Expression of the Tigit/CD226/CD155 Receptors/Ligand System in Chronic Lymphocytic Leukemia

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5454-5454 ◽  
Author(s):  
Francesca Arruga ◽  
Giulia Guerra ◽  
Denis Baev ◽  
Catherine Hoofd ◽  
Marta Coscia ◽  
...  

Introduction: T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a surface receptor mainly expressed by CD8+, regulatory T lymphocytes and natural killer (NK) cells, but not by normal B cells. It performs as an inhibitory immune checkpoint, activated through binding of CD155. TIGIT competes with CD226 for CD155 binding, resulting in opposite outcomes: while CD226 enhances cytotoxicity of T lymphocytes and NK cells, TIGIT exerts immunosuppressive effects. Whether TIGIT engagement triggers an alternative signaling cascade, or whether it simply prevents CD226 activation, remains an open point. Tumor-infiltrating T lymphocytes generally express high levels of the molecule, together with the other checkpoint inhibitor PD-1. On this basis, antagonist antibodies targeting TIGIT are under evaluation to restore immunity and treat cancer patients, alone or in various combinations. Chronic lymphocytic leukemia (CLL), the most common adult leukemia, is characterized by a highly heterogeneous clinical outcome. Several molecular markers can help in stratifying patients, including the presence or absence of somatic mutations in B cell receptor, cytogenetic aberrations and single gene mutations. Interestingly, CLL cells express several T cell specific antigens, including CD5. A previous report indicates that, in CLL, TIGIT is expressed by circulating CD4+T cells, increasing during disease progression, while nothing is known about its expression on CLL cells. Aim:This work was undertaken with the aim of studying expression of the TIGIT/CD226/CD155 axis in CLL. Methods:We assembled a cohort of 101 primary CLL samples (40% females, mean age of 61). All patients were either untreated or had not received treatment in the 6 months prior to analysis. PBMC samples were tested for expression of TIGIT, CD155 and CD226 in both T and B subsets. A multiparametric flow cytometry strategy was designed, combining anti-TIGIT, anti-CD155 and anti-CD226 antibodies with a panel of B- (anti-CD19, anti-CD5, anti-CD38, anti-CD49d and anti-CD73) and T-mono/NK specific (anti-CD3, anti-CD8, anti-CD4, anti-CD14 and anti-CD56) markers. The number of TIGIT molecules on leukemic cells was estimated by interpolating values of mean fluorescence intensity (MFI) of each sample with that of PE-Quantibrite beads. Results:CLL cells heterogeneously express surface TIGIT, ranging from 0.2 to 81% (mean value 20%, median 10%, SEM ±2.145). The estimated number of molecules per cell was in the range of 32.5-3571 (mean 1140, median 841.1, SEM ±83.6). Expression of TIGIT was independent of gender or age at diagnosis and there was no correlation between TIGIT levels and lymphocyte counts in peripheral blood. In contrast, in this cohort of untreated patients, we observed a significantly lower TIGIT expression in samples with advanced disease (RAI III-IV) compared to early stages (RAI 0-I). Accordingly, low TIGIT associated with unmutated (UM) IGHVgenes and with an unfavorable FISH profile (trisomy 12, deletion 17 and deletion 11 vs. deletion 13 or normal karyotype). Lower, although not significant, TIGIT levels were observed in NOTCH1-mutated CLL samples (n=11) compared to counterpart (n=89). Looking at the T cell population, we observed overall higher TIGIT levels in the CD8+vs CD4+subset (mean %TIGIT+cells in CD8+56.7±1.8 vs 27.2±1.3 in CD4+). In line with reported observations, we found a modest but significant increase of TIGIT+T cells in advanced stage CLLs, at variance with what observed on the leukemic B cell side. Accordingly, we observed higher percentages of TIGIT+/CD4+cells in CLL samples carrying UM IGHVgenes. CD226 and CD155 were more homogeneously expressed in all subsets without significant differences, both in CLL and T cell components. Conclusions: This work shows that CLL cells express the immunomodulatory molecule TIGIT, particularly in the early stages of the disease in untreated patients. While further studies are needed to characterize its functional implications as well as treatment effect on TIGIT expression, it is tempting to speculate that TIGIT expression by CLL cells may serve to trigger an immunosuppressive behavior in these cells, which is no longer needed when the disease becomes advanced. This observation represents a starting point for future studies investigating the role of TIGIT in CLL and hints to a possible use of anti-TIGIT antibodies to target different cellular components of the disease. Disclosures Hoofd: iTeos Therapeutics: Employment. Coscia:Abbvie: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm Therapeutics: Research Funding. Gaidano:Sunesys: Consultancy, Honoraria; AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astra-Zeneca: Consultancy, Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Furman:Acerta Pharma: Consultancy; Beigene: Consultancy; Incyte: Consultancy; Janssen: Consultancy; Oncotracker: Consultancy; Pharmacyclics: Consultancy; Sunesis: Consultancy; TG Therapeutics: Consultancy; Verastem: Consultancy; Genentech: Consultancy; Abbvie: Consultancy; AstraZeneca: Consultancy. Deaglio:VelosBio Inc.: Research Funding; Verastem Inc: Research Funding; iTeos Therapeutics: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5457-5457
Author(s):  
Anna Puiggros ◽  
Gonzalo Blanco ◽  
Aura Muntasell ◽  
María Rodríguez-Rivera ◽  
Lara Nonell ◽  
...  

Background. Dysregulated NK-cell responses have been reported in chronic lymphocytic leukemia (CLL) patients, but little is known about the NK cell compartment in CLL-like monoclonal B cell lymphocytosis (MBL). Human cytomegalovirus (HCMV) infection induces an adaptive reconfiguration of the NK cell compartment characterized by the differentiation and persistent expansion of a subset displaying the CD94/NKG2C NK receptor (NKR). Moreover, a deletion of the NKG2C (KLRC2) gene has been reported to modulate the magnitude of the NK cell repertoire redistribution. Little is known about the expression of NKG2C in CLL and MBL patients. Aims. To analyse the distribution of NKR, with special attention to NKG2C, in MBL and CLL patients, assessing the relation of the NK cell immunophenotype with clinical features. Methods. The study cohort included 61 patients, 24 were diagnosed with clinical MBL and 37 were treatment-naïve CLL (32/37 Binet A). The expression of NKG2C, NKG2A, ILT2 (LIR1, LILRB1), CD161, CD57 and KIRs (identified with a cocktail of monoclonal antibodies) was assessed by flow cytometry in peripheral blood NK cells. The NKG2C (KLRC2) genotype was analysed in a larger representative MBL/CLL cohort (n=135). Results. The proportions of NK cells were reduced in CLL patients compared to MBL (median 5.5% vs. 10%; P=0.003), whereas their absolute numbers were increased (median 0.85x109/L vs. 0.57x109/L; P=0.002). No significant differences between MBL and CLL were detected regarding the distribution of the different NKR: NKG2C (median: 2.7 vs. 5.9%, respectively), NKG2A (31.4 vs. 30.8%), ILT2 (18.0 vs.15.8%), KIRs (54.4 vs. 52.7%), CD161 (16.1 vs. 16.4%) and CD57 (40.4 vs. 38.9%). Though a reduced NKG2C expression was noticed in both entities, it was specially marked in patients with a greater (>30x109 cells/L) lymphocytosis (1.4 vs. 7.7%, P=0.016). The proportions of NKG2C+ NK cells in HCMV+ patients (85%, 47/55) as compared to HCMV- individuals were not significantly different (6.3% vs. 2.9%, respectively). HCMV+ patients showed a significantly lower NKG2C expression when compared with two independent age-matched cohorts of HCMV+ non-CLL/-MBL individuals, including 43 non-metastatic breast cancer patients (4.2% vs. 15.3% , P<0.001); and 30 renal transplantation donors (4.2% vs.12.4% in P=0.028). The frequencies of NKG2C+/+ (56%), NKG2C+/del (37%) and NKG2Cdel/del (7%) genotypes were comparable to those previously defined in healthy blood donors. Moreover, cases with very low (<2%) or undetectable NKG2C expression were found in NKG2Cdel/del patients (100%, 6/6), but also among NKG2C+/- (45%, 10/22) and NKG2C+/+ (12%, 3/26) genotypes. Conclusions. 1. MBL and CLL exhibited low proportions of NKG2C+ NK cells. This immunophenotype was particularly evident in CLL patients with increased lymphocytosis and could not be explained by differences in HCMV seropositivity, NKG2C zygosity nor age. 2. Additional studies are required to define the mechanism(s) and putative implications of the reduced NKG2C expression in these lymphoproliferative disorders. Acknowledgements. PI11/1621; PI15/437; 2017/SGR437; Fundació La Caixa; Fundación Española de Hematología y Hemoterapia (FEHH). Disclosures Gimeno: JANSSEN: Consultancy, Speakers Bureau; Abbvie: Speakers Bureau. Abrisqueta:Celgene: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria, Other: Travel, Accommodations, expenses, Speakers Bureau; Janssen: Consultancy, Honoraria, Other: Travel, Accommodations, expenses, Speakers Bureau; Roche: Consultancy, Honoraria, Other: Travel, Accommodations, expenses, Speakers Bureau. Bosch:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Kyte: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Acerta: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; F. Hoffmann-La Roche Ltd/Genentech, Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Honoraria, Research Funding; AstraZeneca: Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Shanye Yin ◽  
Gregory Lazarian ◽  
Elisa Ten Hacken ◽  
Tomasz Sewastianik ◽  
Satyen Gohil ◽  
...  

A hotspot mutation within the DNA-binding domain of IKZF3 (IKZF3-L162R) has been identified as a putative driver in chronic lymphocytic leukemia (CLL); however, its functional effects are unknown. We recently confirmed its role as a CLL driver in a B cell-restricted conditional knock-in model. IKZF3 mutation altered mature B cell development and signaling capacity, and induced CLL-like disease in elderly mice (~40% penetrance). Moreover, we found IKZF3-L162R acts as a gain-of-function mutation, altering DNA binding specificity and target selection of IKZF3, and resulting in overexpression of multiple B-cell receptor (BCR) genes. Consistent with the murine data, RNA-sequencing analysis showed that human CLL cells with mut-IKZF3 [n=4] have an enhanced signature of BCR-signaling gene expression compared to WT-IKZF3 [n=6, all IGHV unmutated] (p&lt;0.001), and also exhibited general upregulation of key BCR-signaling regulators. These results confirm the role of IKZF3 as a master regulator of BCR-signaling gene expression, with the mutation contributing to overexpression of these genes. While mutation in IKZF3 has a clear functional impact on a cardinal CLL-associated pathway, such as BCR signaling, we note that this driver occurs only at low frequency in patients (~3%). Because somatic mutation represents but one mechanism by which a driver can alter a cellular pathway, we examined whether aberrant expression of IKZF3 could also yield differences in BCR-signaling gene expression. We have observed expression of the IKZF3 gene to be variably dysregulated amongst CLL patients through re-analysis of transcriptomic data from two independent cohorts of human CLL (DFCI, Landau et al., 2014; ICGC, Ferreira et al., 2014). We thus examined IKZF3 expression and BCR-signaling gene expression, or the 'BCR score' (calculated as the mean expression of 75 BCR signaling-associate genes) in those cohorts (DFCI cohort, n=107; ICGC cohort, n=274). Strikingly, CLL cells with higher IKZF3 expression (defined as greater than median expression) had higher BCR scores than those with lower IKZF3 expression (&lt;median) (p=0.0015 and p&lt;0.0001, respectively). These findings were consistent with the notion that IKZF3 may act as a broad regulator of BCR signaling genes, and that IKZF3 overexpression, like IKZF3 mutation, may provide fitness advantage. In support of this notion, our re-analysis of a gene expression dataset of 107 CLL samples (Herold Leukemia 2011) revealed that higher IKZF3 expression associated with poorer prognosis and worse overall survival (P=0.035). We previously reported that CLL cells with IKZF3 mutation appeared to increase in cancer cell fraction (CCF) with resistance to fludarabine-based chemotherapy (Landau Nature 2015). Instances of increase in mut-IKZF3 CCF upon treatment with the BCR-signaling inhibitor ibrutinib have been reported (Ahn ASH 2019). These studies together suggest an association of IKZF3 mutation with increased cellular survival following either chemotherapy or targeted treatment. To examine whether higher expression of IKZF3 was associated with altered sensitivity to ibrutinib, we performed scRNA-seq analysis (10x Genomics) of two previously treatment-naïve patients undergoing ibrutinib therapy (paired samples, baseline vs. Day 220). We analyzed an average of 11,080 cells per patient (2000 genes/cell). Of note, following ibrutinib treatment, remaining CLL cells expressed higher levels of IKZF3 transcript compared to pretreatment baseline (both p&lt;0.0001), whereas no such change was observed in matched T cells (n ranging between 62 to 652 per experimental group, p&gt;0.05), suggesting that cells with high expression of IKZF3 were selected by ibrutinib treatment. Moreover, we showed that ibrutinib treatment resulted in consistent upregulation of BCR-signaling genes (e.g., CD79B, LYN, GRB2, FOS, RAC1, PRKCB and NFKBIA) (n ranging between 362 to 1374 per experimental group, all p&lt;0.0001), which were likewise activated by mutant IKZF3. Altogether, these data imply that IKZF3 mutation or overexpression may influence upregulation of BCR-signaling genes and enhance cellular fitness even during treatment with BCR-signaling inhibitors. We highlight our observation that IKZF3 mutation appears to be phenocopied by elevated IKZF3 expression, and suggest that alterations in mRNA or protein level that mimic genetic mutations could be widespread in human cancers. Disclosures Kipps: Pharmacyclics/ AbbVie, Breast Cancer Research Foundation, MD Anderson Cancer Center, Oncternal Therapeutics, Inc., Specialized Center of Research (SCOR) - The Leukemia and Lymphoma Society (LLS), California Institute for Regenerative Medicine (CIRM): Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech/Roche: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; VelosBio: Research Funding; Oncternal Therapeutics, Inc.: Other: Cirmtuzumab was developed by Thomas J. Kipps in the Thomas J. Kipps laboratory and licensed by the University of California to Oncternal Therapeutics, Inc., which provided stock options and research funding to the Thomas J. Kipps laboratory, Research Funding; Ascerta/AstraZeneca, Celgene, Genentech/F. Hoffmann-La Roche, Gilead, Janssen, Loxo Oncology, Octernal Therapeutics, Pharmacyclics/AbbVie, TG Therapeutics, VelosBio, and Verastem: Membership on an entity's Board of Directors or advisory committees. Wu:BionTech: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 197-197 ◽  
Author(s):  
Elise A. Chong ◽  
Bruce L Levine ◽  
Stephan A. Grupp ◽  
Megan Davis ◽  
Don L. Siegel ◽  
...  

Abstract Introduction: CTL019 is an anti-CD19 genetically modified autologous T-cell immunotherapy developed at the University of Pennsylvania (Penn) that was recently approved for treatment of relapsed/refractory pediatric and young adult B-cell acute lymphoblastic leukemia (ALL) and adult relapsed/refractory diffuse large B-cell lymphoma (DLBCL) as tisagenlecleucel (Novartis). For ALL, the FDA-approved dose is 0.2 to 5.0 x 106 CAR-positive viable T cells per kg of body weight for patients ≤ 50 kg or 0.1 to 2.5 x 108 CAR-positive viable T cells for pts > 50 kg; for DLBCL, the FDA-approved dose is 0.6 to 6.0 x 108 CAR-positive viable T cells. For CTL019 manufactured at Penn, the dose is determined by flow cytometric staining of CAR-positive T cells, which are cryopreserved in product bags along with replicate aliquots of the final formulation in vials, simultaneously cryopreserved for release testing. The CTL019 product release criteria include a post thaw viability assessment using a vial of replicate aliquot of the final formulation for Trypan blue exclusion or dual fluorescence automated cell counting (Luna-FL, Logos Biosystems). There are no published data examining the relationship between CTL019 viability release testing and clinical outcomes. Methods: We analyzed CTL019 post thaw viability release testing in patients treated on one prospective single institution clinical trial of CD19-expressing non-Hodgkin lymphomas (NHL) (NCT02030834) and two single-institution prospective pediatric ALL clinical trials (NCT01626495 and NCT02906371). Patients were assessed for response to therapy and CAR T-cell expansion. Receiver operating characteristic (ROC) curves were constructed for prediction of complete responses based on sensitivity and specificity of CAR T-cell product post thaw viability release test results. Results: 39 pts with relapsed/refractory NHL (24 diffuse large B-cell lymphoma and 15 follicular lymphoma) were enrolled and received the protocol-specified dose of CTL019. Best response rate was 56% (22/39) complete responses (CR). 123 pts with relapsed/refractory pediatric ALL were enrolled and received the protocol-specified dose of CTL019. Best response rate was 96% (118/123) CR/complete remission with incomplete blood count recovery (CRi). For patients with NHL infused with CTL019, product % viability had a median of 89.8% viability (range: 73.7%-97.7%); product % viability quintiles were as follows: 20%-tile=81.7%, 40%-tile=88.3%, 60%-tile=91.1%, 80%-tile=94.8%). ROC area for NHL patients was 0.47 (95%CI: 0.28-0.65). For patients with ALL infused with CTL019, product % viability had a median of 89.3% viability (range: 56.0%-98.4%); product % viability quintiles were as follows: 20%-tile=82.3%, 40%-tile=87.5%, 60%-tile=90.9%, 80%-tile=94.4%). ROC area for ALL patients was 0.52 (95%CI: 0.32-0.71). For patients with NHL, progression-free survival (PFS) was not significantly influenced by product viability release test results by Cox proportional hazards (HR: 1.0, 95%CI: 0.94-1.09, p=0.7). For patients with NHL, peak CAR T-cell expansion was not significantly correlated with product viability release test results (r2=0.12, p=0.5). Data collection for Cox analysis to investigate the effect of release test viability on PFS and correlation of release test viability with peak CTL019 expansion in ALL is ongoing and will be presented. Conclusions: Our data suggest that, within the ranges obtained in these trials, there is no clear dose-response relationship between CTL019 product viability release test results and clinical response rates in pediatric and young adult ALL or DLBCL. Figure Figure. Disclosures Chong: Novartis: Consultancy. Levine:Cure Genetics: Consultancy; Brammer Bio: Consultancy; CRC Oncology: Consultancy; Incysus: Consultancy; Novartis: Consultancy, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership, Research Funding. Grupp:Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Adaptimmune: Consultancy; University of Pennsylvania: Patents & Royalties; Jazz Pharmaceuticals: Consultancy. Davis:Novartis Institutes for Biomedical Research, Inc.: Patents & Royalties. Siegel:Novartis: Research Funding. Maude:Novartis Pharmaceuticals Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees. Frey:Novartis: Consultancy; Servier Consultancy: Consultancy. Porter:Genentech: Other: Spouse employment; Novartis: Other: Advisory board, Patents & Royalties, Research Funding; Kite Pharma: Other: Advisory board. June:Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Celldex: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding. Schuster:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Consultancy, Honoraria; Merck: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Nordic Nanovector: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genentech: Honoraria, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1680-1680 ◽  
Author(s):  
Alexandre V. Hirayama ◽  
Jordan Gauthier ◽  
Kevin A. Hay ◽  
Alyssa Sheih ◽  
Sindhu Cherian ◽  
...  

Abstract Introduction Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have shown high overall response rates (ORR) in otherwise treatment-refractory CD19+ B-cell non-Hodgkin lymphoma (NHL); however, not all patients (pts) achieve complete remission (CR). PD-L1 expression on tumor cells and/or other tissues could impair the function of PD-1+ CAR-T cells and the efficacy of CD19 CAR-T cell immunotherapy. PD-1 pathway blockade may enhance the function and antitumor activity of CD19 CAR-T cells. Here we report preliminary data from a phase 1 dose-finding study (NCT02706405) of the safety and feasibility of combination therapy with JCAR014 CD19-specific 4-1BB-costimulated CAR-T cells and escalating doses of durvalumab, an anti-PD-L1 monoclonal antibody, in adults with relapsed/refractory aggressive B-cell NHL. Methods Pts are treated in one of two groups. All pts receive lymphodepletion chemotherapy with cyclophosphamide and fludarabine followed by infusion of JCAR014. Pts in group 1 receive the first infusion of durvalumab (225 mg, 750 mg, or 1500 mg) 21-28 days after treatment with JCAR014. Pts in group 2 receive the first dose of durvalumab (7.5 mg, 22.5 mg, 75 mg, 225 mg, 750 mg, or 1500 mg) 1 day prior to JCAR014 infusion. Up to 10 doses of durvalumab are administered after JCAR014 at the highest identified safe dose at 4-week intervals until toxicity or disease progression. We evaluated the safety, tolerability, and efficacy of the combination therapy and the pharmacokinetic profile of JCAR014 after infusion. Adverse events were graded using the Common Terminology Criteria for Adverse Events (CTCAE) v4.03, with the exception of cytokine release syndrome (CRS), which was graded according to consensus criteria (Lee, Blood 2014). Positron emission tomography/computed tomography was performed approximately 1, 2, 4, 6, 9, and 12 months after JCAR014 infusion and the best anti-tumor response was reported according to the Lugano criteria (Cheson, JCO 2014). Results Patient characteristics are shown in Table 1. Fifteen pts have been treated, including 6 in group 1 who received post-JCAR014 durvalumab doses of 225 mg (n = 3) and 750 mg (n = 3), and 9 in group 2 who received pre-JCAR014 durvalumab doses of 7.5 mg (n = 1), 22.5 mg (n = 1), 75 mg (n = 3), or 225 mg (n = 4). Durvalumab dose escalation is ongoing. JCAR014 manufacturing was successful for all pts. All pts received 2 x 106 JCAR014 CAR-T cells/kg, except the first 2 pts treated on the study who received 7 x 105 CAR-T cells/kg. Of the 13 pts who received JCAR014 at 2 x 106 CAR-T cells/kg, 5 pts (38%) developed CRS (2 grade 1, 2 grade 2, and 1 grade 4) and one (8%) developed grade 1 neurotoxicity. CRS and/or neurotoxicity occurred within 4 weeks of JCAR014 infusion, and were not observed when durvalumab was administered after JCAR014. With the exception of B cell aplasia, no autoimmune adverse events were observed. Twelve of 13 pts who received 2 x 106 CAR-T cells/kg were evaluable for response. One patient, who had grade 4 CRS and biopsy evidence of extensive CAR-T cell infiltration into persistent sites of disease, elected to receive hospice care and died on day 32 after JCAR014 infusion without full response evaluation. The overall response rate was 50% (5 CR, 42%; 1 PR, 8%). Of the 5 pts who achieved CR, 3 were in CR at the first restaging after JCAR014 and 2 subsequently converted to CR after the first post-JCAR014 durvalumab infusion. Only one patient who achieved CR has relapsed (median follow-up 10.6 months, range 3.7-11.8). Continued stable disease or evidence of regression was seen in 4 of 6 (67%) initially non-responding pts who continued durvalumab therapy (median 5 doses, range 1-6). CAR-T cell counts expanded in the peripheral blood within 14 days of JCAR014 infusion in all pts. Higher peak and day 28 CAR-T cell copy numbers in blood by qPCR were observed in responding pts. CAR-T cells were detected for a median of 5.1 months (range, 1.7 to 9.1 months) in responding pts. In vivo re-accumulation of CAR-T cells after the first post-JCAR014 durvalumab dose was observed in the blood of two patients in group 2. Conclusion The combination of JCAR014 with durvalumab for the treatment of adult pts with aggressive B-cell NHL appears safe; however, dose escalation is ongoing. Complete responses were observed both at initial restaging after JCAR014 infusion, and also subsequently in pts continuing durvalumab therapy after initially failing to achieve CR. Disclosures Hirayama: DAVA Oncology: Honoraria. Hay:DAVA Oncology: Honoraria. Till:Mustang Bio: Patents & Royalties, Research Funding. Kiem:Homology Medicine: Consultancy; Magenta: Consultancy; Rocket Pharmaceuticals: Consultancy. Shadman:Verastem: Consultancy; Beigene: Research Funding; Mustang Biopharma: Research Funding; Gilead Sciences: Research Funding; TG Therapeutics: Research Funding; AbbVie: Consultancy; Genentech: Research Funding; Pharmacyclics: Research Funding; Celgene: Research Funding; Qilu Puget Sound Biotherapeutics: Consultancy; Genentech: Consultancy; AstraZeneca: Consultancy; Acerta Pharma: Research Funding. Cassaday:Jazz Pharmaceuticals: Consultancy; Amgen: Consultancy, Research Funding; Merck: Research Funding; Seattle Genetics: Other: Spouse Employment, Research Funding; Pfizer: Consultancy, Research Funding; Adaptive Biotechnologies: Consultancy; Kite Pharma: Research Funding; Incyte: Research Funding. Acharya:Juno Therapeutics: Research Funding; Teva: Honoraria. Riddell:Cell Medica: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; NOHLA: Consultancy. Maloney:Roche/Genentech: Honoraria; Juno Therapeutics: Research Funding; Janssen Scientific Affairs: Honoraria; GlaxoSmithKline: Research Funding; Seattle Genetics: Honoraria. Turtle:Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy; Bluebird Bio: Consultancy; Gilead: Consultancy; Nektar Therapeutics: Consultancy, Research Funding; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics / Celgene: Consultancy, Patents & Royalties, Research Funding; Caribou Biosciences: Consultancy; Aptevo: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3488-3488
Author(s):  
Jinsheng Weng ◽  
Kelsey Moriarty ◽  
Yong Pan ◽  
Man Chun John MA ◽  
Rohit Mathur ◽  
...  

Abstract Chimeric antigen receptor (CAR)-modified T-cell therapy targeting CD19 induces high response rates in patients with relapsed or refractory B-cell lymphomas. However, about 60% of patients experience primary or secondary resistance after CD19-targeted CAR T-cell therapy and a major of cause of failure appears to be due to loss of CD19 expression on the tumor. Therefore, novel targets for adoptive T-cell therapeutic approaches are needed to further improve clinical outcome in these patients. T-cell leukemia/lymphoma antigen1 (TCL1) is an oncoprotein that is overexpressed in multiple B-cell malignancies including follicular lymphoma (FL), mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), and chronic lymphocytic leukemia (CLL). Importantly, it has restricted expression in only a subset of B cells among normal tissues. We previously identified a TCL1-derived HLA-A2-binding epitope (TCL170-79 SLLPIMWQLY) that can be used to generate TCL1-specific CD8+ T cells from peripheral blood mononuclear cells of both HLA-A2+ normal donors and lymphoma patients. More importantly, we showed that the TCL1-specific CD8+ T cells lysed autologous primary lymphoma cells but not normal B cells (Weng et al. Blood 2012). To translate the above discovery into clinic, we cloned the T-cell receptor (TCR) alpha and beta chains from a TCL1-specific CD8+ T-cell clone and showed that this TCL1-TCR could be transduced into polyclonal donor T cells using a lentiviral system with a transduction efficiency of >40% as determined by TCL170-79 tetramer positive T cells. Furthermore, we demonstrated that the TCL1-TCR-transduced T cells recognized T2 cells pulsed with TCL170-79 peptide producing IFN- γ >8 ng/ml and IL-2 >350 ng/ml but were not reactive to control HIV-Gag peptide (IFN- γ <0.1 ng/ml and IL-2 <0.2 ng/ml). The TCL1-TCR-transduced T cells recognized TCL170-79 peptide pulsed onto T2 cells at a concentration of 1-10 nM (IL-2 >10 ng/ml) suggesting it has moderate to high avidity. Importantly, TCL1-TCR-transduced T cells lysed HLA-A2+ (up to 43% lysis of Mino and 25% lysis of Jeko-1 at 40:1 Effector:Target ratio) but not HLA-A2- lymphoma cell lines (5.5% lysis of HLA A2- Raji and 2.3% lysis of Daudi at 40:1 Effector:Target ratio). TCL1-TCR-transduced T cells were also cytotoxic to HLA-A2+ primary lymphoma tumor cells (up to 48% lysis of CLL, 43% lysis of FL, 41% lysis of DLBCL, 46% lysis of splenic marginal zone lymphoma, and 11% lysis of MCL at 40:1 Effector:Target ratio) but not normal B cells derived from the same patients. Lastly, TCL1-TCR transduced T cells showed high efficacy in in vivo models. Adoptive transfer of the TCL1-TCR-tranduced T cells significantly reduced lymphoma tumor growth and extended survival in Mino mantle cell lymphoma cell line xenograft model (48% survival in TCL1-TCR-T treated group vs. 12.5% survival in control group at 10 weeks n=7-8 mice/group; P=0.02). Collectively, our data suggest that the high expression in B-cell tumors, restricted expression in normal tissues, and presence of an immunogenic CD8 T-cell epitope, make TCL1 a target for T cell-based therapeutic approaches in multiple B-cell malignancies. Our results also demonstrate that the TCL1-specific TCR-transduced T cells may serve as a novel adoptive immunotherapy approach for the treatment of patients with various B-cell malignancies (including FL, MCL, DLBCL, CLL). Acknowledgments: This study is supported by MD Anderson Moon Shot Program and CPRIT and the National Natural Science Foundation of China Grant (No. 81570189) Disclosures Neelapu: Kite/Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Research Funding; Karus: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1318-1318
Author(s):  
Dipabarna Bhattacharya ◽  
Jani Huuhtanen ◽  
Matti Kankainen ◽  
Tapio Lönnberg ◽  
Cassandra M Kerr ◽  
...  

Abstract Background: T-cell large granular lymphocytic leukemia (T-LGLL), a rare lymphoproliferative disorder of mature T cells, is characterized by the accumulation of activated effector T cells leading to a clonally restricted T-cell receptor (TCR) repertoire. Chronic antigen stimulation together with activating somatic STAT3 mutations have been proposed to lead to clonal expansion of leukemic cells. However, no holistic research has been done to show how leukemic and non-leukemic cells liaise to sustain abnormal immune reactivity in T-LGLL. Methods: We investigated the transcriptome and TCR repertoire in T-LGLL using: 1) single-cell RNA and TCR (scRNA+TCRαβ) sequencing from CD45+ sorted blood cells (T-LGLL n=11, healthy n=6), 2) TCRβ sequencing from blood mononuclear cells (T-LGLL n=48, healthy n=823), 3) bulk RNA sequencing (T-LGLL n=15, healthy n=5), 4) plasma cytokine profiling (T-LGLL n=9, healthy n=9), and 5) flow cytometry validations (T-LGLL n=6, healthy n=6) (Figure) Results: ScRNA+TCRαβ-seq data revealed that in healthy controls, hyperexpanded CD8+ T-cell clones (at least 10 cells with identical TCRs) preferentially had an effector memory phenotype, whereas in T-LGLL, the hyperexpanded clonotypes represented a more cytotoxic (increased expression of GZMB, PRF1, KLRB1) and exhausted (LAG3 and TIGIT) phenotype. Using flow cytometry, we confirmed that upon anti-CD3/CD28/CD49 antibody stimulation, T-LGLL clones (CD8+CD57+) expressed higher levels of cytotoxic proteins (GZMA /GZMB , PRF1) but were deficient in degranulation responses and cytokine secretion as measured by expression of CD107a/b and TNFα/IFNγ, respectively. Focused re-clustering of the extracted T-LGLL clones from the scRNA+TCRαβ-seq data revealed considerable heterogeneity among the T-LGLL clones and partly separated the mutated (mt) STAT3 and wild type (wt) STAT3 clones. STAT3wt clones upregulated T-cell activation and TCR signaling pathways, with a higher cytotoxicity and lower exhaustion score as compared to STAT3mt clones. This was validated with bulk RNA-seq data. To understand the antigen specificities of the T-LGLL clones, we combined previously profiled T-LGLL TCRs with our data to form the largest described dataset of 200 T-LGLL clones from 170 patients. Notably, T-LGLL clones were found to be private to each patient. Furthermore, the analysis by GLIPH2 algorithm grouping TCRs did not reveal detectable structural similarities, suggesting the absence of a unifying antigen in T-LGLL. However, in 67% of T-LGLL patients, the TCRs of leukemic clones shared amino acid level similarities with the rest of the non-leukemic TCR repertoire suggesting that the clonal and non-clonal immune repertoires are connected via common target antigens. To analyze the non-clonal immune repertoire in T-LGLL in detail, we compared our data to other published scRNAseq data from solid tumors (n=4) and hematologic cancers (n=8) and healthy controls (n=6). The analysis revealed that in T-LGLL also the non-leukemic CD8+ and CD4+ T cells were more mature, cytotoxic, and clonally restricted. When compared to healthy controls and other cancer patients, in non-leukemic T-LGLL the most upregulated pathway was IFNγ response. Finally, most of the upregulated cytokines in T-LGLL (e.g., CCL2/3/7, CXCL10/11, IL15RA) were secreted predominantly by monocytes and dendritic cells, which also had upregulated HLA class II expression and enhanced scavenging potential in T-LGLL patients. Ligand-receptor analysis with CellPhoneDB revealed that the number of predicted cell-cell interactions was significantly higher in T-LGLL as compared to reactive T-cell clones in healthy controls. The most co-stimulatory interactions (e.g., CD2-CD58, TNFSF14-TNFRSF14) occurred between the IFNγ secreting T-LGLL clones and the pro-inflammatory cytokine secreting monocytes. Conclusions: Our study shows a synergistic interplay between the leukemic and non-leukemic immune cell repertoires in T-LGLL, where an aberrant antigen-driven immune response including hyperexpanded CD8+ T-LGLL cells, non-leukemic CD8+ cells, CD4+ cells, and monocytes contribute to the persistence of the T-LGLL clones. Our results provide a rationale to prioritize therapies that target the entire immune repertoire and not only the T-LGLL clones in patients with T-LGLL. Figure 1 Figure 1. Disclosures Loughran: Kymera Therapeutics: Membership on an entity's Board of Directors or advisory committees; Bioniz Therapeutics: Membership on an entity's Board of Directors or advisory committees; Keystone Nano: Membership on an entity's Board of Directors or advisory committees; Dren Bio: Membership on an entity's Board of Directors or advisory committees. Maciejewski: Alexion: Consultancy; Novartis: Consultancy; Regeneron: Consultancy; Bristol Myers Squibb/Celgene: Consultancy. Mustjoki: Novartis: Research Funding; BMS: Research Funding; Janpix: Research Funding; Pfizer: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 23-24
Author(s):  
Yaya Chu ◽  
Susiyan Jiang ◽  
Jian Jiang ◽  
Meijuan Tian ◽  
Dean Anthony Lee ◽  
...  

Background: The CD20 molecule is universally expressed by normal B cells in all stages of development, from the pre-B cell up to the mature plasma cell as well as by most B cell malignancies including CLL, FL and BL (Chu/Cairo, BJH, 2016). Rituximab, a monoclonal chimeric anti-CD20 antibody, has been widely used as a chemoimmunotherapeutic regimen in the frontline therapy for patients with CD20+ BL and diffuse large B-cell lymphoma. The addition of rituximab to the CHOP backbone or to standard FAB/LMB therapy has greatly improved outcomes without significantly increasing toxicity in patients with B-NHL (Goldman/Cairo, Leukemia, 2013, Coiffier et al, NEJM, 2002). However, patients who relapse have a poor clinical response to rituximab retreatment. Obinutuzumab is a humanized, type II anti-CD20 monoclonal antibody glycoengineered to enhance Fc receptor affinity. It has lower complement-dependent cytotoxicity than rituximab but greater ADCC, phagocytosis and direct B-cell killing effects (Chu/Cairo, BJH, 2018). Obinutuzumab has been successfully utilized in front-line therapy in FLL (Marcus, et al, NEJM, 2017) and CLL (Goede, et al, NEJM, 2014; Moreno, et al, Lancet, 2019). Our group has successfully expanded functional and active peripheral blood NK cells PBNKwith irradiated feeder cells to target B-NHL (Chu/Cairo, et al, Can Imm Res 2015). We previously demonstrated that obinutuzumab has significantly enhanced expanded PBNK mediated cytotoxicity against BL and pre-B-ALL cell lines compared to rituximab (Tiwari/Cairo et al, BJH, 2015). NKTR-255 is an IL-15 receptor agonist designed to activate the IL-15 pathway and expand natural killer (NK) cells and promote the survival and expansion of memory CD8+ T cells without inducing suppressive regulatory T cells (Kuo/Zalevsky, Cancer Res. 2017). NKTR-255 stimulates proliferation and survival of NK, CD8+ T cells, and enhances long-term immunological memory which may lead to sustained anti-tumor immune response. Objective: To investigate the effects of NKTR-255 on the ADCC of expanded NK cells with anti-CD20 type I and type II antibodies against CLL, FL and rituximab-resistant BL. Methods: NK cells were expanded with lethally irradiated K562-mbIL21-41BBL cells as previously described (Denman/Dean Lee, PLoS One, 2012). Expanded PBNK cells were isolated using Miltenyi NK cell isolation kit. NKTR-255 was generously provided by Nektar Therapeutics. In vitro cytotoxicity was examined using luminescence reporter-based assays. IFNg, granzyme B and perforin levels were examined by standard enzyme-linked immunosorbent assays as we previously described (Chu/Cairo, ASH, 2018). MEC-1 (CLL), PGA-1 (CLL), DOHH2 (FL) and Rituximab-resistant BL cells Raji-2R and Raji-4RH were used as target cells. Results: NKTR-255 significantly enhanced the in vitro cytotoxicity of expanded NK cells when combined with rituximab against MEC-1 (E:T=3:1, p&lt;0.001), PGA-1 (E:T=3:1, p&lt;0.001), and DOHH2 (E:T=3:1, p&lt;0.001) as compared to the control groups (Fig.1A). NKTR-255 also significantly enhanced granzyme and perforin release from expanded NK cells when combined with rituximab against MEC-1 (granzyme: p&lt;0.05; perforin: p&lt;0.001), PGA-1(granzyme: p&lt;0.05; perforin: p&lt;0.05), DOHH2 (granzyme: p&lt;0.05; perforin: p&lt;0.001) as compared to controls. NKTR-255 significantly enhanced the in vitro cytoxicity of expanded NK cells when combined with obinutuzumab agains rituximab-resistant BL cells like Raji-2R (E:T=3:1, p &lt;0.01), and Raji-4RH (E:T=3:1, p&lt;0.01) as compared to the control groups (Fig.1B). NKTR-255 also significantly enhanced IFN-g, granzyme and perforin release from expanded NK cells when combined with obinutuzumab against Raji-2R (E:T=3:1, IFN-g: p&lt;0.001, granzyme: p&lt;0.001 and perforin: p&lt;0.001) and Raji-4RH (E:T=3:1, IFN-g: p&lt;0.001, granzyme: p&lt;0.01 and perforin: p&lt;0.01) as compared to controls. Conclusion: We found that NKTR-255 significantly enhanced the ADCC of expanded NK cells with anti-CD20 type I and type II antibodies against CLL, FL and rituximab-resistant BL cells in vitro with enhanced IFN-g, granzyme B and perforin release. The in vivo effects of NKTR-255 with expanded NK cells and anti-CD20 type I and type II antibodies against CLL, FL and rituximab-resistant BL cells using humanized NSG models are under investigation. Disclosures Lee: Kiadis Pharma Netherlands B.V: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Madakamutil:Nektar Therapeutics: Current Employment. Marcondes:Nektar Therapeutics: Current Employment. Klein:Roche: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Cairo:Nektar Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Miltenyi: Research Funding; Technology Inc/Miltenyi Biotec: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2966-2966 ◽  
Author(s):  
Ian W. Flinn ◽  
Jonathon B. Cohen ◽  
Luke P. Akard ◽  
Samantha Jaglowski ◽  
Michael Vasconcelles ◽  
...  

Abstract Background: Recent regulatory approvals of two CD19-targeted chimeric antigen receptor (CAR)-expressing autologous T lymphocyte therapies provide compelling evidence of the clinical potential of re-engineering T cells to specifically attack tumor cells, but the broader applicability of these therapies is constrained by safety considerations and target specificity. A universal approach to T cell therapy that enables flexibility in tumor target selection has been demonstrated by engineering autologous T cells to express an antibody-coupled T cell receptor (ACTR) composed of the ectodomain of the CD16 Fc receptor fused to costimulatory and CD3ζ signaling domains. Thus, the ACTR platform couples T cell anti-tumor effector functions, including cytotoxicity, cytokine production, and T cell proliferation, to target-specific therapeutic antibodies. Here we present the preliminary clinical findings of the ongoing, multicenter Phase 1 study, ATTCK-20-03 (NCT03189836), of ACTR707, a CD28-containing ACTR chimeric receptor, in combination with rituximab in subjects with relapsed or refractory CD20+ B cell lymphoma. Methods: The primary objectives of this first-in-human, dose escalation study are to evaluate the safety of the combination of ACTR707 and rituximab and to determine a maximum tolerated dose (MTD) and a proposed recommended phase 2 dose (RP2D). Other objectives include evaluation of antitumor activity, and assessment of ACTR T cell persistence, cytokine levels, and rituximab pharmacokinetics. Eligible subjects must have histologically confirmed relapsed or refractory CD20+ non-Hodgkin lymphoma and have received prior anti-CD20 mAb in combination with chemotherapy. Subjects received lymphodepleting chemotherapy (cyclophosphamide 400 mg/m2 and fludarabine 30 mg/m2) for 3 days, followed by rituximab (375 mg/m2) and ACTR707. Additional doses of rituximab were administered, one dose every 3 weeks in the absence of disease progression. The study is separated into 2 sequential phases, a dose escalation and a safety expansion phase. During the dose escalation phase, ACTR707 is being tested at increasing doses in combination with rituximab. Results: Six subjects were enrolled and received ACTR707 at the first dose level in combination with rituximab: 5 diagnosed with diffuse large B cell lymphoma (83%) and one with follicular lymphoma, Grade 3b (17%). Median age was 61 years (range: 57-76), 83% were male, 50% were treated with ≥3 lines of prior therapy, and 67% had no response to or relapse within 6 months from immediate prior therapy. ACTR707 was successfully manufactured for all subjects and demonstrated post-infusion expansion in the peripheral blood. ACTR+ T cells were detectable at Day 28 post-infusion for all subjects tested. No dose-limiting toxicities (DLTs) were observed at the first dose level in 4 DLT-evaluable subjects (2 subjects experienced disease progression during the DLT evaluation period). There were no cytokine release syndrome (CRS) or autoimmune adverse events (AEs), serious or severe (≥Gr3) neurotoxicity AEs, or deaths on treatment. AEs (all grades) reported in >1 subject included neutropenia (n=3), anemia, decreased appetite, febrile neutropenia, and thrombocytopenia (each in 2 subjects); the 2 events of febrile neutropenia were considered serious. Investigator-reported complete responses were observed in 3 of 6 subjects. These complete responses (duration of response range: 47+ to 81+ days) are ongoing as of the data cut-off. Enrollment into the second dose level is ongoing. Conclusions: ACTR707 in combination with rituximab induced complete responses in 3 of 6 subjects with relapsed or refractory aggressive CD20+ B cell lymphoma treated at the first dose level with ACTR707 in combination with rituximab, with no CRS, serious or severe (≥Gr3) neurotoxicity, or AEs leading to treatment discontinuation. ACTR+ T cells were detectable in all subjects and persisted. These results support the continued dose escalation of ACTR707 in combination with rituximab. Updated data, inclusive of preliminary dose level 2 and correlative biomarkers, will be presented. Disclosures Flinn: Verastem: Consultancy, Research Funding; Janssen: Research Funding; Pfizer: Research Funding; Kite: Research Funding; Forty Seven: Research Funding; BeiGene: Research Funding; ArQule: Research Funding; Takeda: Research Funding; TG Therapeutics: Research Funding; Incyte: Research Funding; Forma: Research Funding; Verastem: Research Funding; Novartis: Research Funding; Agios: Research Funding; Seattle Genetics: Research Funding; Trillium: Research Funding; Merck: Research Funding; Calithera: Research Funding; Constellation: Research Funding; Gilead: Research Funding; Genentech: Research Funding; Infinity: Research Funding; Portola: Research Funding; Pharmacyclics: Research Funding; Curis: Research Funding; Celgene: Research Funding. Cohen:BioInvent: Consultancy; Bristol-Myers Squibb: Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Research Funding; Infinity Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding. Akard:Gilead: Speakers Bureau; Celgene: Speakers Bureau; Takeda: Speakers Bureau; Novartis: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau. Jaglowski:Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Kite Pharma: Consultancy, Research Funding; Juno: Consultancy. Vasconcelles:Unum Therapeutics: Employment. Ranger:Unum Therapeutics: Employment. Harris:Unum Therapeutics: Employment. Payumo:Unum Therapeutics: Employment. Motz:Unum Therapeutics: Employment. Bachanova:Gamida Cell: Research Funding; Kite Pharma: Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 728-728 ◽  
Author(s):  
Reona Sakemura ◽  
Nan Yang ◽  
Michelle J. Cox ◽  
Sutapa Sinha ◽  
Mehrdad Hefazi ◽  
...  

Abstract Despite the remarkable outcomes and recent FDA approval of CD19 directed chimeric antigen receptor T (CART19) cell therapy in B cell malignancies, the durable responses in diffuse large B cell lymphoma are less than 40% and CART activity in chronic lymphocytic leukemia (CLL) is further limited. This is thought to be related to loss of CART persistence, poor trafficking to lymph nodes and inhibition by the leukemic microenvironment. Therefore, strategies to enhance CART cell function to overcome these limitations are needed. Recent studies have shown that abnormal expression of the receptor tyrosine kinase (RTK) AXL is associated with poor prognosis in human cancers. AXL signaling is associated with tumor proliferation, survival, metastasis, and drug resistance. Inhibition of AXL RTK with TP-0903, a high affinity AXL inhibitor has been found to induce robust apoptosis of CLL B cells. Based on the significant modulation of T cell functions observed with BTK inhibitor, we examined the role of AXL RTK inhibition with TP-0903 on T cell function in CLL and other B cell malignancies. First, we investigated the effect of AXL inhibition on T cell phenotype in normal donors. When naïve T cells were stimulated with PMA/Ionomycin and cultured with low dose TP0903, cytokine production was favorably altered through the promotion of Th1 and reduction of Th2 cytokines. This was associated with a significant reduction of inhibitory receptors (Fig 1a). Western blot of T cell lysates suggests low dose TP-0903 results in inhibition of LCK. When effector T cells and regulatory T cells (Treg) were treated with TP-0903 for 3 days, there was a preferential reduction of Treg (Fig 1b). Next, we investigated the influence of TP-0903 on CART19 cell phenotype and functions. Here, we used 41BB costimulated, lentiviral-transduced CART cells. Similar to our findings on naïve T cells, TP-0903 treatment led to polarization of CART cells into a Th1 phenotype when T cells were stimulated with the CD19+ mantle cell lymphoma (MCL) cell line JeKo or with leukemic B cells isolated from CLL patients (Fig 1c). TP-0903 treatment also significantly downregulated inhibitory receptors on activated CART cells, including a reduction of canonical cytokines known to be associated with the development of cytokine release syndrome (CRS) (Fig 1c). The combination of CART19 cells and TP-0903 yielded a synergistic antitumor activity against JeKo in vitro, at low E:T ratios (Fig 1d). Western blot of T cell lysates revealed phosphorylation of LCK was remarkably reduced in the presence of TP-0903, suggesting a mechanism for the observed Th1 polarization. We compared the transcriptome of activated CART cells treated with TP-0903 and more than 100 genes were differentially expressed compared to non-treated cells. Among these genes, immune synapse related genes such as cell junction and cell migration related genes were significantly increased in activated CART cells treated with TP-0903. To investigate the effect of AXL RTK inhibition of CART cells with TP-0903 in vivo, we established MCL xenografts through the injection of 1.0x106 of JeKo into NSG mice. A week after the injection of JeKo, mice were treated with either vehicle alone, TP-0903 (20mg/kg/day) alone, 0.5x106 of CART19 alone, or TP-0903 (20mg/kg/day)+0.5x106 of CART19. Three weeks after the treatment, mice were rechallenged with 1.0x106 of JeKo. Mice treated with CART19 and TP-0903 rejected the JeKo tumor challenge while mice previously treated with CART19 alone redeveloped JeKo, suggesting that AXL inhibition enhanced CART cell persistence (Fig 1e). Finally, we validated our preclinical findings in a correlative analyses of Phase I clinical trial of TP-0903 for patients with solid tumors (NCT02729298). Blood T cells from 3 patients were isolated and analyzed before and a week after treatment with TP-0903. Similar to our findings, there was a significant reduction in Tregs, reduction of inhibitory receptors and polarization to a Th1 phenotype. These findings will be further investigated in a planned Phase I clinical trial of TP-0903 in relapsed/refractory CLL (NCT03572634). In summary, we demonstrated for the first time that AXL inhibitior is capable of polarizing T cells into a Th1 phenotype, downregulates inhibitory receptors, reduces CRS associated cytokines and synergizes with CART cells in B cell malignancies. These findings encourage further study of TP-0903 as an enhancer of T cell immunotherapies. Disclosures Mouritsen: Tolero Pharmaceuticals: Employment. Foulks:Tolero Pharmaceuticals: Employment. Warner:Tolero Pharmaceuticals: Employment. Parikh:Janssen: Research Funding; Abbvie: Honoraria, Research Funding; AstraZeneca: Honoraria, Research Funding; MorphoSys: Research Funding; Pharmacyclics: Honoraria, Research Funding; Gilead: Honoraria. Ding:Merck: Research Funding. Kay:Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Infinity Pharm: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Research Funding; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Cytomx Therapeutics: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees. Kenderian:Tolero Pharmaceuticals: Research Funding; Humanigen: Research Funding; Novartis: Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3868-3868
Author(s):  
Michael Dickinson ◽  
Nada Hamad ◽  
Christian E Bryant ◽  
Gautam Borthakur ◽  
Chitra Hosing ◽  
...  

Abstract Background: B-cell lineage cancers are a worldwide healthcare burden. Over 500,000 new cases of non-Hodgkin lymphoma (NHL) and 50,000 new cases of acute lymphoblastic leukemia (ALL) are diagnosed world-wide each year (seer.cancer.gov, Smith 2015, Solomon 2017). Despite progress in treatment, many patients diagnosed with this heterogeneous group of cancers still succumb to their disease. Recently approved autologous chimeric antigen receptor (CAR) T cells specific for CD19 have altered the treatment landscape for some patients with relapsed or refractory (R/R) B-cell malignancies, though significant toxicities associated with T-cell expansion and the necessity for bespoke manufacturing have limited their use. Natural killer (NK) cells, part of the innate immune system, efficiently recognize transformed cells and are particularly suited to address limitations of the approved CAR T products (Marcus 2014, Morvan 2016). Lacking a T-cell receptor and the consequent clonal expansion, non-engineered NK cells have been safely administered after lymphodepletion without side effects typically associated with T-cell therapies, such as severe cytokine release syndrome or neurotoxicity (Bachier 2020). Allogeneic NK cell-based therapies allow off-the-shelf use, obviating the necessity to wait for manufacture of autologous T-cell therapies. CD19-directed CAR NK cells have been administered safely, with promising preliminary efficacy (Liu 2020). NKX019 is a cryopreserved product, composed of expanded NK cells engineered to express a humanized CAR against CD19, fused to co-stimulatory (OX40) and signaling (CD3ζ) domains to enhance their intrinsic antitumor activity. NKX019 also expresses a membrane-bound interleukin-15 (IL-15) to serve as an autocrine growth factor and thereby increase NKX019 persistence, with an in vivo half-life of over up to 28 days without systemic IL-2 support. Preclinical characterization has shown that NKX019 cells are 10 times more effective at killing CD19+ target cells than non-engineered NK cells, resulting in greater suppression of xenograft tumor models (Morisot 2020). Further, NKX019, unlike CD19 CAR T cells, retained cytotoxicity even when CD19 antigen density was reduced &gt;50x on target cells. Hence, clinical evaluation of NKX019 is being undertaken in this Phase 1 study in subjects with R/R NHL or ALL. Methods: This is a multicenter, open-label, Phase 1 study of NKX019 (Figure). The study will be conducted in 2 parts: Part 1 (dose finding) to determine the recommended Phase 2 dose (RP2D) of NKX019 separately in adult patients with CAR T naïve R/R NHL or B-ALL, utilizing a "3+3" enrollment schema. Part 2 (dose expansion) will further evaluate safety and tolerability, pharmacokinetics (PK), immunogenicity, pharmacodynamics (PDn), and antitumor activity of NKX019 using RP2D with separate expansion cohorts for patients with ALL as well as different subtypes of NHL, including a cohort of CAR T pretreated large B-cell lymphoma. NKX019 is being manufactured from NK cells obtained from healthy adult donors. The study evaluates two dose levels of NKX019: 3 × 10 8 and 1 × 10 9 viable CAR+ NK cells. NKX019 will be administered on Days 0, 7, and 14 of a 28-day cycle following standard fludarabine/cyclophosphamide lymphodepletion (Table). Up to 5 total cycles may be administered based on response and tolerability assessed at the end of each cycle. The primary endpoint is incidence of adverse events, dose-limiting toxicities, clinically significant laboratory abnormalities, and determination of the RP2D. Secondary endpoints include evaluation of standard cellular PK parameters, PDn, immunogenicity, and antitumor responses. Subjects will be assessed for efficacy using disease-specific criteria: Lugano classification with LYRIC refinement for pseudo-progression (NHL), 2018 International Workshop (IW) criteria (CLL), 6th IW criteria (Waldenström macroglobulinemia [WM]), and National Comprehensive Cancer Version 1.2020 (B-ALL) (Cheson 2006, Cheson 2014, Hallek 2018, Owen 2013, Brown 2020). Enrollment across multiple sites in the US and Australia is expected to start in the second half of 2021. Figure 1 Figure 1. Disclosures Dickinson: Celgene: Research Funding; Gilead Sciences: Consultancy, Honoraria, Speakers Bureau; MSD: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Takeda: Research Funding; Amgen: Honoraria; Roche: Consultancy, Honoraria, Other: travel, accommodation, expenses, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau. Hamad: Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Bryant: Jansen, BMS/Celgene, Skyline Diagnostics: Consultancy; Amgen: Honoraria. Borthakur: Astex: Research Funding; University of Texas MD Anderson Cancer Center: Current Employment; Protagonist: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Ryvu: Research Funding; ArgenX: Membership on an entity's Board of Directors or advisory committees. Hosing: Nkarta Therapeutics: Membership on an entity's Board of Directors or advisory committees. Shook: Nkarta Therapeutics: Current Employment, Current equity holder in publicly-traded company. Tan: Nkarta Therapeutics: Current Employment, Current equity holder in publicly-traded company. Rajangam: Nkarta Therapeutics: Current Employment, Current equity holder in publicly-traded company. Liu: SITC: Honoraria; BMS; Karyopharm; Miltenyi: Research Funding; Agios; NGM Biopharmaceuticals; BeiGene: Consultancy. McSweeney: Kite-Gilead: Consultancy; Kite-Gilead, Autolus, Novartis: Research Funding; Kite-Gilead: Honoraria, Speakers Bureau. Hill: Novartis: Consultancy, Honoraria, Research Funding; Epizyme: Consultancy, Honoraria; AstraZenica: Consultancy, Honoraria; Beigene: Consultancy, Honoraria, Research Funding; Kite, a Gilead Company: Consultancy, Honoraria, Other: Travel Support, Research Funding; Pfizer: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria, Research Funding; Incyte/Morphysis: Consultancy, Honoraria, Research Funding; Gentenech: Consultancy, Honoraria, Research Funding; Celgene (BMS): Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document