scholarly journals The MEK Inhibitor Trametinib Enhances Diverse T Cell Reconstitution with Suppressing Xenogeneic Graft-Versus-Host-Disease

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1929-1929
Author(s):  
Hidekazu Itamura ◽  
Hiroyuki Muranushi ◽  
Takero Shindo ◽  
Kazutaka Kitaura ◽  
Seiji Okada ◽  
...  

Introduction: Early immune reconstitution without severe graft-versus-host disease (GVHD) is required for the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We showed that MEK inhibitors suppress GVHD but retain antiviral immunity and graft-versus-tumor (GVT) effects (Shindo, Blood2013; Itamura, Shindo, JCI Insight2016). Furthermore, we have shown that they attenuate graft rejection but spare thymic function following rat lung transplantation (Takahagi, Shindo, Am J Respir Cell Mol Biol2019). Here we analyzed their effects on human polyclonal T cell reconstitution in xenogeneic transplant by evaluating T-cell receptor (TCR) repertoire diversity. Methods: As a xenogeneic GVHD model, human PBMCs were infused to NOD/Scid/JAK3null mice, immunodeficient mice lacking T/B/NK cells, after total body irradiation. Vehicle, tacrolimus, or the MEK inhibitor trametinib was administered from day 0 through 28 or day 15 through 28. Human TCR repertoire diversity was evaluated by an adapter ligation PCR method with next generation sequencing (Shindo, Oncoimmunol2018) in the liver, lung, and spleen. The assignment and frequencies of TCRαV/J clones were determined at the single-cell level. Their diversity and clonality were evaluated by Inv. Simpson's index 1/λ. Results: Trametinib prolonged their survival compared with vehicle (median survival: 88 vs 46 days, p<0.05). It enhanced engraftment of human leukocytes in peripheral blood (human CD45+cells: 11.0 vs 2.5%), but prevented their infiltration into the lung (human CD45+cells on day 60: 1.5 vs 6.5%). Treatment with vehicle resulted in skewed TCR repertoire with limited clones in the spleen, liver and lung. Interestingly, expansion of one specific clone (TRAV20/J10) was commonly observed, which might reflect the GVHD-inducing pathological clone (Fig. 1: 3D graphs show the frequencies of TCRαV/J clones). However, trametinib enabled diverse and polyclonal T cell engraftment without the TRAV20/J10 clone. While CD4+and CD8+T cells within injected human PBMCs mainly consisted of naïve (CD45RA+CD27+) and central memory (CD45RA-CD27+) T cells, infiltrating T cells in each organ showed effector memory (CD45RA-CD27-) T cell phenotype. Of note, CD8+T cells in the bone marrow, spleen, and lung of trametinib-treated recipients showed reduced effector memory T cells (CD45RA-CD27-) compared with vehicle-treated mice at day 28 (bone marrow 21.7 vs 74.7%, p<0.01; spleen 66.3 vs 88.7%, p<0.05; lung 33.0 vs 72.5%, p<0.05), which indicating that MEK inhibition suppresses functional differentiation of human T cells in vivo. Furthermore, trametinib treatment from day 14 to 28 still ameliorated clinical GVHD score, and maintained polyclonal T cell repertoire. Conclusions:GVHD can be characterized with skewed TCR repertoire diversity and expansion of pathological T cell clones in the target tissues. Trametinib suppresses GVHD but maintains polyclonal T cell reconstitution, even in established GVHD. These results explain the facts that MEK inhibitors separate GVHD from GVT effects/antimicrobial immunity. Furthermore, MEK inhibition enhances immune reconstitution after allo-HSCT, which would avoid post-transplant complications. Disclosures Shindo: Novartis: Research Funding. Kitaura:Repertoire Genesis Inc.: Employment. Okada:Bristol-Myers Squibb: Research Funding; Japan Agency for Medical Research and Development: Research Funding. Shin-I:BITS Co., Ltd: Equity Ownership. Suzuki:Repertoire Genesis Inc.: Equity Ownership. Takaori-Kondo:Celgene: Honoraria, Research Funding; Novartis: Honoraria; Bristol-Myers Squibb: Honoraria, Research Funding; Ono: Research Funding; Takeda: Research Funding; Kyowa Kirin: Research Funding; Chugai: Research Funding; Janssen: Honoraria; Pfizer: Honoraria. Kimura:Ohara Pharmaceutical Co.: Research Funding; Novartis: Honoraria, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5486-5486
Author(s):  
Jacqueline R. Rivas ◽  
Sara S. Alhakeem ◽  
Joseph M. Eckenrode ◽  
Yinan Zhang ◽  
James P. Collard ◽  
...  

B-cell Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in the Western world, accounting for nearly one third of all leukemia cases. In CLL abnormal B-cells accumulate in the blood and lymphoid organs leading to serious immune dysfunction. This immune suppression is in part due to CLL-produced mediators that downregulate T-cell responses, such as the regulatory cytokine Interleukin-10 (IL-10). We previously found that eliminating T-cell IL-10 signaling enhanced their ability to control CLL growth in vivo. Therefore, we investigated the potential for IL-10 blockade to enhance the anti-tumor activity of CD8+ T-cells. In our studies we use human CLL cells as well as the Eμ-Tcl1 mouse model of CLL, in which the oncogene Tcl1 is expressed under the immunoglobulin VH promoter and µ-enhancer. IL-10 production by CLL cells depends on the transcription factor Sp1, and we found that the Sp1 inhibitor mithramycin (MTM) suppresses CLL IL-10 production. However, MTM is not well tolerated in vivo, so we synthesized novel, less toxic analogues of MTM to test for IL-10 suppression. One of these MTM analogues similarly suppresses mouse and human CLL IL-10 with little to no effect on effector T-cell cytokines and viability. Therefore, we treated mice with this analogue in the adoptive transfer model of Eμ-Tcl1, and later combined this with anti-PD-L1 checkpoint blockade to determine its effects on anti-tumor immunity. Here we show that this MTM analogue enhances the efficacy of anti-CLL T-cells in vivo by suppressing CLL IL-10 production, allowing for increased CD8+ T-cell proliferation, effector memory cell prevalence, and CD8+ interferon-γ (IFN-γ) production. Treatment slowed the growth of Eμ-TCL1 CLL cells in the spleen and blood and reduced the spread of CLL to the bone marrow. Furthermore, suppressing IL-10 in this manner improved responses to anti-PD-L1 treatment, decreasing the burden of CLL cells and the functionality of CD8+ T-cells in comparison to anti-PD-L1 alone. The overall number and frequency of CD8+ T-cells was higher in double treated mice, with more IFN-γ+ CD8+ cells, more effector memory cells, and fewer exhausted T-cells. This paradigm shifting approach is novel as current therapies for CLL do not target IL-10 and it may increase the efficacy of T-cell-based immunotherapies in human CLL. T-cell-based immunotherapies have experienced limited success in trials with CLL, and since there is no cure for this disease, our approach may provide a new avenue for combination therapies. Moreover, IL-10 blockade could be applicable to other B-cell malignancies and even solid tumors where T-cell suppression plays a significant role. Disclosures Hildebrandt: Axim Biotechnologies: Equity Ownership; Kite Pharma: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Sangamo: Equity Ownership; Novartis: Equity Ownership; Axim Biotechnologies: Equity Ownership; Juno Therapeutics: Equity Ownership; Kite Pharma: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Travel; Novartis: Equity Ownership; Insys Therapeutics: Equity Ownership; Abbvie: Equity Ownership; GW Pharmaceuticals: Equity Ownership; Cardinal Health: Equity Ownership; Immunomedics: Equity Ownership; Endocyte: Equity Ownership; Clovis Oncology: Equity Ownership; Cellectis: Equity Ownership; Aetna: Equity Ownership; CVS Health: Equity Ownership; Celgene: Equity Ownership; Bluebird Bio: Equity Ownership; Bristol-Myers-Squibb: Equity Ownership; crispr therapeutics: Equity Ownership; IDEXX laboratories: Equity Ownership; Johnson & Johnson: Equity Ownership; Pfizer: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Travel; Procter & Gamble: Equity Ownership; Vertex: Equity Ownership; Bayer: Equity Ownership; Scotts-Miracle: Equity Ownership; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Research Funding; Takeda: Research Funding; Pharmacyclics: Research Funding; Astellas: Other: Travel.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 196-196
Author(s):  
Bishwas Shrestha ◽  
Kelly Walton ◽  
Jordan Reff ◽  
Elizabeth M. Sagatys ◽  
Nhan Tu ◽  
...  

Distinct from pharmacologic immunosuppression, we designed a programmed cytolytic effector T cell that prevents graft versus host disease (GVHD). CD83 is expressed on allo-activated conventional T cells (Tconv) and pro-inflammatory dendritic cells (DCs), which are implicated in GVHD pathogenesis. Therefore we developed a novel human CD83 targeted chimeric antigen receptor (CAR) T cell for GVHD prophylaxis. Here we demonstrate that human CD83 CAR T cells eradicate cell mediators of GVHD, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide lasting protection from xenogeneic GVHD. Further, we show human, acute myeloid leukemia (AML) expresses CD83 and can be targeted by CD83 CAR T cells. A 2nd generation CD83 CAR was generated with CD3ζ and 41BB costimulatory domain that was retrovirally transduced in human T cells to generate CD83 CAR T cells. The CD83 CAR construct exhibited a high degree of transduction efficiency of about 60%. The CD83 CAR T cells demonstrated robust IFN-γ and IL-2 production, killing, and proliferation when cultured with CD83+ target cells. To test whether human CD83 CAR T cells reduce alloreactivity in vitro, we investigated their suppressive function in allogeneic mixed leukocyte reactions (alloMLR). CD83 CAR T cells were added to 5-day alloMLRs consisting of autologous T cells and allogeneic monocyte-derived DCs at ratios ranging from 3:1 to 1:10. The CD83 CAR T cells potently reduced alloreactive T cell proliferation compared to mock transduced and CD19 CAR T cells. We identified that CD83 is differentially expressed on alloreactive Tconv, compared to Tregs. Moreover, the CD83 CAR T cell efficiently depletes CD83+ Tconv and proinflammatory DCs with 48 hours of engagement. To test the efficacy of human CD83 CAR T cells in vivo, we used an established xenogeneic GVHD model, where mice were inoculated with human PBMCs (25x106) and autologous CD83 CAR (1-10x106) or mock transduced T cells. The CD83 CAR T cells were well tolerated by the mice, and significantly improved survival compared to mock transduced T cells (Figure 1A). Mice treated with CD83 CAR T cells exhibited negligible GVHD target organ damage at day +21 (Figure 1B). Mice inoculated with CD83 CAR T cells demonstrated significantly fewer CD1c+, CD83+ DCs (1.7x106 v 6.2x105, P=0.002), CD4+, CD83+ T cells (4.8x103 v 5.8x102, P=0.005), and pathogenic Th1 cells (3.1x105 v 1.1x102, P=0.005) at day +21, compared to mice treated with mock transduced T cells. Moreover, the ratio of Treg to alloreactive Tconv (CD25+ non-Treg) was significantly increased among mice treated with CD83 CAR T cells (78 v 346, P=0.02), compared to mice injected with mock transduced T cells. Further, CD83 appears to be a promising candidate to target myeloid malignancies. We observed CD83 expression on malignant myeloid K562, Thp-1, U937, and MOLM-13 cells. Moreover, the CD83 CAR T cells effectively killed AML cell lines. Many AML antigens are expressed on progenitor stem cells. Thus, we evaluated for stem cell killing in human colony forming unit (CFU) assays, which demonstrated negligible on-target, off-tumor toxicity. Therefore, the human CD83 CAR T cell is an innovative cell-based approach to prevent GVHD, while providing direct anti-tumor activity against myeloid malignancies. Figure Disclosures Blazar: Kamon Pharmaceuticals, Inc: Membership on an entity's Board of Directors or advisory committees; Five Prime Therapeutics Inc: Co-Founder, Membership on an entity's Board of Directors or advisory committees; BlueRock Therapeutics: Membership on an entity's Board of Directors or advisory committees; Abbvie Inc: Research Funding; Leukemia and Lymphoma Society: Research Funding; Childrens' Cancer Research Fund: Research Funding; KidsFirst Fund: Research Funding; Tmunity: Other: Co-Founder; Alpine Immune Sciences, Inc.: Research Funding; RXi Pharmaceuticals: Research Funding; Fate Therapeutics, Inc.: Research Funding; Magenta Therapeutics and BlueRock Therapeuetics: Membership on an entity's Board of Directors or advisory committees; Regeneron Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Davila:Atara: Research Funding; Celgene: Research Funding; Precision Biosciences: Consultancy; Bellicum: Consultancy; GlaxoSmithKline: Consultancy; Adaptive: Consultancy; Anixa: Consultancy; Novartis: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2866-2866 ◽  
Author(s):  
Cassie Chou ◽  
Simon Fraessle ◽  
Rachel Steinmetz ◽  
Reed M. Hawkins ◽  
Tinh-Doan Phi ◽  
...  

Background CD19 CAR T immunotherapy has been successful in achieving durable remissions in some patients with relapsed/refractory B cell lymphomas, but disease progression and loss of CAR T cell persistence remains problematic. Interleukin 15 (IL-15) is known to support T cell proliferation and survival, and therefore may enhance CAR T cell efficacy, however, utilizing native IL-15 is challenging due to its short half-life and poor tolerability in the clinical setting. NKTR-255 is a polymer-conjugated IL-15 that retains binding affinity to IL15Rα and exhibits reduced clearance, providing sustained pharmacodynamic responses. We investigated the effects of NKTR-255 on human CD19 CAR T cells both in vitro and in an in vivo xenogeneic B cell lymphoma model and found improved survival of lymphoma bearing mice receiving NKTR-255 and CAR T cells compared to CAR T cells alone. Here, we extend upon these findings to further characterize CAR T cells in vivo and examine potential mechanisms underlying improved anti-tumor efficacy. Methods CD19 CAR T cells incorporating 4-1BB co-stimulation were generated from CD8 and CD4 T cells isolated from healthy donors. For in vitro studies, CAR T cells were incubated with NKTR-255 or native IL-15 with and without CD19 antigen. STAT5 phosphorylation, CAR T cell phenotype and CFSE dilution were assessed by flow cytometry and cytokine production by Luminex. For in vivo studies, NSG mice received 5x105 Raji lymphoma cells IV on day (D)-7 and a subtherapeutic dose (0.8x106) of CAR T cells (1:1 CD4:CD8) on D0. To determine optimal start date of NKTR-255, mice were treated weekly starting on D-1, 7, or 14 post CAR T cell infusion. Tumors were assessed by bioluminescence imaging. Tumor-free mice were re-challenged with Raji cells. For necropsy studies mice received NKTR-255 every 7 days following CAR T cell infusion and were euthanized at various timepoints post CAR T cell infusion. Results Treatment of CD8 and CD4 CAR T cells in vitro with NKTR-255 resulted in dose dependent STAT5 phosphorylation and antigen independent proliferation. Co-culture of CD8 CAR T cells with CD19 positive targets and NKTR-255 led to enhanced proliferation, expansion and TNFα and IFNγ production, particularly at lower effector to target ratios. Further studies showed that treatment of CD8 CAR T cells with NKTR-255 led to decreased expression of activated caspase 3 and increased expression of bcl-2. In Raji lymphoma bearing NSG mice, administration of NKTR-255 in combination with CAR T cells increased peak CAR T cell numbers, Ki-67 expression and persistence in the bone marrow compared to mice receiving CAR T cells alone. There was a higher percentage of EMRA like (CD45RA+CCR7-) CD4 and CD8 CAR T cells in NKTR-255 treated mice compared to mice treated with CAR T cells alone and persistent CAR T cells in mice treated with NKTR-255 were able to reject re-challenge of Raji tumor cells. Additionally, starting NKTR-255 on D7 post T cell infusion resulted in superior tumor control and survival compared to starting NKTR-255 on D-1 or D14. Conclusion Administration of NKTR-255 in combination with CD19 CAR T cells leads to improved anti-tumor efficacy making NKTR-255 an attractive candidate for enhancing CAR T cell therapy in the clinic. Disclosures Chou: Nektar Therapeutics: Other: Travel grant. Fraessle:Technical University of Munich: Patents & Royalties. Busch:Juno Therapeutics/Celgene: Consultancy, Equity Ownership, Research Funding; Kite Pharma: Equity Ownership; Technical University of Munich: Patents & Royalties. Miyazaki:Nektar Therapeutics: Employment, Equity Ownership. Marcondes:Nektar Therapeutics: Employment, Equity Ownership. Riddell:Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; Lyell Immunopharma: Equity Ownership, Patents & Royalties, Research Funding. Turtle:Allogene: Other: Ad hoc advisory board member; Novartis: Other: Ad hoc advisory board member; Humanigen: Other: Ad hoc advisory board member; Nektar Therapeutics: Other: Ad hoc advisory board member, Research Funding; Caribou Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; T-CURX: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Patents & Royalties: Co-inventor with staff from Juno Therapeutics; pending, Research Funding; Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Other: Ad hoc advisory board member.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5603-5603 ◽  
Author(s):  
Cherie Tracy Ng ◽  
Jeanette Ampudia ◽  
Robert J. Soiffer ◽  
Jerome Ritz ◽  
Stephen Connelly

Background: CD6 is a co-stimulatory receptor, predominantly expressed on T cells, that binds to activated leukocyte cell adhesion molecule (ALCAM), a ligand expressed on antigen presentation cells and various epithelial and endothelial tissues. The CD6-ALCAM pathway plays an integral role in modulating T cell activation, proliferation, differentiation and trafficking and is central to inflammation. While effector T cell (Teff) are CD6hi and upregulate expression upon activation, regulatory T cells (Treg) remain CD6lo/-, making this an attractive target to modulate Teff activity while preserving Treg activity. Early studies by Soiffer and colleagues demonstrated using T12, an anti-CD6 monoclonal antibody (mAb) that ex-vivo depletion of CD6+ donor cells prior to transplantation decreased the incidence of both acute and chronic GVHD, highlighting the importance of CD6+ cells in GVHD pathogenesis and validating it as a therapeutic target. However, it remains to be shown whether modulating the CD6-ALCAM pathway in vivo can attenuate GVHD. We investigated the use of itolizumab, a humanized anti-CD6 mAb that has demonstrated clinical efficacy in other autoimmune diseases, as both a preventive and therapeutic treatment for GVHD, using a humanized xenograft mouse model. Methods: Humanized xenograft mice were generated by intravenous transfer of 2x10^7 human PBMCs into 6-8 weeks old NOD/SCID IL2rγ-null (NSG). To investigate the ability of itolizumab to prevent GVHD, mice were dosed with either 60μg or 300μg of itolizumab, 150μg of abatacept (CTLA4-Ig), or vehicle, starting one day prior to PBMC transplantation. To investigate the therapeutic effect of itolizumab, mice were dosed with either 150μg of itolizumab or vehicle, starting at Day 5 post-PBMC transfer, when transplanted T cells are already activated. All treatments were administered IP every other day. Weight and disease scores were monitored throughout the study. At Days 18 and 35, peripheral blood was evaluated by flow cytometry to examine T cell prevalence, and tissues were collected for histological examination of pathology and T cell infiltration. Results: When administered as prevention (Day -1), treatment with either 60μg or 300μg of itolizumab significantly decreased mortality compared to the vehicle control (100% vs. 10%); this decrease was similar to the positive control group treated with abatacept (Figure 1). At 60μg, itolizumab-treated mice demonstrated significant reductions in the prevalence of human T cells in peripheral blood vs. vehicle-treated mice at Day 18 (<0.2% vs. 74.5%; p < 0.001). The reduction in peripheral T cells was accompanied by reductions in tissue-infiltrating T cells in lung (85-fold) and gut (9.5-fold), as well as reductions in disease scores and weight loss. When administered therapeutically, treatment with itolizumab was associated with a survival rate of 50% compared to 10% in the control group (Figure 2). Similarly, peripheral T cell prevalence (34.3% vs. 65.1%; p < 0.001), weight loss, and disease scores were inhibited by itolizumab compared to vehicle control mice. Conclusions: These data suggest that systemic treatment with itolizumab can modulate pathogenic Teff cell activity, establishing this antibody as a potential therapeutic for patents with GvHD. A phase I/II study using itolizumab as first line treatment in combination with steroids for patients with aGVHD is currently ongoing (NCT03763318). Disclosures Ng: Equillium: Employment, Equity Ownership. Ampudia:Equillium: Employment. Soiffer:Mana therapeutic: Consultancy; Kiadis: Other: supervisory board; Gilead, Mana therapeutic, Cugene, Jazz: Consultancy; Juno, kiadis: Membership on an entity's Board of Directors or advisory committees, Other: DSMB; Cugene: Consultancy; Jazz: Consultancy. Ritz:Equillium: Research Funding; Merck: Research Funding; Avrobio: Consultancy; TScan Therapeutics: Consultancy; Talaris Therapeutics: Consultancy; Draper Labs: Consultancy; LifeVault Bio: Consultancy; Celgene: Consultancy; Aleta Biotherapeutics: Consultancy; Kite Pharma: Research Funding. Connelly:Equillium: Employment, Equity Ownership.


Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5502-5510 ◽  
Author(s):  
Jack Gorski ◽  
Xiao Chen ◽  
Mariya Gendelman ◽  
Maryam Yassai ◽  
Ashley Krueger ◽  
...  

Abstract Graft versus host disease (GVHD) typically results in impaired T-cell reconstitution characterized by lymphopenia and repertoire skewing. One of the major causes of inadequate T-cell reconstitution is that T-cell survival and expansion in the periphery are impaired. In this report, we have performed adoptive transfer studies to determine whether the quantitative reduction in T-cell numbers is due to an intrinsic T-cell defect or whether the environmental milieu deleteriously affects T-cell expansion. These studies demonstrate that T cells obtained from animals with graft-versus-host disease (GVHD) are capable of significant expansion and renormalization of an inverted CD4/CD8 ratio when they are removed from this environment. Moreover, these cells can generate complex T-cell repertoires early after transplantation and are functionally competent to respond to third-party alloantigens. Our data indicate that T cells from mice undergoing GVHD can respond to homeostatic signals in the periphery and are not intrinsically compromised once they are removed from the GVHD environment. We thereby conclude that the host environment and not an intrinsic T-cell defect is primarily responsible for the lack of effective T-cell expansion and diversification of complex T-cell repertoires that occurs during GVHD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2046-2046 ◽  
Author(s):  
Waseem Qasim ◽  
Persis Jal Amrolia ◽  
Sujith Samarasinghe ◽  
Sara Ghorashian ◽  
Hong Zhan ◽  
...  

Abstract Chimeric antigen receptor (CAR)19 T-cells exhibit powerful anti-leukemic effects in patients with B cell malignancies. However, the complexity of production of patient bespoke T cell products is a major barrier to the broader application of this approach. We are investigating a novel strategy to enable "off-the-shelf"' therapy with mismatched donor CAR19 T cells. Transcription activator-like effector nucleases (TALEN)s can be used to overcome HLA barriers by eliminating the risk of graft-versus-host disease (GvHD) through disruption of T cell receptor expression, and by simultaneously targeting CD52, cells can be rendered insensitive to the lymphodepleting agent Alemtuzumab. Administration of Alemtuzumab can then be exploited to prevent host-mediated rejection of HLA mismatched CAR19 T cells. We manufactured a bank of such cells from volunteer donor T cells under GMP conditions on behalf of Cellectis S.A for final stage validation studies using a third generation self inactivating lentiviral vector encoding a 4g7 CAR19 (CD19 scFv- 41BB- CD3ζ) linked to RQR8, an abbreviated sort/suicide gene encoding both CD34 and CD20 epitopes. Cells were then electroporated with two pairs of TALEN mRNA for multiplex targeting of both the T cell receptor alpha constant chain locus, and the CD52 gene locus. Following ex-vivo expansion, cells still expressing TCR were depleted using CliniMacs alpha/beta TCR depletion, yielding a T cell product with <1% TCR expression, 85% of which expressed CAR19, and 64% becoming CD52 negative. This universal CAR19 (UCART19) cell bank has been characterized in detail, including sterility, molecular and cytometric analyses and human/murine functional studies ahead of submissions for regulatory approvals and Phase 1 testing in trials for relapsed B cell leukaemia. In the interim we received a request for therapy on a compassionate basis for an infant with refractory relapsed B-ALL, and with the agreement of Cellectis, we treated this first patient under UK special therapy regulations. An 11 month girl with high risk CD19+infant ALL (t(11;19) rearrangement) relapsed in bone marrow 3 months after a myeloablative 8/10 mismatched unrelated donor transplant. Leukaemic blasts expressed CD19 but were CD52negative. Her disease progressed despite treatment with Blinatumomab (70% blasts in marrow) and we were unable to generate donor-derived CAR19 T cells on an existing study. Following institutional ethics review, detailed counseling, and parental consent, the patient received cytoreduction with Vincristine, Dexamethasone and Asparaginase followed by lymphodepleting conditioning with Fludarabine 90mg/m2, Cyclophosphamide 1.5g/m2 and Alemtuzumab 1mg/kg. Immediately prior to infusion of UCART19 cells, the bone marrow showed persisting disease (0.5% FISH positive). She received a single dose (4.5x106/kg) of UCART19 T cells without any significant toxicity. To date there has been no significant perturbation of cytokine levels in peripheral blood, and no indication of cytokine release syndrome. Although profoundly lymphopenic, UCART19 T cells were detectable by qPCR in the circulation by day 14 and at increased levels in both blood (VCN 0.35) and marrow (VCN 0.22) on day 28. The patient exhibited signs of count recovery and the bone marrow, while hypoplastic, was in cytogenetic and molecular remission. Chimerism was 90% donor, and a clearly demarcated population (7%) of third party cells indicated persistence of UCART19. A residual persistence of 3% recipient cells in the marrow suggests that leukemic clearance was not mediated by transplant mediated alloreactivity. Within the short period of follow up available, our intervention comprising lymphodepletion and infusion of UCART19 T cells has induced molecular remission where all other treatments had failed. This first-in-man application of TALEN engineered cells provides early proof of concept evidence for a ready-made T cell strategy that will now be tested in early phase clinical trials. Disclosures Qasim: CATAPULT: Research Funding; CELLMEDICA: Research Funding; CALIMMUNE: Research Funding; MILTENYI: Research Funding; AUTOLUS: Consultancy, Equity Ownership, Research Funding; CELLECTIS: Research Funding. Off Label Use: UCART19 T Cells are an unlicensed investigational medicinal product and in this case were used under MHRA special licence arrangements. Stafford:CELLECTIS: Research Funding. Peggs:Cellectis: Research Funding; Autolus: Consultancy, Equity Ownership. Thrasher:CATAPULT: Patents & Royalties, Research Funding; MILTENYI: Research Funding; AUTOLUS: Consultancy, Equity Ownership, Research Funding. Pule:AUTOLUS: Employment, Equity Ownership, Research Funding; CELLECTIS: Research Funding; AMGEN: Honoraria; UCLB: Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1374-1374
Author(s):  
Adam Lamble ◽  
Yoko Kosaka ◽  
Pierrette Lo ◽  
Fei Huang ◽  
Kate Sasser ◽  
...  

Abstract Introduction: Acute myeloid leukemia (AML) is the most common blood cancer in adults and the second most common in children. Despite intensification of chemotherapeutic regimens, survival rates have plateaued. AML is therefore a candidate for novel therapeutics, specifically immune checkpoint inhibitors (ICIs). ICIs have shown significant promise in solid malignancies and more recently in Hodgkin's disease. However, it is currently not possible to predict which diseases and/or patients will benefit from ICIs. We are therefore, performing detailed studies to characterize the phenotype such that patients can be matched with ICI regimens to which they are most likely to benefit. Specifically, we are identifying the relevant lymphoid cell subsets present in the marrow of patients with AML, evaluating their differentiation and activation status, and quantifying the density of immune modifiers on cells of interest. We are also performing functional assays to further define the status of T cells in the AML microenvironment by evaluating the responsiveness of these cells to stimulation. Additionally, these studies assess the impact of ICI on the proliferative and cytokine production capacity of T cells and tumor cells resident in AML bone marrow. Methods: Immunophenotyping was performed on mononuclear cells from primary AML patient specimens using mass cytometry by staining samples with a panel containing 32 antibodies to surface markers and cytokines (Table 1). Each antibody was tagged with a unique lanthanide isotope and data was obtained using a DVS time-of-flight mass cytometer (CyTOF). T cells were defined by CD45 and CD3 positivity and then further differentiated based on the presence of CD4 or CD8. CD4 and CD8 cells were further classified into naive (CCR7+, CD45RA+), central memory (CCR7+, CD45RA-), effector memory (CCR7-, CD45RA-), and effector memory CD45RA+ (TEMRA)(CCR7-, CD45RA+) cells. Functional assays measured both the proliferative capacity and cytokine production profile of bone marrow T cells in response to CD3 stimulation in the context of the tumor microenvironment. Changes to the baseline T cell functional profile in the presence of various ICIs, including antibodies against PD1, CTLA4, TIM3, and VISTA, were measured. Results: Bone marrow samples from 9 patients with AML were collected. T cell percentages ranged from 0.2% to 4.3% with an average CD4:CD8 ratio of 0.39 to 2.0 (Figure 1a). Within the CD8 T cell population, naive, central memory, effector memory and TEMRA cells ranged from 1.1% to 25.4%, 1.8% to 9.7%, 15.5% to 51.8% and 15.5% to 51.8%, respectively (Figure 1b). Within the CD4 T cell population, naive, central memory, effector memory T cells and TEMRA cells ranged from 3.5% to 40.9%, 13.6% to 53.4%, 17.9% to 58.5%, and 0% to 10.2% respectively (Figure 1c). T cell expression of immune modulators varied (Figure 2) and there were differential effects of several ICIs on T cell proliferation and production of cytokines, including interferon gamma, interleukin-6, and tumor necrosis factor-alpha. Conclusion: These results provide the beginning of a functional and phenotypic description of the immune status in the marrow of patients with AML. Our results show that, like the disease itself, the immune microenvironment is very heterogeneous between samples with differential responses to ICIs suggesting that certain subsets of AML may be potential candidates for immunotherapy. This is a report of initial findings from our study; accrual of patient samples is ongoing to expand the power of our observations. Disclosures Huang: Janssen Pharmaceuticals: Employment. Sasser:Janssen Pharmaceuticals: Employment. Tyner:Aptose Biosciences: Research Funding; Array Biopharma: Research Funding; Constellation Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Research Funding; Incyte: Research Funding. Lind:Janssen Pharmaceuticals: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3081-3081
Author(s):  
Derek NJ Hart ◽  
Xinsheng Ju ◽  
Zehra Elgundi ◽  
Nirupama Verma ◽  
Pablo Silveira ◽  
...  

Abstract Introduction: CD83 is an important marker of activated dendritic cells (DC) but it is also expressed on other immune cells. Polyclonal anti-CD83 antibody depletes activated DC and prevents human peripheral blood mononuclear cell (PBMC) induced xenogeneic graft versus host disease (GVHD) in immunosuppressed SCID mice (J Exp Med 2009;206;387). We therefore generated a potential therapeutic human anti-CD83 mAb (3C12C), which had similar efficacy and T cell sparing effects in the same model (Leukemia 2015; in press). To investigate the specific immunosuppressive effect of 3C12C further, we undertook a comprehensive analysis of CD83 expression and its glycosylation pattern on various immune cell populations and tested the effect of 3C12C on T cell function using preclinical models, including a human CD83 (hCD83) knock in (KI) mouse. Methods: A panel of mouse and recombinant mAbs to hCD83 were used to analyse its expression by flow cytometry on resting and activated healthy donor PBMC. The expression of potential CD83 splice variants was examined by PCR. T cell expression was examined by flow cytometry and confocal microscopy after PHA, CD3/CD28 beads and allogeneic mixed leukocyte reaction (alloMLR) culture. Control human IgG1 (trastuzumab) and 3C12C mAbs were tested (0.125mg d-1) in a xenogeneic model of GVHD utilizing human PBMC transplanted into total body irradiation and anti-NK conditioned SCID mice. The genetically engineered hCD83 KI mouse was shown to be immune-competent and used to test the effect of 3C12C on LPS activated DC and T cells. Results: There were distinct CD83 splice variants (full length CD83, splicing variant CD83a, CD83b and CD83c) in different immune cells. CD83 glycosylation status also differed with high glycosylation required for surface expression on activated DC, whereas its expression on activated B cells and monocytes was resistant to de-glycosylation. Increases in CD83 expression on T cells occurred early with different kinetics, underlining the distinct signal pathway involved. The 3C12C mAb reduced T cell proliferation in the alloMLR but did not affect cytomegalovirus (CMV) or influenza (Flu) specific CD8+T cell numbers. Treatment with 3C12C prevented GVHD in human PBMC transplanted SCID mice, which otherwise developed histological GVHD between d8-13. Human DC were activated by d2 and expressed the CMRF-44 activation marker plus CD83, CD80 and CD86. Treatment with 3C12C mAb eliminated CD83+ CMRF44+ DC early post-transplant and reduced T cell activation. Further studies, established CMV and Flu specific T cells were retained and responded to antigen by IFNg production. Furthermore, Treg numbers were preserved. The 3C12C mAb depleted LPS activated DC in hCD83 KI mice in experiments performed prior to commencing transplant studies. Conclusion: These findings suggest that the potential therapeutic human anti-CD83 mAb induced significant immune suppression, by depletion of activated DC and consequential modulation of T cell activation. The reduction in allo/xeno activated T cells may result in part from a direct effect of anti-CD83 on early T cell responses. This apparently selective immunosuppressive effect preserves anti-viral T cell immunity and Treg pathways, suggesting that 3C12C merits further investigation as a novel agent for GVHD prophylaxis. Disclosures Hart: DendroCyte BioTech Pty Ltd: Equity Ownership. Clark:DendroCyte BioTech Pty Ltd: Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5588-5588
Author(s):  
Richard R. Furman ◽  
Michael Hallek ◽  
Jeffrey P. Sharman ◽  
Peter Hillmen ◽  
Andrew D. Zelenetz ◽  
...  

Abstract Introduction: Idelalisib (IDELA) is a selective, small molecule inhibitor of PI3Kd that has shown significant efficacy in treatment of patients (pts) with relapsed chronic lymphocytic leukemia (CLL) and follicular lymphoma (FL). A common adverse event (AE) observed in IDELA studies is diarrhea/colitis (DC): grade ≥3 ~15%. Published preclinical data suggests that PI3Kd plays a critical role in regulating the function and development of regulatory T-cells (T-regs). This biomarker analysis aimed to evaluate possible immune mechanisms that may have contributed to DC in IDELA-treated pts. Methods: Longitudinal absolute peripheral blood T (CD4+ and CD8+), NK (CD16+/CD56+) cell subsets, cytokines, and chemokine levels from patients treated with IDELA were analyzed (Table 1). Since absolute numbers of T-reg cells were not available, we utilized epigenetic qPCR method (Kleen T. et. al. J Immunother Cancer 2015) to assess the status of T-regs by quantifying FOXP3 utilizing banked peripheral blood mononuclear cells (PBMCs). The following cytokines and chemokines were measured: IL-12p40, IL-17A, IFNγ, TNFα, G- CSF, MIP1α (CCL3), CCL5 (RANTES), IL-10, IL-1RA, IL-6, IL-7, IL-8, IL-15, CRP, and IP-10 (CXCL10). We evaluated the association of changes from baseline of these biomarker(s) with the occurrence and severity of DC events during IDELA treatment. Association of cytomegalovirus (CMV) with DC was not addressed in this study and is being presented separately. Results: There were no differences in absolute numbers of T (CD4+ or CD8+) and NK cells between pts treated with IDELA in both trials with grade ≥3 DC vs those with no DC. Consistently, results from epigenetic qPCR analysis also demonstrated no differences in temporal profiles for peripheral T-cell subsets (CD3+, CD8+, or FOXP3+) in CLL pts treated with IDELA with grade ≥3 DC vs no DC. Baseline and on-treatment changes in peripheral T-cell subsets were not predictive of DC. Analysis of T-cell subsets from the visit immediately prior (t-1) to the first occurrence of grade ≥3 DC was not predictive, and revealed no differences compared to pts with no DC. Lower levels of CD3+, CD8+, and FOXP3+ were noted longitudinally as well as at t-1 visits in grade 1/2 DC vs non-DC pts, but these changes were not predictive of grade 1/2 DC. Increased levels of circulating pro-inflammatory cytokines (IL-15, IFN-γ, and CLL5) were noted in both CLL and indolent non-Hodgkin lymphoma (iNHL) pts treated with IDELA. IL-17A level was significantly higher at the t-1 visit in CLL pts with grade ≥3 DC vs no DC. However, Receiver Operating Characteristic analysis deemed that neither individual cytokine/chemokine or in combination was not predictive for DC occurrence. CLL/iNHL pts with grade ≥3 DC vs no DC were noted to have higher on treatment IL-8. CLL pts presented lower baseline IL-6 and G-CSF levels in patients with grade ≥3 DC vs no DC (Table 2). There were no associations between baseline circulating plasma markers and DC in pts with iNHL. Conclusion: With currently available data, no single circulating immune biomarker is associated with or is predictive for the development of DC during treatment with IDELA. Lower levels of CD3+, CD8+, and FOXP3+ were noted longitudinally in grade 1/2 DC vs no DC pts. No differences were observed in temporal profiles for T-cell subsets in pts with grade ≥3 DC vs those with no DC. However, higher on-treatment IL-8 and lower baseline IL-6 and G-CSF were noted in the relapsed CLL pts with grade ≥3 DC when compared with no DC pts. While quantitative analysis of these T-cell subsets was not associated with grade ≥3 DC, the qualitative function of T-cells may play a role in mediating DC. Functional assays for T-cells were not explored in this study. In addition, our concurrent analysis of colonic biopsies and association with CMV in pts with IDELA associated DC will be presented separately. Disclosures Furman: Pharmacyclics: Consultancy, Speakers Bureau; Gilead Sciences: Consultancy; Janssen: Consultancy; Genentech: Consultancy; Abbvie: Consultancy, Honoraria. Hallek:Mundipharma: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Janssen-Cilag: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; F. Hoffmann-LaRoche: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau. Sharman:Gilead Sciences, Inc.: Honoraria, Research Funding. Hillmen:Pharmacyclics: Research Funding; Janssen: Honoraria, Research Funding; Roche: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Abbvie: Research Funding. Zelenetz:Gilead Sciences: Research Funding. Flinn:Janssen: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Gilead Sciences: Research Funding; ARIAD: Research Funding; RainTree Oncology Services: Equity Ownership. Jurczak:Gilead Sciences: Research Funding; Janssen: Research Funding; Celltrion, Inc: Research Funding; Acerta: Research Funding; Bayer: Research Funding. Munugalavadla:Gilead Sciences: Employment, Equity Ownership. Xiao:Gilead Sciences: Employment, Equity Ownership. Zheng:Gilead Sciences: Employment, Equity Ownership. Rao:Gilead Sciences: Employment, Equity Ownership. Dreiling:Gilead Sciences: Employment, Equity Ownership. Salles:Roche/Genentech: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Gilead: Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Mundipharma: Honoraria. O'Brien:Pharmacyclics, LLC, an AbbVie Company: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3970-3978 ◽  
Author(s):  
Yi Zhang ◽  
Gerard Joe ◽  
Jiang Zhu ◽  
Richard Carroll ◽  
Bruce Levine ◽  
...  

Abstract Graft versus host disease (GVHD) is triggered by host antigen-presenting cells (APCs) that activate donor T cells to proliferate and differentiate, but which APC-activated donor T-cell subsets mediate GVHD versus beneficial antitumor effects is not known. Using a CD8+ T cell–dependent mouse model of human GVHD, we found that host dendritic cell (DC)–induced CD44hiCD8+ effector/memory T cells were functionally defective in inducing GVHD, whereas CD44loCD8+ naive phenotype T cells were extremely potent GVHD inducers. Depletion of CD44loCD8+ T cells from host DC-stimulated T cells before transplantation prevented GVHD without impairing their antitumor activity in vivo. Compared with CD44loCD8+ T cells, CD44hiCD8+ T cells expressed high levels of Fas and were efficiently deleted in vivo following transplantation. These results suggest that ex vivo allogeneic DC stimulation of donor CD8+ T cells may be useful for the prevention of GVHD and for optimizing antitumor therapies in vivo.


Sign in / Sign up

Export Citation Format

Share Document