(q22;q22)/RUNX1-RUNX1T1 remained stable at time of relapse. Conclusions 1) 50% of t(8;21)/RUNX1-RUNX1T1 positive pts had at least one additional molecular mutation and almost 70% showed additional chromosomal abnormalities. 2) KIT was the most frequent additional molecular mutation, followed by NRAS and ASXL1. 3) The only additional genetic marker with a significant adverse prognostic impact was KITD816 mutation. Disclosures: Krauth: MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2804-2804
Author(s):  
Felicitas Thol ◽  
Aylin Kirchner ◽  
Rabia Shahswar ◽  
Sofia Kade ◽  
Christian Koenecke ◽  
...  

Abstract Background MicroRNAs are short (20-40 nucleotides) non-coding RNA molecules that are responsible for the post-transcriptional regulation of gene expression. Aberrant expression of MicroRNAs has been associated with various malignancies. Specifically, downregulation of MicroRNA-142 (miR-142) has been shown to occur in acute myeloid leukemia (AML). Interestingly, also gene mutations in miR-142 have been recently described in de novo AML. So far, little is known about mutations in miR-142 in myeloid malignancies. The aim of this study was to analyze mutations in the miR-142 in a large cohort of 944 patients with AML and myelodysplastic syndrome (MDS). Patients and Methods The patient group consisted of 425 de novo AML patients (excluding AML M3) who entered the multicenter treatment trials AML SHG 0199 or AML SHG 0295, 326 patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) for secondary acute myeloid leukemia after a prior diagnosis of MDS (sAML) (n=170) or primary MDS (n=156), and 193 primary MDS patients not undergoing intensive therapy or allogeneic HSCT. The genomic region of the miR-142 gene, containing miR-142-5p and miR-142-3p, was sequenced by Sanger sequencing. Patient samples were also assessed for other frequently mutated genes in AML and MDS. Results and Discussion We identified five patients with mutations in miR-142. All mutations were heterozygous point mutations affecting the seed region of miR-142-3p, thereby potentially changing the target specificity of miR-142. Mutations in miR-142 occurred in male and female patients. Of the five patients with mutations in miR-142, only one patient carried the diagnosis of de novo AML (0.2% in de novo AML), while two patients were diagnosed with sAML (1.2% in sAML) and two patients had MDS (0.56% in MDS, corresponding to 0.77% in MDS/AML from MDS). Apart from one patient who underwent allogeneic transplantation for sAML, all other patients with follow-up died of the disease in less than a year. 3 patients had normal cytogenetics, while one patient had a complex karyotype and one patient had a trisomy 8 with translocation t(1;4). No mutated patient showed aberrations typically associated with de novo AML (RUNX1/RUNX1T1, CBFB/MYH11, FLT3-ITD, NPM1 mutations or CEBPA mutations). However, myelodysplasia-related gene mutations such as mutations in the splicing genes or chromatin remodelling genes were found in two patients (one patient with mutated ASXL1 and SRSF2, one patient with mutated U2AF1). Furthermore, one patient had a concomitant mutation in NRAS and IDH1. Thus, the associated mutational profile suggests that miR-142 mutations play a role in the pathogenesis of MDS rather than de novo AML. Conclusion MicroRNA-142 is recurrently but infrequently mutated in MDS and secondary AML evolving from MDS, and some mutations co-occur with MDS-related gene aberrations. As miR-142 mutations affect the seed region of the miRNA the target specificity is likely changed, and the miRNA may lose its tumor suppressor function, which has been implicated from functional studies. Disclosures: Platzbecker: Celgene: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document