scholarly journals Increase of Mitochondrial Activity Contributes to the Bortezomib-Relapsed in Multiple Myeloma, a Novel Therapeutic Opportunity

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4408-4408
Author(s):  
Alejandra Ortiz-Ruiz ◽  
Yanira Ruiz-Heredia ◽  
Mehmet Samur ◽  
Pedro Aguilar-Garrido ◽  
Maria Luz Morales ◽  
...  

Introduction Mitochondria controls crucial biological pathways such as proliferation, apoptosis and cell growth. However, the implication of mitochondrial activity in the pathogenesis of Multiple Myeloma (MM) still remains unknown and only a few studies connect the mitochondrial status and MM. We planned to decipher the role of the mitochondria in the MM mechanism of resistance and the potential exploitation of mitochondrial activity as a functional target in the MM therapy. Methods In order to understand the role of mitochondria in MM and its therapeutic exploitation, firstly we explored factors involved in the mitochondrial function (c-Myc, HNRNPK, TFAM, NRF1 and EF-Tu) from 770 MM patients RNAseq CoMMpass℠ data. Furthermore, we performed different studies in our MM 77 patients set: gene expression validation by RT-PCR (n=40), protein expression (COXII) by IHC (n=28); and mitochondrial activity (COX activity) by histoenzymatic-HE assay (n=11). Additionally, we analyzed the impact of bortezomib in the mitochondria regulator CD38 in 50 samples (n=30 RVD, n=20 RD regimens), at diagnosis and 6/9 months follow-up MM patients. We have tested the effect of tigecycline, a mitochondrial inhibitor, in three regimens: monotherapy, pre-treament of tigecycline (48h) with consecutive bortezomib treatment, and in combination with bortezomib in the MM cell lines JJN3, L363 and NCI-H929. To characterize the molecular mechanisms underlying the cytotoxic effect of tigecycline we analysed mitochondria load and activity (MitoTracker green and red) OXPHOS expression by WB and COX2 activity by HE assay. Finally, we followed an in vivo experiment in NSG mice (n=40) engrafted with the JJN3-GFP cell line (1x106) via tail vein and treated by 4 weeks. Analysis of the in vivo imaging and survival curve were obtained. Results The higher expression of factors involved in the mitochondrial function such as: c-Myc, HNRNPK, NRF1 and EF-Tu predict MM poor outcomes (Fig.1A). Furthermore, mitochondrial representative gene and protein expression and activity were found increased in MM relapse stage patients. We showed overexpression of C-Myc, TFAM and EF-Tu on the MM relapsed group (Fig. 1B). Moreover, IHC reveals overexpression of mitochondrial COXII protein in relapse MM patients (p-value ** < 0.001) (Fig. 1C). By functional assays we have demonstrated that gene/protein overexpression drives to an increase of activity (COX HE) in MM at relapse (p-value ***< 0.0001). (Fig. 1D). Moreover, we observed an increase of CD38 expression in patients with RVD regimen, but not without bortezomib (RD regimen) (Fig. 1E). Together these results suggest elevation of mitochondrial activity plays a role in the mechanism of resistance to treatment and/or progression of MM and the consequent relapse of the patients. In vitro studies with tigecyline and bortezomib showed cytotoxic effects in three MM cell lines (IC50 JJN3 11,91 µM; IC50 L363 10,21 µM and NCI-H929 26,37 µM, p-value *< 0.05). Moreover, bortezomib and tigecyline showed high levels of synergism (CI 0,19) (Fig. 1F). In fact, the "conditioning" treatment with tigecyline revert the resistance to bortezomib. The cells treated with tigecycline reflect diminishing in the mitochondria respiration by MitoTracker assays, decrease of COX activity and respiratory chain complexes, suggesting a reduction of mitochondrial activity (Fig. 1G). These molecular effects are exacerbated by the tigecycline and bortezomib combination. However, bortezomib monotherapy not decrease or inclusive, increase, all the molecular mechanisms of mitochondria studied. Finally, mice groups treated with tigecycline alone or in combination with bortezomib reported a better survival and lower JJN3-GFP infiltration (p-value *< 0.05) (Fig. 1H). Conclusion To sum up, these findings highlight new vulnerabilities in myeloma cells, suggesting a potential therapeutic target in the treatment of the disease. The metabolic activation of myeloma cells with the collaboration of CD38 and/or c-Myc overexpression or his regulators (e.g. HNRNPK) in response to bortezomib treatment lead an increase of mitochondria respiration. These data confirm the important role of mitochondria in the loss of efficacy in inhibitors of proteasome treatment. Thus, mitochondrial respiration emerges as a novel target in bortezomib relapsed MM patients, and, potentially, in multiple c-Myc, HNRNPK and CD38 overexpression neoplasms. Disclosures Munshi: Adaptive: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Abbvie: Consultancy.

2021 ◽  
Author(s):  
Ling Xie ◽  
Xiuying Shi ◽  
Hongming Huang ◽  
Shaoqing Ju ◽  
Xudong Wang

Abstract Despite significant progress in the treatment of myeloma, multiple myeloma (MM) remains an incurable hematological malignancy due to cell adhesion-mediated drug resistance (CAM-DR) phenotype. However, data on the molecular mechanisms underlying the CAM-DR remains scanty. Here, we identified a miRNA-mRNA regulatory network in myeloma cells that are directly adherent to bone marrow stromal cells (BMSCs). Our data showed that the BMSCs up-regulated miR-30a-5p and down-regulated BCL2L11 at both mRNA and protein level in the myeloma cells. Besides, luciferase reporter genes demonstrated direct interaction between miR-30a-5p and BCL2L11 gene. Moreover, the BMSCs activated NF-ΚB signaling pathway in myeloma cells and the NF-κB P65 was shown to directly bind the miR-30a-5p promoter region. Moreover, suppression of the miR-30a-5p or upregulation of the BCL2L11 promoted apoptosis of the myeloma cells independent of the BMSCs, thus suggesting clinical significance of miR-30a-5p inhibitor and PLBCL2L11 plasmid in CAM-DR. Together, our data demonstrated the role of P65-miR-30a-5p-BCL2L11 loop in CAM-DR myeloma cells. These findings give new insights into the role of tumor microenvironment in the treatment of patients with myeloma.


2006 ◽  
Vol 19 (1) ◽  
pp. 205873920601900 ◽  
Author(s):  
C. Greco ◽  
I. D'Agnano ◽  
G. Vitelli ◽  
R. Vona ◽  
M. Marino ◽  
...  

Oncogenes are important regulators of cancer growth and progression and their action may be modulated by proteins of the growth factor family, such as angiogenic cytokines, known to be strongly involved in neoplastic evolution. Reciprocal interactions between oncogenes and angiogenic modulators may represent, in haematological neoplasms, including multiple myeloma (MM), a possible mechanism of drug resistance. The aim of this work is to investigate in vitro and in vivo whether or not c-myc deregulation is involved in the melphalan resistance elicited by myeloma patients and consequently to clarify the role of the angiogenic factor PDGF-BB in modulating c-myc protein expression. Fifty-one MM patients on chemotherapy with melphalan were analyzed for structural alterations of the c-myc gene, c-Myc protein expression, as well as for serum PDGF-BB release. For the in vitro study, two M14-derived established cell clones, differing for the c-Myc protein expression (c-Myc low -expressing or constitutively expressing clones) were used. Our results show that PDGF-BB is able to up-regulate Myc expression and reduce melphalan sensitivity of tumor cell clones, constitutively expressing c-myc gene product. In addition, down-regulation of c-Myc protein induces the expression of PDGF-β receptor molecules and reduces PDGF-BB release. In agreement with these results, in vivo data show that melphalan-resistant MM patients present overexpressed c-Myc protein and higher serum PDGF-β receptor levels compared to minor responding patients.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2567-2567
Author(s):  
Yuen Lam Dora Ng ◽  
Stephan Bohl ◽  
Evelyn Ramberger ◽  
Oliver Popp ◽  
Imke Bauhuf ◽  
...  

Lenalidomide, an immunomodulatory drug (IMiD), is highly active and broadly used for the treatment of multiple myeloma. Despite high initial remission rates, patients frequently relapse and become resistant to the drug. Comprehensive analyses of gene mutations and RNA expression have identified inactivating mutations and RNA downregulation in cereblon (CRBN), the primary target of lenalidomide, in some of the resistant patients. However, the underlying resistance mechanism for the majority of cases remains unknown. Here, we performed quantitative tandem mass tag (TMT)-based proteomic analyses and RNA sequencing in five paired pre-treatment and relapse samples from multiple myeloma patients treated with drug combinations comprising lenalidomide to identify changes in protein expression associated with resistance. Using a stringent cut-off with an adjusted P value < 0.1 and log2 fold change (FC) > 2, we found 7 proteins to be significantly upregulated and 10 proteins to be downregulated in the relapsed versus pre-treatment multiple myeloma samples. Of these 17 deregulated proteins at relapse, only two were also found to be deregulated on the RNA expression level (adjusted P value < 0.1) as assessed by RNA sequencing. In general, correlation between protein expression levels and RNA expression levels were weak (median Pearson correlation coefficient r=0.35). Among the top upregulated proteins in relapse samples was cyclin-dependent kinase 6 (CDK6) with an average log2 FC of 2.1. Protein and RNA levels of CDK6 showed only weak correlation (r=0.4) and CDK6 RNA was not differentially expressed between the relapse and pretreatment samples. To validate the findings of the proteomic analysis, we assessed CDK6 protein levels by western blot in additional patient samples obtained at diagnosis (N=4) and at relapse (N=9). This confirmed a high CDK6 protein expression in 6 of 9 relapse samples while CDK6 could not be detected in the 4 pre-treatment samples. In order to determine the impact of CDK6 on drug sensitivity, we overexpressed CDK6 using either a retro- or lentiviral vector system in multiple myeloma cell lines. In two multiple myeloma cell lines tested, MM.1S and OPM2, CDK6 overexpression reduced sensitivity to lenalidomide and pomalidomide, but not to melphalan, bortezomib, or dexamethasone. To examine whether lowered IMiD-sensitivity can be overcome by CDK6 inhibition, we treated multiple myeloma cell lines either with the CDK6 inhibitor palbociclib, an IMiD-based CDK6-selective proteolysis targeting chimera (PROTAC) or a non-selective CDK6-PROTAC which is also capable of pomalidomide-mediated degradation of IKZF1 and IKZF3 (Brand et al., Cell Chem Biol 2019). Both palbociclib and CDK6-selective PROTAC as single treatments had only mild effects on the majority of multiple myeloma cells, implying that multiple myeloma cells are generally not dependent on CDK6. In contrast, the combination treatment of palbociclib with lenalidomide, or the non-specific CDK6/IKZF1/IKZF3-targeting PROTAC significantly inhibited proliferation, producing synergistic effects on the decrease of myeloma cell viability in 6 multiple myeloma cell lines, including those with a low IMiD sensitivity like RPMI-8226 and L363. This demonstrates that CDK6 inhibition or degradation enhances the cytotoxic effects of IMiDs. In order to investigate a potential mechanism for the synergistic effects of CDK6 inhibition and IMiDs, we analyzed protein levels in treated cells. CDK6 inhibition or degradation had no effect on CRBN protein levels nor on lenalidomide-induced degradation of IKZF1 and IKZF3. In contrast, combined degradation of CDK6, IKZF1, and IKZF3 revealed decreased protein levels of c-MYC, which was not observable in cells treated with palbocicilib, CDK6-selective PROTAC or pomalidomide alone. In conclusion, quantitative proteomics in primary multiple myeloma samples identified new druggable candidates including CDK6 in relapse that were overlooked by RNA expression analyses. Inhibition of CDK6 by palbociclib or a PROTAC sensitizes multiple myeloma cells to IMiDs and results in synergism when used in combination. Disclosures Bohl: Pfizer: Honoraria. Bullinger:Menarini: Honoraria; Novartis: Honoraria; Pfizer: Honoraria; Sanofi: Honoraria; Seattle Genetics: Honoraria; Janssen: Honoraria; Jazz Pharmaceuticals: Honoraria; Amgen: Honoraria; Astellas: Honoraria; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Daiichi Sankyo: Honoraria; Gilead: Honoraria; Hexal: Honoraria; Bayer: Other: Financing of scientific research; Abbvie: Honoraria. Kroenke:Celgene: Consultancy, Honoraria; Takeda: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1801-1801
Author(s):  
Katia Beider ◽  
Amnon Peled ◽  
Lola Weiss ◽  
Merav Leiba ◽  
Avichai Shimoni ◽  
...  

Abstract Abstract 1801 Background: Multiple myeloma (MM) is by large incurable neoplasm of plasma cells, characterized by accumulation in the bone marrow (BM), in close contact to cellular and extracellular matrix (ECM) components. Chemokine receptor CXCR4 is expressed by the majority of patients' MM cells. It promotes myeloma cell migration and homing to the BM compartment, supports the tumor cells survival and protects the myeloma cells from chemotherapy-induced apoptosis. Further investigation is required to define the specific molecular mechanisms regulated by the CXCR4/CXCL12 axis in MM. However, surface CXCR4 is commonly down-regulated in the MM cell lines. In order to overcome this limitation, the aim of the current study was to produce a reliable model for studying the functional role of high CXCR4 in MM by generating MM cell lines with stable expression of surface CXCR4. Results: To over-express CXCR4, we transduced CXCL12-expressing MM cell lines ARH77 and RPMI8226 with lentiviral vector and generated cell lines with high and stable levels of surface CXCR4. Enhanced CXCR4 expression significantly increased the in vitro survival and growth of the 2 MM cell lines in serum-deprivation conditions (p<0.01). Furthermore, elevated expression of surface CXCR4 prominently increased MM cells motility and promoted CXCL12-dependent transwell migration of the transduced MM cell lines. Highly CXCR4-expressing RPMI8226 and ARH77 cells demonstrated 40% migration in response to CXCL12 (50 ng/ml), versus only 0–5% migration of MM cells with low expression of surface CXCR4 (p<0.01). Furthermore, adhesion of MM cells to either ECM proteins or BMSCs localize the malignant PCs within the BM microenvironment, promote growth and survival of MM cells and play a critical role in myeloma bone disease and tumor invasion. In accordance, we observed induced adhesion of the transfected RPMI8226-CXCR4 cells to ECM components fibronectin and laminin and to BM fibroblasts. Moreover, we found that enhanced CXCR4 not only functionally activates, but rather significantly elevates the surface levels of VLA-4 integrin on the RPMI8226 cells. In addition, we found that CXCR4-expressing MM cells were less sensitive to melphalan- and bortezomib-induced apoptosis, when they were co-cultured with BM fibroblasts. Testing the molecular signaling pathways regulated by CXCR4, we found that elevated CXCR4 increased the basic level of pERK1/2 and pAKT in the MM cells, and promoted their prolonged activation in response to CXCL12 stimulation. Finally, the ability to produce colonies in the soft agar semi-solid culture reflects the tumorigenic capacity of cancer cells and cancer stem cells. Differentiated MM cells thus rarely produce colonies in soft agar. Here, we demonstrate that up regulation of CXCR4 promoted ARH77 and RPMI8226 colony formation, significantly increasing colonies number and size. Lastly, we determined the role of CXCR4 in MM tumor development in vivo. CXCR4-expressing ARH77 and RPMI8226 cells were subcutaneously injected into NOD/SCID mice. CXCR4-expressing cells, but not parental cell lines, produced detectable tumors already 10 days after the injection. Rapid tumor growth was further observed in both CXCR4-expressing cell lines. These findings indicate that CXCR4 provided aggressive phenotype and supported MM growth in vivo. Conclusions: Taken together, our findings clearly demonstrate the important pathophysiologic role of CXCR4 in MM development and progression. Furthermore, for the first time, we provide the evidence for CXCR4 oncogenic potential in MM, showing that CXCR4 promotes the clonogenic growth of MM cells. Our model may further serve to elucidate CXCR4-regulated molecular events potentially involved in the pathogenesis of MM, and strongly support targeting CXCR4 as therapeutic tool in MM. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 319 (1) ◽  
pp. H89-H99
Author(s):  
Ruya Liu ◽  
Rajaganapathi Jagannathan ◽  
Lingfei Sun ◽  
Feng Li ◽  
Ping Yang ◽  
...  

Mitochondrial dysfunction constitutes an important aspect of heart failure etiopathogenesis and progression. However, the molecular mechanisms are still largely unknown. Growing lines of evidence indicate that Hippo-Tead pathway plays a role in cellular bioenergetics. This study reveals the novel role of Tead1, the downstream transcriptional effector of Hippo pathway, as a novel regulator of mitochondrial oxidative phosphorylation and in vivo cardiomyocyte energy metabolism, thus providing a potential therapeutic target for modulating mitochondrial function and enhancing cytoprotection of cardiomyocytes.


2021 ◽  
Author(s):  
Weili Yang ◽  
Xiangyu Guo ◽  
Zhuchi Tu ◽  
Xiusheng Chen ◽  
Rui Han ◽  
...  

AbstractIn vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson’s disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Federica Maggi ◽  
Oliviero Marinelli ◽  
Matteo Santoni ◽  
...  

Multiple myeloma (MM) is a haematological B cell malignancy characterised by clonal proliferation of plasma cells and their accumulation in the bone marrow. The aim of the present study is the evaluation of biological effects of Ibrutinib in human MM cell lines alone or in combination with different doses of Bortezomib. In addition, the relationship between the expression of TRPML2 channels and chemosensitivity of different MM cell lines to Ibrutinib administered alone or in combination with Bortezomib has been evaluated. By RT-PCR and Western blot analysis, we found that the Ibrutinib-resistant U266 cells showed lower TRPML2 expression, whereas higher TRPML2 mRNA and protein levels were evidenced in RPMI cells. Moreover, TRPML2 gene silencing in RPMI cells markedly reverted the effects induced by Ibrutinib alone or in combination with Bortezomib suggesting that the sensitivity to Ibrutinib is TRPML2 mediated. In conclusion, this study suggests that the expression of TRPML2 in MM cells increases the sensitivity to Ibrutinib treatment, suggesting for a potential stratification of Ibrutinib sensitivity of MM patients on the basis of the TRPML2 expression. Furthermore, studies in vitro and in vivo should still be necessary to completely address the molecular mechanisms and the potential role of TRPML2 channels in therapy and prognosis of MM patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


Sign in / Sign up

Export Citation Format

Share Document