scholarly journals Molecular Mechanisms of Primary Resistance to Azacitidine in MDS/AML Patients - Data of the Hellenic MDS Study Group

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5403-5403
Author(s):  
Vassiliki Mpakou ◽  
Aris Spathis ◽  
Anthi Bouhla ◽  
Frieda Kontsioti ◽  
Zoi Tsakiraki ◽  
...  

Introduction: Azacitidine (AZA) is a hypomethylating agent that at low doses acts by inhibiting DNA methyltranferase activity. AZA is approved and widely used for the treatment of MDS patients and patients with AML not candidate for intensive chemotherapy. Unfortunately, even after an initial response, almost all patients relapse and so far -with the exception of a few clinical parameters and genetic mutations weakly correlated with favorable AZA response- the exact mechanisms underlying primary AZA resistance remain largely unknown. On the other hand, over the last years accumulated data suggest that hypoxia, an important regulatory factor of both, physiological and malignant, hematopoiesis, is also involved in MDS pathogenesis (Hayashi et al., 2018), while high Hif-1α levels in MDS have been previously correlated with poor overall survival and disease progression (Tong et al., 2012). Moreover, our group recently investigated the association between Hif-1α and response to AZA therapy and found that AZA-responders present with higher Hif-1α mRNA expression compared to non-responders/stable disease patients, while logistic regression analysis showed that Hif-1α mRNA expression is an independent predictor of response to AZA therapy (unpublished data). Aims: The current study focused on investigating the mechanisms underlying the observed association of Hif-1α over-expression with response to AZA-therapy, by examining the methyltransferase activity and mitochondrial dysfunction due to inactivation of complex II, which is reported to lead to increased Hif-1α expression. Methods: A total of 54 patients with a median age of 76 (52-89) years, and 10, age matched, healthy donors participated in the study. According to WHO 2016, 41 patients were classified as MDS (10 as MDS-EB-1, 24 as MDS-EB-2 and 7 as MDS-MLD) and 13 as AML. All patients received AZA treatment at the dose of 75mg/m2 x7 days SC. BM-derived mononuclear cells were isolated before treatment using the Ficoll-paque method, followed by RNA extraction using TRIzol reagent, and cDNA preparation using Superscript II reverse transcriptase. Hypoxia-inducible factor 1-alpha (Hif-1α), succinate dehydrogenase complex subunit D (DSHd) and DNA methyltrasferase beta (DNMT3b) expression were estimated by real time PCR TaqMan gene expression assays, using the appropriate primers and probes. Relative gene expression was calculated by comparative threshold cycle (2-ΔΔCt) method and normalized based on β-actin expression. Non-parametric tests were used for the statistical analysis of the results. Results: Out of the 54 examined patients, 28 responded to azacitidine treatment (R), (including CR, PR and HI), 9 failed to respond (NR), and 17 achieved stable disease status 9 (SD). NR and SD patients were considered as one group (NR/SD) in all analyses. Using Rt-PCR we found that the 2-ΔΔCt ratio of Hif-1α/β-Actin median expression for control samples was 1.18 (95% CI: 0.617-1.687), for AZA-responders 1.59 (95% CI: 1.029-3.18), while for NR/SD patients 0.754 (95% CI: 0.640-0.840), with a statistical significance between R and NR/SD patients (Mann-Whitney test, p=0.003). Moreover, the 2-ΔΔCt ratio of SDHd/β-Actin median expression for control samples was 1.2 (95% CI: 0.360-1.954), for R patients 0.81 (95% CI: 0.294-1.401), and for NR/SD patients 0.73 (95% CI: 0.542-0.793). Finally, for DNMT3b, the 2-ΔΔCt median expression ratio in control samples was 0.75 (95% CI: 0.637-1.526), for R patients 2.188 (95% CI: 1.547-3.630), while for NR/SD patients 1.338 (95% CI: 0.824-2.250). Conclusions: Our data suggest that both AZA-R and NR/SD patients present with low levels of SDHd mRNA, compared to control, in line with previous reports in MDS. For AZA-responders, this could be related to the observed Hif-1α mRNA over-expression, since the SDH inactivation (decreased Complex II activity) is known to cause HIF stabilization (Frezza et al., 2011; Selak et al., 2005). Nevertheless, NR/SD patients also appear with decreased SDHd activity, despite the observed low Hif-1α expression. Therefore, in those patients, Hif-1α- related AZA-therapy response seems to be independent from mitochondrial dysfunction and possibly relies on other hypoxia regulatory mechanisms. Moreover, our data suggest that AZA-responders appear with an increased DNMT3b expression compared to both control and NR/SD patients, which could also explain their better response to therapy. Disclosures Symeonidis: Pfizer: Research Funding; Sanofi: Research Funding; Tekeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; MSD: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Pappa:Novartis: Honoraria, Research Funding, Speakers Bureau; Celgene / GenesisPharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Honoraria, Research Funding; Amgen: Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5193-5193
Author(s):  
Simone Ragaini ◽  
Sarah Wagner ◽  
Giovanni Marconi ◽  
Sarah Parisi ◽  
Chiara Sartor ◽  
...  

Introduction: ELN intermediate-risk AML poses considerable challenges to clinicians both in terms of accurate prognostication and optimal treatment. Indoleamine 2,3-dioxygenase 1 (IDO1) plays a central role as a mediator of immune tolerance in AML through the increase of Treg cells. IDO1 activity is negatively regulated by the BIN1 proto-oncogene. Herein, we analyzed the correlation between BIN1 and IDO1 expression in AML, also focusing on IDO1-interacting genes, with the aim to identify a predictive gene signature for OS. Methods: Biological and clinical data of 732 patients with de novo AML were retrieved from public TCGA and HOVON datasets. Since details on chemotherapy regimens were not available in the HOVON dataset, we decided to exclude patients >= 65 years from survival analyses. IDO1-interacting genes were selected through a co-expression analysis performed on TCGA RNA-sequencing data accessed through cBioPortal. The best genes combination predicting overall survival was plotted in a gene expression score. Patients were split in three different groups using score quartiles as cut-off. Results: In the HOVON dataset, IDO1 and BIN1 mRNA expression were negatively correlated (r = -0.40, P<0.0001). Our analysis of TCGA data identified PLXNC1 as an IDO1-interacting gene and a predictor of patient survival (median split of mRNA expression, P<0.001, survival analysis performed on the BloodSpot online portal). The correlation between PLXNC1 and IDO1 was validated in the HOVON dataset (r=-0.24, P<0.0001). PLXNC1 expression was combined with IDO1 and BIN1 expression to obtain the gene expression score. The 3-gene score predicted survival in ELN intermediate-risk patients who did not receive allogeneic HSCT both in the HOVON dataset (P<0.0001) and the TCGA dataset (P<0.05). In particular, the highest score values predicted the shortest OS. Conclusions: Our study shows a negative correlation between IDO1 and BIN1 in AML, suggesting IDO1 inhibition by BIN1, and identifies for the first time PLXNC1, a receptor for semaphorines, as an IDO1-interacting gene potentially implicated in immune response regulation. This finding corroborates the role of IDO1 and its interacting genes in the promotion of a tolerogenic microenvironment in AML. Lastly, our gene expression score predicted OS in intermediate-risk AML patients not undergoing HSCT, a finding which has clinical implications for accurate patient stratification and for clinical decision making, i.e., bridging these patients to transplant. Figure Disclosures Papayannidis: Pfizer: Honoraria; Amgen: Honoraria; Incyte: Honoraria; Novartis: Honoraria; Shire: Honoraria; Teva: Honoraria. Cavo:celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; bms: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; novartis: Honoraria; takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Rutella:MacroGenics, Inc.: Research Funding; NanoString Technologies, Inc.: Research Funding; Kura Oncology: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Hanyin Wang ◽  
Shulan Tian ◽  
Qing Zhao ◽  
Wendy Blumenschein ◽  
Jennifer H. Yearley ◽  
...  

Introduction: Richter's syndrome (RS) represents transformation of chronic lymphocytic leukemia (CLL) into a highly aggressive lymphoma with dismal prognosis. Transcriptomic alterations have been described in CLL but most studies focused on peripheral blood samples with minimal data on RS-involved tissue. Moreover, transcriptomic features of RS have not been well defined in the era of CLL novel therapies. In this study we investigated transcriptomic profiles of CLL/RS-involved nodal tissue using samples from a clinical trial cohort of refractory CLL and RS patients treated with Pembrolizumab (NCT02332980). Methods: Nodal samples from 9 RS and 4 CLL patients in MC1485 trial cohort were reviewed and classified as previously published (Ding et al, Blood 2017). All samples were collected prior to Pembrolizumab treatment. Targeted gene expression profiling of 789 immune-related genes were performed on FFPE nodal samples using Nanostring nCounter® Analysis System (NanoString Technologies, Seattle, WA). Differential expression analysis was performed using NanoStringDiff. Genes with 2 fold-change in expression with a false-discovery rate less than 5% were considered differentially expressed. Results: The details for the therapy history of this cohort were illustrated in Figure 1a. All patients exposed to prior ibrutinib before the tissue biopsy had developed clinical progression while receiving ibrutinib. Unsupervised hierarchical clustering using the 300 most variable genes in expression revealed two clusters: C1 and C2 (Figure 1b). C1 included 4 RS and 3 CLL treated with prior chemotherapy without prior ibrutinib, and 1 RS treated with prior ibrutinib. C2 included 1 CLL and 3 RS received prior ibrutinib, and 1 RS treated with chemotherapy. The segregation of gene expression profiles in samples was largely driven by recent exposure to ibrutinib. In C1 cluster (majority had no prior ibrutinb), RS and CLL samples were clearly separated into two subgroups (Figure 1b). In C2 cluster, CLL 8 treated with ibrutinib showed more similarity in gene expression to RS, than to other CLL samples treated with chemotherapy. In comparison of C2 to C1, we identified 71 differentially expressed genes, of which 34 genes were downregulated and 37 were upregulated in C2. Among the upregulated genes in C2 (majority had prior ibrutinib) are known immune modulating genes including LILRA6, FCGR3A, IL-10, CD163, CD14, IL-2RB (figure 1c). Downregulated genes in C2 are involved in B cell activation including CD40LG, CD22, CD79A, MS4A1 (CD20), and LTB, reflecting the expected biological effect of ibrutinib in reducing B cell activation. Among the 9 RS samples, we compared gene profiles between the two groups of RS with or without prior ibrutinib therapy. 38 downregulated genes and 10 upregulated genes were found in the 4 RS treated with ibrutinib in comparison with 5 RS treated with chemotherapy. The top upregulated genes in the ibrutinib-exposed group included PTHLH, S100A8, IGSF3, TERT, and PRKCB, while the downregulated genes in these samples included MS4A1, LTB and CD38 (figure 1d). In order to delineate the differences of RS vs CLL, we compared gene expression profiles between 5 RS samples and 3 CLL samples that were treated with only chemotherapy. RS samples showed significant upregulation of 129 genes and downregulation of 7 genes. Among the most significantly upregulated genes are multiple genes involved in monocyte and myeloid lineage regulation including TNFSF13, S100A9, FCN1, LGALS2, CD14, FCGR2A, SERPINA1, and LILRB3. Conclusion: Our study indicates that ibrutinib-resistant, RS-involved tissues are characterized by downregulation of genes in B cell activation, but with PRKCB and TERT upregulation. Furthermore, RS-involved nodal tissues display the increased expression of genes involved in myeloid/monocytic regulation in comparison with CLL-involved nodal tissues. These findings implicate that differential therapies for RS and CLL patients need to be adopted based on their prior therapy and gene expression signatures. Studies using large sample size will be needed to verify this hypothesis. Figure Disclosures Zhao: Merck: Current Employment. Blumenschein:Merck: Current Employment. Yearley:Merck: Current Employment. Wang:Novartis: Research Funding; Incyte: Research Funding; Innocare: Research Funding. Parikh:Verastem Oncology: Honoraria; GlaxoSmithKline: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; Ascentage Pharma: Research Funding; Genentech: Honoraria; AbbVie: Honoraria, Research Funding; Merck: Research Funding; TG Therapeutics: Research Funding; AstraZeneca: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Kenderian:Sunesis: Research Funding; MorphoSys: Research Funding; Humanigen: Consultancy, Patents & Royalties, Research Funding; Gilead: Research Funding; BMS: Research Funding; Tolero: Research Funding; Lentigen: Research Funding; Juno: Research Funding; Mettaforge: Patents & Royalties; Torque: Consultancy; Kite: Research Funding; Novartis: Patents & Royalties, Research Funding. Kay:Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; MEI Pharma: Research Funding; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rigel: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees. Braggio:DASA: Consultancy; Bayer: Other: Stock Owner; Acerta Pharma: Research Funding. Ding:DTRM: Research Funding; Astra Zeneca: Research Funding; Abbvie: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2742-2742
Author(s):  
Christian Hurtz ◽  
Gerald Wertheim ◽  
Rahul S. Bhansali ◽  
Anne Lehman ◽  
Grace Jeschke ◽  
...  

Background: Research efforts have focused upon uncovering critical leukemia-associated genetic alterations that may be amenable to therapeutic targeting with new drugs. Targeting the oncogenic BCR-ABL1 fusion protein in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (B-ALL) with tyrosine kinase inhibitors to shut down constitutive signaling activation and induce leukemia cell cytotoxicity has remarkably improved patients' survival and has established a precision medicine paradigm for kinase-driven leukemias. However, multiple subtypes of B-ALL are driven through non-tyrosine fusion proteins, including the high-risk KMT2A-rearranged (KMT2A-R) subtype common in infants with B-ALL, leaving many patients with insufficient treatment options. Objectives: KMT2A-R B-ALL is associated with chemoresistance, relapse, and poor survival with a frequency of 75% in infants and 10% in older children/adults with B-ALL. Current intensive multiagent chemotherapy regimens induce significant side effects yet fail to cure the majority of patients, demonstrating continued need for novel therapeutic approaches. The goals of our study were to i) identify signaling molecules required for KMT2A-R B-ALL cell survival, ii) select ALL-associated targets that are not essential in normal tissues, and iii) develop new treatment strategies that may benefit patients with KMT2A-R ALL. Results: We performed a genome-wide kinome CRISPR screen using the pediatric KMT2A-R cell line SEM and identified DYRK1A among other signaling molecules as required for leukemia cell survival. DYRK1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase family and has been reported as a critical oncogene in a murine Down syndrome (DS) model of megakaryoblastic leukemia. In normal hematopoiesis, DYRK1A controls the transition from proliferation to quiescence during lymphoid development. Deletion of DYRK1A results in increased numbers of B cells in S-G2-M phase, yet also significantly reduces cell proliferation. Meta-analysis of ChIP-Seq data from two KMT2A-AFF1 cell lines (SEM and RS4;11) and a human KMT2A-Aff1-FLAG-transduced ALL model demonstrates that both N-terminal (KMT2AN) and C-terminal (AFF1C) and the FLAG-tagged KMT2A-Aff1 fusion directly bind to the DYRK1A promoter. Gene expression and RT-PCR analyses of SEM cells treated with inhibitors against two important KMT2A fusion complex proteins, DOT1L (histone methyltransferase) and menin (tumor suppressor), demonstrate that only menin inhibition induced DYRK1A downregulation. Interestingly, deletion of germline KMT2A in murine B-cells did not decrease DYRK1A expression. Taken together, these results suggest direct transcriptional regulation through the KMT2A fusion complex. Surprisingly, RNA and protein expression of DYRK1A was reduced in KMT2A-R ALL compared to other B-ALL subtypes. We then identified MYC as a potential negative regulator of DYRK1A that could explain the lower RNA and protein expression levels observed. A gain-of-function experiment showed marked downregulation of DYRK1A when MYC was ectopically expressed in murine B-cells, while loss of MYC resulted in DYRK1A upregulation. Parallel analysis of publicly available gene expression data from children with high-risk B-ALL (NCI TARGET database) showed significantly higher MYC RNA expression levels in KMT2A-R ALL as compared to other ALL subtypes, further validating our findings that MYC acts as a negative regulator of DYRK1A. Finally, to assess pharmacologic inhibition, we treated multiple KMT2A-rearranged ALL cell lines with the novel DYRK1A inhibitor EHT 1610 and identified sensitivity to DYRK1A inhibition. We then queried the Achilles database and identified that DYRK1A is not a common essential gene in normal tissues, suggesting minimal potential for on-target/off-tumor effects of DYRK1A inhibition. Conclusions: We identified a novel mechanism in KMT2A-R ALL in which DYRK1A is positively regulated by the KMT2A fusion protein and negatively regulated by MYC. Genetic deletion and pharmacologic inhibition of DYRK1A resulted in significant growth disadvantage of KMT2A-R ALL cells. While further studies are needed, we predict that combining DYRK1A inhibitors with chemotherapy could decrease relapse risk and improve long-term survival of patients with KMT2A-R B-ALL. Disclosures Crispino: MPN Research Foundation: Membership on an entity's Board of Directors or advisory committees; Sierra Oncology: Consultancy; Scholar Rock: Research Funding; Forma Therapeutics: Research Funding. Tasian:Incyte Corportation: Research Funding; Gilead Sciences: Research Funding; Aleta Biotherapeutics: Membership on an entity's Board of Directors or advisory committees. Carroll:Astellas Pharmaceuticals: Research Funding; Incyte: Research Funding; Janssen Pharmaceuticals: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Rafael Renatino-Canevarolo ◽  
Mark B. Meads ◽  
Maria Silva ◽  
Praneeth Reddy Sudalagunta ◽  
Christopher Cubitt ◽  
...  

Multiple myeloma (MM) is an incurable cancer of bone marrow-resident plasma cells, which evolves from a premalignant state, MGUS, to a form of active disease characterized by an initial response to therapy, followed by cycles of therapeutic successes and failures, culminating in a fatal multi-drug resistant cancer. The molecular mechanisms leading to disease progression and refractory disease in MM remain poorly understood. To address this question, we have generated a new database, consisting of 1,123 MM biopsies from patients treated at the H. Lee Moffitt Cancer Center. These samples ranged from MGUS to late relapsed/refractory (LR) disease, and were comprehensively characterized genetically (844 RNAseq, 870 WES, 7 scRNAseq), epigenetically (10 single-cell chromatin accessibility, scATAC-seq) and phenotypically (537 samples assessed for ex vivo drug resistance). Mutational analysis identified putative driver genes (e.g. NRAS, KRAS) among the highest frequent mutations, as well as a steady increase in mutational load across progression from MGUS to LR samples. However, with the exception of KRAS, these genes did not reach statistical significance according to FISHER's exact test between different disease stages, suggesting that no single mutation is necessary or sufficient to drive MM progression or refractory disease, but rather a common "driver" biology is critical. Pathway analysis of differentially expressed genes identified cell adhesion, inflammatory cytokines and hematopoietic cell identify as under-expressed in active MM vs. MGUS, while cell cycle, metabolism, DNA repair, protein/RNA synthesis and degradation were over-expressed in LR. Using an unsupervised systems biology approach, we reconstructed a gene expression map to identify transcriptomic reprogramming events associated with disease progression and evolution of drug resistance. At an epigenetic regulatory level, these genes were enriched for histone modifications (e.g. H3k27me3 and H3k27ac). Furthermore, scATAC-seq confirmed genome-wide alterations in chromatin accessibility across MM progression, involving shifts in chromatin accessibility of the binding motifs of epigenetic regulator complexes, known to mediate formation of 3D structures (CTCF/YY1) of super enhancers (SE) and cell identity reprograming (POU5F1/SOX2). Additionally, we have identified SE-regulated genes under- (EBF1, RB1, SPI1, KLF6) and over-expressed (PRDM1, IRF4) in MM progression, as well as over-expressed in LR (RFX5, YY1, NBN, CTCF, BCOR). We have found a correlation between cytogenetic abnormalities and mutations with differential gene expression observed in MM progression, suggesting groups of genetic events with equivalent transcriptomic effect: e.g. NRAS, KRAS, DIS3 and del13q are associated with transcriptomic changes observed during MGUS/SMOL=&gt;active MM transition (Figure 1). Taken together, our preliminary data suggests that multiple independent combinations of genetic and epigenetic events (e.g. mutations, cytogenetics, SE dysregulation) alter the balance of master epigenetic regulatory circuitry, leading to genome-wide transcriptional reprogramming, facilitating disease progression and emergence of drug resistance. Figure 1: Topology of transcriptional regulation in MM depicts 16,738 genes whose expression is increased (red) or decreased (green) in presence of genetic abnormality. Differential expression associated with (A) hotspot mutations and (B) cytogenetic abnormalities confirms equivalence of expected pairs (e.g. NRAS and KRAS, BRAF and RAF1), but also proposes novel transcriptomic dysregulation effect of clinically relevant cytogenetic abnormalities, with yet uncharacterized molecular role in MM. Figure 1 Disclosures Kulkarni: M2GEN: Current Employment. Zhang:M2GEN: Current Employment. Hampton:M2GEN: Current Employment. Shain:GlaxoSmithKline: Speakers Bureau; Amgen: Speakers Bureau; Karyopharm: Research Funding, Speakers Bureau; AbbVie: Research Funding; Takeda: Honoraria, Speakers Bureau; Sanofi/Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Adaptive: Consultancy, Honoraria; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Siqueira Silva:AbbVie: Research Funding; Karyopharm: Research Funding; NIH/NCI: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 575-575
Author(s):  
Alexandra M Poos ◽  
Jan-Philipp Mallm ◽  
Stephan M Tirier ◽  
Nicola Casiraghi ◽  
Hana Susak ◽  
...  

Introduction: Multiple myeloma (MM) is a heterogeneous malignancy of clonal plasma cells that accumulate in the bone marrow (BM). Despite new treatment approaches, in most patients resistant subclones are selected by therapy, resulting in the development of refractory disease. While the subclonal architecture in newly diagnosed patients has been investigated in great detail, intra-tumor heterogeneity in relapsed/refractory (RR) MM is poorly characterized. Recent technological and computational advances provide the opportunity to systematically analyze tumor samples at single-cell (sc) level with high accuracy and througput. Here, we present a pilot study for an integrative analysis of sc Assay for Transposase-Accessible Chromatin with high-throughput sequencing (scATAC-seq) and scRNA-seq with the aim to comprehensively study the regulatory landscape, gene expression, and evolution of individual subclones in RRMM patients. Methods: We have included 20 RRMM patients with longitudinally collected paired BM samples. scATAC- and scRNA-seq data were generated using the 10X Genomics platform. Pre-processing of the sc-seq data was performed with the CellRanger software (reference genome GRCh38). For downstream analyses the R-packages Seurat and Signac (Satija Lab) as well as Cicero (Trapnell Lab) were used. For all patients bulk whole genome sequencing (WGS) data was available, which we used for confirmatory studies of intra-tumor heterogeneity. Results: A comprehensive study at the sc level requires extensive quality controls (QC). All scATAC-seq files passed the QC, including the detected number of cells, number of fragments in peaks or the ratio of mononucleosomal to nucleosome-free fragments. Yet, unsupervised clustering of the differentially accessible regions resulted in two main clusters, strongly associated with sample processing time. Delay of sample processing by 1-2 days, e.g. due to shipment from participating centers, resulted in global change of chromatin accessibility with more than 10,000 regions showing differences compared to directly processed samples. The corresponding scRNA-seq files also consistently failed QC, including detectable genes per cell and the percentage of mitochondrial RNA. We excluded these samples from the study. Analysing scATAC-seq data, we observed distinct clusters before and after treatment of RRMM, indicating clonal adaptation or selection in all samples. Treatment with carfilzomib resulted in highly increased co-accessibility and &gt;100 genes were differentially accessible upon treatment. These genes are related to the activation of immune cells (including T-, and B-cells), cell-cell adhesion, apoptosis and signaling pathways (e.g. NFκB) and include several chaperone proteins (e.g. HSPH1) which were upregulated in the scRNA-seq data upon proteasome inhibition. The power of our comprehensive approach for detection of individual subclones and their evolution is exemplarily illustrated in a patient who was treated with a MEK inhibitor and achieved complete remission. This patient showed two main clusters in the scATAC-seq data before treatment, suggesting presence of two subclones. Using copy number profiles based on WGS and scRNA-seq data and performing a trajectory analysis based on scATAC-seq data, we could confirm two different subclones. At relapse, a seemingly independent dominant clone emerged. Upon comprehensive integration of the datasets, one of the initial subclones could be identified as the precursor of this dominant clone. We observed increased accessibility for 108 regions (e.g. JUND, HSPA5, EGR1, FOSB, ETS1, FOXP2) upon MEK inhibition. The most significant differentially accessible region in this clone and its precursor included the gene coding for krüppel-like factor 2 (KLF2). scRNA-seq data showed overexpression of KLF2 in the MEK-inhibitor resistant clone, confirming KLF2 scATAC-seq data. KLF2 has been reported to play an essential role together with KDM3A and IRF1 for MM cell survival and adhesion to stromal cells in the BM. Conclusions: Our data strongly suggest to use only immediately processed samples for single cell technologies. Integrating scATAC- and scRNA-seq together with bulk WGS data showed that detection of individual clones and longitudinal changes in the activity of cis-regulatory regions and gene expression is feasible and informative in RRMM. Disclosures Goldschmidt: John-Hopkins University: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; MSD: Research Funding; Molecular Partners: Research Funding; Dietmar-Hopp-Stiftung: Research Funding; Janssen: Consultancy, Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Shanye Yin ◽  
Gregory Lazarian ◽  
Elisa Ten Hacken ◽  
Tomasz Sewastianik ◽  
Satyen Gohil ◽  
...  

A hotspot mutation within the DNA-binding domain of IKZF3 (IKZF3-L162R) has been identified as a putative driver in chronic lymphocytic leukemia (CLL); however, its functional effects are unknown. We recently confirmed its role as a CLL driver in a B cell-restricted conditional knock-in model. IKZF3 mutation altered mature B cell development and signaling capacity, and induced CLL-like disease in elderly mice (~40% penetrance). Moreover, we found IKZF3-L162R acts as a gain-of-function mutation, altering DNA binding specificity and target selection of IKZF3, and resulting in overexpression of multiple B-cell receptor (BCR) genes. Consistent with the murine data, RNA-sequencing analysis showed that human CLL cells with mut-IKZF3 [n=4] have an enhanced signature of BCR-signaling gene expression compared to WT-IKZF3 [n=6, all IGHV unmutated] (p&lt;0.001), and also exhibited general upregulation of key BCR-signaling regulators. These results confirm the role of IKZF3 as a master regulator of BCR-signaling gene expression, with the mutation contributing to overexpression of these genes. While mutation in IKZF3 has a clear functional impact on a cardinal CLL-associated pathway, such as BCR signaling, we note that this driver occurs only at low frequency in patients (~3%). Because somatic mutation represents but one mechanism by which a driver can alter a cellular pathway, we examined whether aberrant expression of IKZF3 could also yield differences in BCR-signaling gene expression. We have observed expression of the IKZF3 gene to be variably dysregulated amongst CLL patients through re-analysis of transcriptomic data from two independent cohorts of human CLL (DFCI, Landau et al., 2014; ICGC, Ferreira et al., 2014). We thus examined IKZF3 expression and BCR-signaling gene expression, or the 'BCR score' (calculated as the mean expression of 75 BCR signaling-associate genes) in those cohorts (DFCI cohort, n=107; ICGC cohort, n=274). Strikingly, CLL cells with higher IKZF3 expression (defined as greater than median expression) had higher BCR scores than those with lower IKZF3 expression (&lt;median) (p=0.0015 and p&lt;0.0001, respectively). These findings were consistent with the notion that IKZF3 may act as a broad regulator of BCR signaling genes, and that IKZF3 overexpression, like IKZF3 mutation, may provide fitness advantage. In support of this notion, our re-analysis of a gene expression dataset of 107 CLL samples (Herold Leukemia 2011) revealed that higher IKZF3 expression associated with poorer prognosis and worse overall survival (P=0.035). We previously reported that CLL cells with IKZF3 mutation appeared to increase in cancer cell fraction (CCF) with resistance to fludarabine-based chemotherapy (Landau Nature 2015). Instances of increase in mut-IKZF3 CCF upon treatment with the BCR-signaling inhibitor ibrutinib have been reported (Ahn ASH 2019). These studies together suggest an association of IKZF3 mutation with increased cellular survival following either chemotherapy or targeted treatment. To examine whether higher expression of IKZF3 was associated with altered sensitivity to ibrutinib, we performed scRNA-seq analysis (10x Genomics) of two previously treatment-naïve patients undergoing ibrutinib therapy (paired samples, baseline vs. Day 220). We analyzed an average of 11,080 cells per patient (2000 genes/cell). Of note, following ibrutinib treatment, remaining CLL cells expressed higher levels of IKZF3 transcript compared to pretreatment baseline (both p&lt;0.0001), whereas no such change was observed in matched T cells (n ranging between 62 to 652 per experimental group, p&gt;0.05), suggesting that cells with high expression of IKZF3 were selected by ibrutinib treatment. Moreover, we showed that ibrutinib treatment resulted in consistent upregulation of BCR-signaling genes (e.g., CD79B, LYN, GRB2, FOS, RAC1, PRKCB and NFKBIA) (n ranging between 362 to 1374 per experimental group, all p&lt;0.0001), which were likewise activated by mutant IKZF3. Altogether, these data imply that IKZF3 mutation or overexpression may influence upregulation of BCR-signaling genes and enhance cellular fitness even during treatment with BCR-signaling inhibitors. We highlight our observation that IKZF3 mutation appears to be phenocopied by elevated IKZF3 expression, and suggest that alterations in mRNA or protein level that mimic genetic mutations could be widespread in human cancers. Disclosures Kipps: Pharmacyclics/ AbbVie, Breast Cancer Research Foundation, MD Anderson Cancer Center, Oncternal Therapeutics, Inc., Specialized Center of Research (SCOR) - The Leukemia and Lymphoma Society (LLS), California Institute for Regenerative Medicine (CIRM): Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech/Roche: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; VelosBio: Research Funding; Oncternal Therapeutics, Inc.: Other: Cirmtuzumab was developed by Thomas J. Kipps in the Thomas J. Kipps laboratory and licensed by the University of California to Oncternal Therapeutics, Inc., which provided stock options and research funding to the Thomas J. Kipps laboratory, Research Funding; Ascerta/AstraZeneca, Celgene, Genentech/F. Hoffmann-La Roche, Gilead, Janssen, Loxo Oncology, Octernal Therapeutics, Pharmacyclics/AbbVie, TG Therapeutics, VelosBio, and Verastem: Membership on an entity's Board of Directors or advisory committees. Wu:BionTech: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1923-1923
Author(s):  
Jonathan J Keats ◽  
Esteban Braggio ◽  
Scott Van Wier ◽  
Patrick Blackburn ◽  
Angela Baker ◽  
...  

Abstract Abstract 1923 Our understanding of the genetic abnormalities associated with the development of multiple myeloma has increased significantly in the last decade. However, very little is known about how, or if, myeloma tumor genomes change with time and if therapeutic interventions influence these events. To address these issues we studied a cohort of 29 patients for whom at least two serial samples (1-65 months, median 19 months) were available for analysis. Each serial pair was analyzed by both array-based comparative genomic hybridization (aCGH) and microarray gene expression profiling (GEP) to identify DNA copy number abnormalities (CNA) at a 25kb resolution and gene expression differences present in the bulk of the tumor mass. Though this does not address the intra-clonal heterogeneity that may exist at a given time point, it does answer if the bulk of the tumor mass is changing with time. This study has unearthed several surprising and clinically relevant findings. First, myeloma tumor genomes are not as unstable as previous cytogenetic analyses suggest. In 40% of patients we observed no detectable CNA changes (1-37 months, median 12 months). In 24% of patients we observed the exclusive acquisition of new CNA (1-12, median 3.5) (3-22 months, median 18 months). In 36% of patients we observed both the loss (1-20, median 3) and gain (1-33, median 21) of CNA (5-43 months, median 20 months). Because time was not a significant influence on the detection of stable or unstable genomes we compared CNA changes with TC class and found patients with the high-risk 4p16 and maf IgH translocations were over-represented in the latter subset of patients. These observations raise the question of what happens between multiple rounds of therapy and if different regimens influence these phenotypes differently. For two patients with no CNA changes between the first two time points there was an additional sample that extended the follow-up by 52 and 12 months. Again no CNA changes were seen between diagnosis and these final samples taken 63 and 50 months later. For one patient with CNA changes (5 shared, 29 lost, and 32 gained) we have a detailed time course of 5 samples from diagnosis through to end-stage plasma cell leukemia. This patient received continuous lenalidomide-dexamethasone (Rd) for 20 months and progessed with a clone containing a BIRC2/3 deletion, which activates the NFKB pathway. The patient received single agent PR-171 and a bortezomib containing regimen and unexpectedly, the tumor genome observed in the third sample was almost identical (32 shared, 2 lost, and 4 gained CNA) to the first time point, including two copies of BIRC2/3. Subsequently, the patient received melphalan-prednisone-bortezomib (MPV) and the tumor genome observed in the fourth and fifth samples, which were identical, were similar to that seen in the second sample (24 shared, 13 lost, and 39 gained CNA). To understand these observations better we performed FISH to ascertain if the observed clones were detectable earlier, albeit at a low frequency. These experiments proved that the two dominant subclones observed at time points 1 and 3 versus 2, 4, 5 were mutually exclusive at the single cell level. Moreover, both of these clones were detectable at diagnosis with 12% of the tumor mass being the second subclone that eventually evolved into plasma cell leukemia. Interestingly, we assayed 5 of the 39 unique CNA observed in the final two samples and only one, the 17p13 deletion, was detectable earlier. This suggests the MPV regimen effectively eliminated a clone that was previously sensitive to Rd and selected for a dramatically evolved subclone that was previously sensitive to two different proteasome inhibitors. Although it is clear that the high-risk patients are enriched in the subset with the most changes, it is not clear if the specific drugs used (Melphalan vs IMID vs proteasome inhibitor) or intervention strategy (Cycled vs continuous/maintenance) and perhaps the response achieved (PR vs CR) influences these events. These observations do highlight two important clinical concepts that need to be considered in the future. First, the meaning of a partial response needs further investigation as this may reflect effective elimination of one subclone but not another. Second, because some patients are not changing or can revert back to a previous subclone we need to consider re-chanllenging patients with previously effective regimens when patients progress. Disclosures: Fonseca: Genzyme: Consultancy; Medtronic: Consultancy; BMS: Consultancy; AMGEN: Consultancy; Otsuka: Consultancy; Celgene: Consultancy, Research Funding; Intellikine: Consultancy; Cylene: Research Funding; Onyx: Research Funding; FISH probes prognostication in myeloma: Patents & Royalties. Stewart:Millennium: Consultancy; Celgene: Honoraria. Bergsagel:Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees; Millennium: Speakers Bureau; Novartis: Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3620-3620
Author(s):  
Yang Liu ◽  
Min Ni ◽  
Aldo M. Roccaro ◽  
Xavier Leleu ◽  
Yong Zhang ◽  
...  

Abstract Abstract 3620 Introduction: Waldenstrom macroglobulinemia (WM) is a rare indolent non-Hodgkin lymphoma, characterized by bone marrow infiltration of clonal lymphoplasmacytic cells. Despite recent advances in understanding the pathogenesis of this disease, the molecular basis of WM etiology has not been clearly defined. We therefore performed genome-wide analysis of RNA polymerase II (pol II) binding sites and gene expression profiling in primary WM cells in order to comprehensively define the aberrant transcriptional regulation and related genes in WM. Methods: Primary CD19+ bone marrow derived WM cells and normal primary bone marrow were used. Genomic DNA was extracted using genome isolation kit (QIAGEN) after cross linking. All the DNA samples were sent for Chip assay and human promoter 1.0R array (Genepathway Inc.) which comprised of over 4.6 million probes tiled through over 25.500 human promoter regions. Each promoter region covers approximately 7.6kb upstream through 2.45kb downstream of the transcription start sites. For over 1,300 cancer associated genes, coverage of promoter regions was expanded to additional genomic content; for selected genes total coverage spans from 10kb upstream through 2.45kb downstream of transcription start sites. The published gene expression datasets (GDS2643) which included 10 CD19+ B cell from bone marrow of 10 WM patients and 8 normal controls was analyzed by d-chip software and normalized to normal control. The motif analysis was performed using Cistrome online tools from the Dana Farber Cancer Institute. The gene sets enrichment analysis (GSEA) was performed using GSEA online software from Broad institute. Results: A total of 13,546 high-confidence pol II sites were identified in WM samples and share a small percentage of overlap (11.5%) with the binding sites identified in normal controls. Combining the expression microarray data of WM patient samples and normal controls, we demonstrated a significant correlation between high levels of gene expression and enriched promoter binding of pol II. Notably, we also observed that the WM-unique pol II binding sites are localized in the promoters of 5,556 genes which are involved in important signaling pathways, such as Jak/STAT and MAPK pathways by applying gene set enrichment analysis (GSEA). Interestingly, we found that STAT, FOXO and IRF family binding sites motifs were enriched in the pol II-bound promoter region of IL-6 which plays a crucial role in cell proliferation and survival of WM cells. Moreover, the CpG island associated c-fos promoter was enriched for Pol II binding as compared to the normal control. Conclusion: The presence of increased Pol II binding and the identification of transcription factor motifs in the promoters of key oncogenes may lead to a better understanding of WM. Our findings suggest that altered transcriptional regulation may play an important role in the pathogenesis of WM. In addition, this study will provide novel insights into the molecular mechanism of WM etiology, and may lead to discovery of novel diagnostic molecular biomarkers and therapeutic targets for WM. Disclosures: Leleu: Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2424-2424
Author(s):  
Yang Liu ◽  
Yong Zhang ◽  
Phong Quang ◽  
Hai T Ngo ◽  
Feda Azab ◽  
...  

Abstract Abstract 2424 Introduction Tumor necrosis factor receptor super families (TNFRSFs) play an important role in activation of lymphocyte and cell apoptosis. However the function of TNFRSFs in multiple myeloma (MM) remains unknown. Loss of function mutation of Fas antigen (TNFRSF6) was identified in MM cells, thus suggesting the possible role of TNFRSFs in regulating MM pathogenesis. We therefore investigated the epigenetic mechanisms that may mediate inactivation of TNFRSFs and its functional role in MM. Methods Dchip software was utilized for analyzing gene expression dataset. DNA was extracted from both primary CD138+ MM plasma cells and MM cell lines using blood & tissue DNA isolation kit (Qiagen, Inc.). Expression of GITR in primary CD138+ plasma cells was detected by Imunohistochemistry (IHC) DNA methylation was analyzed by methylated DNA immunoprecipitation (Medip) assay and bisulfate sequencing. 5'azacytidine was used to demethylate genomic DNA. Gene expression was detected by qRT-PCR and confirmed at the protein level by flow cytometry and western-blot. Over-expression of GITR was obtained in MM1.S cells by using GITR recombinant plasmid and electroporation. Apoptosis was determined using Annexin/PI staining and flow cytometry analysis. Activation of apoptotic signaling was studied by western blot. Cell survival and proliferation were analyzed by MTT and BrdU assay, respectively. Recombinant GITR-lentivirus was obtained from the supernatant of culture medium after 72 hours transfection in 293 cells. GFP positive MM cells were sorted and analyzed by flow cytometry. In vivo effect of GITR on MM tumor growth was determined by injection of GITR over-expressing MM cells in null mice. Mice skull, femur and vertebrae were isolated after 4 weeks injection. Anti-human CD138+ mAb microbead was used to detect MM cells extracted from mice tissue by flow cytometry. Results Gene-expression profiling showed down-regulation of TNFRSFs, including TNFRSF11A, TNFRSF11B, TNFRSF8, TNFRSF10C, TNFRSF9, TNFRSF21, TNFRSF1B, TNFRSF1A and TNFRSF18, compared to normal plasma cells. Moreover, Our IHC results also showed that GITR expression was positive in primary CD138+ plasma cells from 9 normal bone marrow, but negative in 9 MM samples. Importantly, we found that low GITR expression significantly correlated with MM progression. Indeed, GITR gene levels were lower in smoldering and active MM patients compared to MGUS patients and normal donors. Promoter CpG island (CGI) methylation of GITR was indentified in 5 out of 7 MM primary bone marrow (BM)-derived CD138+ cells but not in normal BM-derived plasma cells. Bisulfate sequencing and Medip assay showed that methylation of GITR was significantly associated with GITR expression in 5 MM cell lines, including MM1.S, OPM1, U266, RPMI and INA6. Promoter CGI of GITR was highly methylated leading to complete silencing of GITR in MM1.S cell line. GITR expression was significantly up-regulated in MM cells upon treatment with the 5'azacytidine. MTT and BrdU assay revealed that the proliferation and survival of MM1.S cells was disrupted in the GITR over-expressing MM1.S cells, notably with inhibition of cell proliferation compared to control vector infected cells. Moreover induction of cytotoxicity in GITR over-expressing cells was confirmed by using GFP competition assay. GITR-induced apoptosis was supported by induction of caspase 8 and 3 cleavage. The inhibition of human CD138+ plasma cell growth in the bone marrow of SCID mice using a disseminated MM xenograft model was observed in the experimental group injected with GITR expressing cells compared to the control group after 4 weeks injection. Conclusion Our findings uncovered a novel epigenetic mechanism contributing to MM pathogenesis, showing the role of GITR methylation as a key regulator of MM cell survival. Disclosures: Roccaro: Roche:. Ghobrial:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2520-2520
Author(s):  
Hua Wang ◽  
Veerabhadran Baladandayuthapani ◽  
Zhiqiang Wang ◽  
Jiexin Zhang ◽  
Heather Yan Lin ◽  
...  

Abstract Background Proteasome inhibitors such as bortezomib and carfilzomib are an important part of our current chemotherapeutic armamentarium against multiple myeloma, and have improved outcomes in the up-front, relapsed, and relapsed/refractory settings. Their efficacy has been demonstrated both as single agents, and as part of rationally designed combination regimens, but they are at this time used empirically, since biomarkers to identify patients who would most or least benefit from their application have not been clinically validated. Moreover, the vast majority of patients eventually develop drug-resistant disease which precludes further proteasome inhibitor use through mechanisms that have not been fully elucidated. Methods We compared gene expression profiles (GEPs) of a panel of bortezomib-resistant myeloma cell lines and their vehicle-treated, drug-naïve counterparts to identify significant changes associated with drug resistance. The list of genes whose expression was changed by at least 2-fold was compared with independent RNA interference studies whose goal was to identify genes whose suppression conferred drug resistance. Further validation of genes of interest was pursued in a panel of myeloma cell lines, and in clinically annotated GEP databases. Results Suppression of PTPROt expression was noted in bortezomib-resistant RPMI 8226 and ANBL-6 myeloma cells compared to isogenic, drug-naïve controls, and this was confirmed by quantitative PCR. Overexpression of PTRPOt in RPMI 8226, ANBL-6 and other myeloma cell lines was by itself sufficient to increase the level of apoptotic, sub-G0/G1 cells compared to vector controls, or cells expressing a phosphatase-dead PTPROt mutant. Moreover, PTPROt enhanced the ability of bortezomib to reduce myeloma cell viability, in association with increased activation of caspases 8 and 9. Exogenous over-expression of PTPROt was found to reduce the activation status of Akt, a known anti-apoptotic pathway that reduces bortezomib activity, based on Western blotting with antibodies to phospho-Akt (Ser473), and Akt kinase activity assays. Notably, we also found that exogenous over-expression of PTPROt resulted in increased expression levels of p27Kip1. Interestingly, array CGH data from studies of myeloma cell lines and primary cells showed that the PTPROt gene was located in a genomic region with a high propensity for loss. Analysis of the Total Therapy databases of GEP and patient outcomes available on the Multiple Myeloma Genomics Portal showed that higher than median expression of PTPROt was associated with better long-term survival (P=0.0175). Finally, analysis of the Millennium Pharmaceuticals database of studies of bortezomib in the relapsed and relapsed/refractory setting showed high PTRPOt expression was more frequently seen in patients who achieved complete remission (P<0.01), and was associated with a better median overall survival (P=0.0003). Conclusions Taken together, the data support the possibility that high expression of PTPROt is a good prognostic factor for response to bortezomib-containing therapies, and that this may occur through modulation by PTPROt of the Akt pathway. Moreover, they suggest that strategies to enhance the expression of PTPROt should be investigated to restore bortezomib sensitivity in patients with proteasome inhibitor-resistant disease. Disclosures: Orlowski: Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array Biopharma: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document