scholarly journals Rates of Thrombotic Events in Hypereosinophilic Syndrome and the Effect of Molecular Aberrations in Thrombotic Risk

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-14
Author(s):  
Orly Leiva ◽  
Olesya Baker ◽  
Andrew M. Brunner ◽  
Hanny Al-Samkari ◽  
Rebecca Karp Leaf ◽  
...  

Background: Idiopathic hypereosinophilia and hypereosinophilic syndrome (HES) comprise a rare, heterogeneous group of hematologic disorders characterized by the overproduction of eosinophils leading to tissue eosinophilic infiltration and damage. Hypereosinophilia can be primary - due to a clonal or malignant process - or secondary to a non-clonal process. Primary eosinophilia can be accompanied by clonal markers, such as in myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA/B, FGFR1 or PCM1-JAK2, genetic mutations or chromosomal abnormalities leading to a diagnosis of chronic eosinophilic leukemia. Without easily identifiable clonal markers, a diagnosis of idiopathic HES is made after secondary causes are excluded. Thrombotic complications in clonal eosinophilic disorders have been described in case reports but the prevalence of thrombosis has not been extensively studied. We hypothesized that HES is associated with an increased thrombotic risk compared to the general population. Additionally, given the known increased thrombotic risk in patients with clonal hematopoiesis of indeterminate potential, we also hypothesized that the risk of thrombosis is greatest in HES patients with evidence of an underlying clonal process. Methods: Using an institutional database, we retrospectively analyzed 44 patients with HES who had undergone molecular testing with a DNA based next generation sequencing (NGS) assay (Heme SnapShot) and an RNA based NGS assay (Heme fusion) as part of their work up for HES at Massachusetts General Hospital from 2016 to 2020. Patients with secondary eosinophilia were excluded. We used Fisher's exact test to compare rates of thrombotic events or death between patients with and without molecular aberration. Relative risk and corresponding 95% CI was estimated by fitting a log-binomial regression model. Results: Among the 44 patients analyzed, 16 (36.4%) had a molecular aberration detected on NGS. Of the patients with molecular aberrations detected, 4 (25%) had PGFRA, PGFRB, or FGFR1 fusions. Other pathogenic mutations were as follows - 1 (6.3%) JAK2 mutation, 3 (18.8%) TET2, 1 (6.3%) DNMT3A and 9 (56.4%) had mutations in other genes. White blood cell count, absolute eosinophil count, hematocrit, platelet count, tryptase and vitamin B12 levels at diagnosis of HES were similar between the two groups. After a median follow-up time of 29 months (IQR 19.3, 52), 9 (20.5%) of all HES patients had a thrombotic event after diagnosis of HES (4 venous and 5 arterial) with a median time to first thrombotic event of 14.0 months (IQR 3.5, 28.0). HES patients with a molecular aberration had increased number of thrombotic events compared to HES patients with no molecular aberrations, 37.5% versus 10.7% respectively (p = 0.053, risk ratio 3.5, 95% CI 1.01 - 12.12). Three patients with molecular aberrations died versus 1 patient with no molecular aberrations (p = 0.129, risk ratio 5.25, 95% CI 0.59 - 46.36). Among patients with at least 12 months of follow-up (n = 40, 14 with and 26 without molecular aberrations), the one-year cumulative incidence of thrombotic events was 42.9% in patients with molecular aberrations vs 11.5% without (p = 0.044, RR 3.7 95% CI 1.2-12.0). HES patients who had thrombotic events had an increased risk of death compared to those without thrombotic events (p = 0.0226, RR 11.7, 95% CI 1.8 - 75.2). Conclusions: Thrombotic complications are common in the current study of patients with HES and are associated with an increased risk of death. Although our patient cohort was small, presence of molecular aberrations had increased rates of thrombotic events and mortality, suggesting an area of further study including possible therapeutic trials. Figure 1 Disclosures Brunner: Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; AstraZeneca: Research Funding; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Al-Samkari:Argenx: Consultancy; Amgen: Research Funding; Dova: Consultancy, Research Funding; Agios: Consultancy, Research Funding; Rigel: Consultancy. Rosovsky:Bristol-Myers Squibb, Janssen: Research Funding; Bristol-Myers Squibb, Dova, Janssen, Portola: Consultancy. Fathi:PTC Therapeutics: Consultancy; Takeda: Consultancy; TrovaGene: Consultancy; Amgen: Consultancy; Bristol-Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Astellas: Consultancy; Novartis: Consultancy; NewLink Genetics: Consultancy, Honoraria; Daiichi Sankyo: Consultancy; Forty Seven: Consultancy; Jazz: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Trillium: Consultancy; Seattle Genetics: Consultancy, Research Funding; Pfizer: Consultancy; Kura: Consultancy; Boston Biomedical: Consultancy; Blue Print Oncology: Consultancy; AbbVie: Consultancy; Agios: Consultancy, Research Funding; Amphivena: Consultancy, Honoraria. Weitzman:Abbvie: Consultancy. Hobbs:Incyte: Research Funding; Bayer: Research Funding; Novartis: Honoraria; Celgene/BMS: Honoraria; Merck: Research Funding; Constellation: Honoraria, Research Funding; Jazz: Honoraria.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4490-4490
Author(s):  
Sigrun Thorsteinsdottir ◽  
Ingigerdur S Sverrisdottir ◽  
Gauti Gislason ◽  
Ola Landgren ◽  
Ingemar Turesson ◽  
...  

Abstract Introduction Multiple myeloma (MM) causes lytic bone lesions, osteopenia, and fractures, which increase the morbidity of MM patients. Results from small previous studies have indicated that fractures in MM have a negative effect on survival. Aims The aim of the study was to evaluate the impact of fractures on survival in MM patients diagnosed in Sweden in the years 1990-2013. Furthermore, to analyze the effect of bone fractures at MM diagnosis on subsequent survival. Methods Patients diagnosed with MM in 1990-2013 were identified from the Swedish Cancer Registry. Information on date of birth, diagnosis, and death were collected from the Registry of Total Population. Information on all fractures were retrieved from the Swedish Patient Registry. Cox regression model was used with fractures as time-dependent variables. The effect of fractures on survival was assessed for any fracture or a subtype of fracture (a specific bone fracture or ICD-coded pathologic fracture). Either first fracture or the first subtype of fracture was used in the analysis. The effect of a fracture at MM diagnosis (within 30 days before or 30 days after MM diagnosis) on survival was also estimated using a Cox regression model. All models were adjusted for age, sex, time of diagnosis, and previous fractures. Results A total of 14,008 patients were diagnosed with MM in the study period. A total of 4,141 (29.6%) patients developed a fracture including fractures that occurred within a year before MM diagnosis and thereafter. Hereof 2,893 (20.7%) patients developed a fracture after MM diagnosis. The risk of death was significantly increased for patients that developed a fracture after the time of MM diagnosis with a hazard ratio (HR) of 2.00 (95% confidence interval (CI) 1.91-2.10) for all fractures combined. The risk of death was significantly increased for patients that developed all subtypes of fractures after MM diagnosis except ankle fractures. The risk of death was significantly increased for patients that developed pathologic fractures (HR=2.17; 95% CI 2.03-2.32), vertebral fractures (HR=1.73; 95% CI 1.61-1.87), hip fractures (HR=1.99; 95% CI 1.82-2.18), femoral fractures (HR=2.62; 95% CI 2.32-2.98), humerus fractures (HR=2.57; 95% CI 2.32-2.86), forearm fractures (HR=1.24; 95% CI 1.05-1.46), and rib fractures (HR=1.52; 95% CI 1.31-1.77), but not for ankle fractures (HR 1.07; 95% CI 0.79-1.44). A total of 942 (6.7%) of all MM patients were diagnosed with a fracture within 30 days before or 30 days after MM diagnosis. The patients with a fracture at diagnosis were at a significantly increased risk of death compared to those without (HR 1.31; 95% CI 1.21-1.41; Figure) Conclusions Our large population-based study, including over 14,000 patients diagnosed with MM in Sweden in the years 1990-2013, showed that MM patients that developed a fracture after the time of diagnosis were at twofold increased risk of dying compared to MM patients without a fracture. Furthermore, MM patients with a fracture at diagnosis had a 30% higher risk of dying compared to patients without a fracture. Our results indicate that fractures in MM reflect a more advanced disease at diagnosis and stress the importance of managing MM bone disease in all MM patients. Figure. Figure. Disclosures Landgren: Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy; Celgene: Consultancy, Research Funding; Amgen: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1657-1657
Author(s):  
Paola Guglielmelli ◽  
Alessandra Carobbio ◽  
Elisa Rumi ◽  
Valerio De Stefano ◽  
Lara Mannelli ◽  
...  

Introduction. Prefibrotic myelofibrosis (pre-PMF) is a unique entity in the 2016 WHO classification of myeloproliferative neoplasms with distinct clinical phenotype and outcome [Guglielmelli P, Blood 2017]. Compared to essential thrombocythemia (ET), pre-PMF is characterized by more pronounced disease manifestations, adverse mutation profile and worse outcome. Previous studies [Rumi E, Oncotarget 2017] showed that patients (pts) with pre-PMF present a risk of vascular events similar to ET. However, no studies performed a comprehensive assessment of risk factors for thrombosis in pre-PMF. The current study aimed to identify risk factors for thrombosis and bleeding in a large series of pre-PMF pts and explore the effectiveness of contemporary prognostic models developed specifically for ET. Patients and Methods. The study included 382 pre-PMF pts, diagnosed by 2016 WHO criteria, referred by 4 Italian Centers. Previously published methods were used to genotype JAK2, MPL, CALR, EZH2, ASXL1, IDH1/2 and SRSF2; a high molecular risk (HMR) category was defined according to Vannucchi A, [Leukemia 2013]. Thrombosis‐free survival (TFS) was determined from diagnosis to the first thrombotic event. Pts were grouped according to the conventional risk stratification system [Barbui T, JCO 2011], IPSET‐thrombosis [Barbui T, Blood 2012] and revised IPSET‐thrombosis [Barbui T, BCJ 2015]. Cox-regression model was used for univariate analysis. Harrell's concordance (C) statistic was calculated to measure the incremental accuracy of multivariable models sequentially adjusted for new predictors of thrombotic risk. A P <0.05 was considered statistically significant. Results. At diagnosis, 65 pts (17%) experienced major thrombotic events which included 35 (9%) arterial and 31 (8%) venous thromboses. With a median follow-up of 6.9 y (range 0.08-32.6), 56 (15%) pts developed an arterial or venous thrombotic event, with a total incidence rate of 1.99% pts/year (pt-y); 30 (8%) were arterial and 28 (7%) venous events with incidence rate of 1.00% pt-y and 0.95% pt-y, respectively. Splanchnic vein thrombosis (SVT) represented the most frequent venous events before/at diagnosis (26%). During the follow-up, 16% and 8% of pts experienced myelofibrotic or leukemic progression, and 105 (27%) died, with incidence rate of 2.05% pt-y, 0.95% pt-y and 3.41% pt-y, respectively. In univariate analysis, factors significant for arterial thrombosis after diagnosis were age >65y (HR 2.88; P=0.005), WBC>10x109/L (HR 2.43; P=0.026), presence of >1 generic CV risk factor (HR 2.16; P=0.047), JAK2V617F (HR 3.35; P=0.027) and HMR status (HR 13.1; P=0.027). Conversely, only history of previous thrombosis (HR 3.06; P=0.005) and previous venous event (HR 5.53; P<0.0001) retained significance for predicting venous thrombosis. Pts were effectively stratified according to IPSET and conventional risk model. The risk of thrombosis in IPSET low-, intermediate-, and high-risk categories was 0.67%, 2.05% and 2.95% pt-y, and 1.47% pt-y and 2.71% pt-y in 2-tiered thrombotic risk model. (Figure 1); in revised-IPSET, 0.54%, 2.23%, 2.44% and 2.69 %pt-y in the very low, low, intermediate- and high-risk category. When WBC>10x109/L or HMR variables were incorporated into IPSET model, the C-statistic increased significantly for the prediction of arterial events: from baseline value of 0.68 to 0.74 adding WBC and 0.91 HMR status. The proportion of pts who experienced major bleeding was 3% prior/at diagnosis,and 7% during follow-up, with total incidence rate of 0.94% pt-y. In univariate analysis, predictors for major bleeding during follow-up were age >75y (HR 3.34; P=0.011), WBC>13x109/L (HR 2.33; P=0.035), presence of >1 generic CV risk factor (HR 2.41; P=0.035), particularly hypertension (HR 2.63; P=0.016) and grade-1 fibrosis (HR 2.28; P=0.05). High platelet count and treatment, including antiplatelet and anticoagulant drugs, did not reach statistical significance. Conclusions. Overall, this study identified independent risk factors for major thrombosis and bleeding in pre-PMF. Of interest, we report that HMR status predicted for arterial thrombosis during the follow-up. Pre-PMF pts showed remarkably high rate of venous thrombosis, mostly represented by SVT. The 3-tiered IPSET prognostic model for thrombosis reliably predicted occurrence of thrombotic events in pre-PMF and should be considered as standard reference. Figure 1 Disclosures Rumi: novartis: Honoraria, Research Funding. Thiele:Shire: Research Funding; Incyte: Consultancy, Honoraria, Other: Remuneration, Research Funding; Sanofi: Consultancy, Honoraria, Other: Remuneration; Novartis: Consultancy, Honoraria, Other: Remuneration, Research Funding; AOP Orphan Pharmaceuticals: Consultancy, Research Funding. Vannucchi:Incyte: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Italfarmaco: Membership on an entity's Board of Directors or advisory committees; CTI BioPharma: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4366-4366
Author(s):  
Mark G. Faber ◽  
Amanda Przespolewski ◽  
Jeffrey Baron ◽  
Tara Cronin ◽  
Wei Tan ◽  
...  

Abstract BACKGROUND: Healthy adults with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of death from vascular disease. CHIP-associated genetic mutations such as ASXL1, TET2 and DNMT3A have been linked to the pathogenesis of atherosclerosis (Jaiswal et al, 2017). MDS and CHIP share common genetics events; in fact, certain MDS cases are believed to arise from preexisting clonal hematopoiesis. A recent SEER study demonstrated that 60 months from diagnosis, patients (pts) with low-risk MDS are at higher risk of death from cardiovascular causes than from MDS itself (Brunner et al, 2017). As the relationship between vascular disease and clonal hematopoiesis is delineated, management of vascular disease in patients with MDS is becoming increasingly important. Here we performed a retrospective analysis of MDS pts from Roswell Park to evaluate whether MDS-related factors such as morphologic subtype, treatment, cytopenias, iron status, blast percentage and karyotype modify atherosclerosis risk when molecular events are taken into account. METHODS: Over the past decade, 850 pts were diagnosed with MDS were seen and treated at Roswell Park. For the purpose of this study, 192 pts with a confirmed diagnosis of MDS seen between 2012- 2017 were investigated for cardiac events, blood counts, iron or inflammatory status as ferritin, MDS-related morphology, molecular profile and treatment. Cases were comprehensively annotated for the presence of vascular events, (defined as imaging or procedure verified coronary artery disease, cerebrovascular accident, or peripheral vascular disease) by review of the medical record. Conventional karyotype information was present in 98% of the cohort and NGS based multi-gene sequencing results through FoundationOne Heme was evaluated in 30% of the cohort. Numeric variables were summarized using simple descriptive statistics. A logistic regression model was used to investigate the association between vascular events and a set of explanatory variables for multivariate analysis. RESULTS: The median age at diagnosis for this cohort is 69 (range: 21-91) years; 60% were male and 57% had MDS with excess blasts. By IPSS-R, 25% had very low/low risk MDS, 22% had intermediate risk MDS and 46% had high risk MDS. The most common karyotypic abnormalities were normal (42%), complex (17%), trisomy 8 (10%) and del 7/7q (10%). Of the 59 patients with molecular data, the most common recurrent somatic mutations were in ASXL1 (47%), TET2 (30%), SRSF2 (27%), RAS pathway (22%) SF3B1 (22%), RUNX1 (20%) and TP53 (17%). The overall incidence of vascular events in this cohort was 27%. Vascular disease was noted at similar frequencies for pts with low grade and high grade MDS (based on subtype of MDS), 23% vs. 30% (p=0.33) respectively. Women with MDS were significantly less likely to develop to vascular events than were men, 16% vs. 34% (p=0.007) and the mean age of pts with vascular disease was significantly higher, 71 vs. 65 years (p=0.005). Traditional risk factors such as hypertension and hyperlipidemia were more prevalent in MDS pts with vascular disease. Baseline hemoglobin, transfusion requirements and blast % levels were comparable in MDS patients with or without vascular disease. MDS pts with vascular disease had higher median ferritin levels, 432 vs. 301 ng/ml (p=0.093). When stratified by the IPSS-R, pts with very low risk MDS had a non-significant lower incidence of cardiac events, 14% vs. 25% (p=0.30), compared to other groups. Treatment with erythropoietin, lenalidomide or hypomethylating agents was not associated with vascular events. MDS pts with mutations in ASXL1 and SRSF2 had a higher incidence of vascular disease, 43% vs. 13% (p=0.01) and 38% vs 20% (p=0.18) respectively. On multivariable analysis, older age and male gender were most strongly predictive for vascular events. CONCLUSION: Here we retrospectively examined the potential factors associated with cardiovascular events in MDS pts treated at our institute over a 5-year time span. Male gender and older age were positively associated. Treatment regimen (erythropoietin injections or lenalidomide) and IPSS-R were not associated with an increased risk for vascular events. Factors independent of traditional cardiac risk factors, such as somatic mutations in ASXL1, iron overload and/or an inflammatory milieu i.e, ferritin, may contribute to atherosclerotic vascular disease in pts with MDS. Disclosures Baron: Pfizer Pharmaceuticals: Other: Previously served as a consult on the Advisory Boards (May 2017).. Wang:Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Novartis: Speakers Bureau; Amgen: Consultancy; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy; Jazz: Speakers Bureau; Jazz: Speakers Bureau; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees. Griffiths:Pfizer, Inc.: Research Funding; Celgene, Inc: Honoraria, Research Funding; Astex/Otsuka Pharmaceuticals: Honoraria, Research Funding; Novartis, Inc.: Research Funding; Alexion Inc.: Honoraria, Research Funding. Thota:Incyte: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2953-2953 ◽  
Author(s):  
Frederick Lansigan ◽  
Ian Barak ◽  
Brandelyn Nicole Pitcher ◽  
Sin-Ho Jung ◽  
Bruce Cheson ◽  
...  

Abstract Background: In follicular lymphoma (FL) patients treated with first-line R-CHOP, early progression of disease (POD) within 2 years after diagnosis is associated with high risk for death (hazard ratio 6.4) and a 50% 5-year overall survival (Casulo et al. JCO 2015). Whether these observations hold for patients treated without chemotherapy is unknown. The Alliance for Clinical Trials in Oncology conducted three frontline rituximab-based non-chemotherapy-containing biologic immunotherapy doublet clinical trials: R-Galiximab (Anti-CD80, CALGB 50402), R-Epratuzumab (Anti-CD22, CALGB 50701) and R-Lenalidomide (CALGB 50803). We performed a retrospective analysis of 174 patients to determine outcomes of early progressors after initial biologic, non-cytotoxic treatment and risk factors for early POD. Methods: CALGB 50402 (n=60), CALGB 50701 (n=57), and CALGB 50803 (n=57) had similar eligibility criteria: previously untreated follicular lymphoma, grade 1, 2 or 3a with stage III, IV or bulky (single mass >7 cm) stage II disease, and ECOG PS 0 to 2. Early POD was defined as progression within 24 months from study entry. Univariate and multivariate logistic regression modeling using forward selection was performed to identify predictors of early POD. Kaplan-Meier (KM) method was used to estimate 2-year and 5-year overall survival probability. Hazard ratios (HR) and 95% CI were calculated using a univariate and multivariate Cox regression model adjusting for FLIPI. Results: Twenty-seven percent (48/174) of patients had early POD. Median survival follow-up time from study entry was 5.5 years (2.1 to 10.1 years) and median time from diagnosis to enrollment was 2 months (0.2 to 115 months). Median age was 54 (range: 22-90), 49% were male and 24% had low-, 52% intermediate- and 24% high-risk FLIPI (Table 1). Early POD from study entry conferred a worse OS [HR=4.86 (95% CI 1.90-12.4), p < 0.001]. After adjusting for FLIPI, patients with early POD from study entry had a worse OS compared with patients who did not progress within 2 years [HR=4.77 (95% CI 1.70-13.4), p=0.003]. For early POD, the 2-year survival probability was 89% (76-95%) vs. 100% for non-early POD, and the 5-year survival was 76% (60-86%) vs. 99% (95-99%), respectively (Figure 1). When the 2-year early POD interval was taken from time of diagnosis, similar findings were noted (n=171, HR for OS 5.27 (95% CI 1.98-14.0), p 0.0009) [Table 2]. Univariate analysis revealed age >60 (p=0.019), male sex (p=0.002), higher FLIPI (p<0.001), hemoglobin <10 (p=0.021), number of nodal sites >4 (p=0.010), elevated LDH (p=0.004), nodal size >7 cm (p=0.002), albumin <3.5 (p=0.030) and CD10 positivity (p=0.015) were associated with early POD, while grade and bone marrow involvement were not. Histologic biomarkers PD1 and Ki67 were not associated with early POD in this analysis. A multivariate logistic regression model showed that male sex, albumin <3.5, low absolute monocyte count, interfollicular CD10 expression and high-risk FLIPI were predictors of early POD. Conclusions: Early relapse within 2 years after diagnosis in patients receiving front-line rituximab-based biologic non-cytotoxic therapy is associated with an increased risk of death. These data are similar to previous findings in patients treated with R-CHOP from the National LymphoCare study, suggesting that the adverse survival of patients with early POD may be independent of systemic treatment modality. Novel clinicopathological approaches are needed at diagnosis to identify patients who are likely to have unfavorable outcomes, and for whom biologic doublets are efficacious. Support: U10CA180821, U10CA180882.ClinicalTrials.gov Identifier: NCT00117975 (CALGB 50402), NCT00553501 (CALGB 50701), and NCT01145495 (CALGB 50803) Disclosures Lansigan: Pharmacyclics: Consultancy; Teva: Research Funding; Celgene: Consultancy; Spectrum: Consultancy, Research Funding. Cheson:Gilead: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding. Czuczman:Celgene: Employment. Martin:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Other: travel, accommodations, expenses; Teva: Research Funding; Acerta: Consultancy; Novartis: Consultancy; Gilead: Consultancy, Other: travel, accommodations, expenses. Hsi:Eli Lilly: Consultancy; Abbvie: Consultancy; Cellerant Therapeutics: Consultancy; Seattle Genetics: Honoraria; HTG molecular diagnostics: Honoraria. Bartlett:Gilead: Consultancy.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 901-901
Author(s):  
Sara Bringhen ◽  
Massimo Offidani ◽  
Pellegrino Musto ◽  
Anna Marina Liberati ◽  
Giulia Benevolo ◽  
...  

Abstract Introduction : Rd and MPR showed to be effective combinations in elderly newly diagnosed multiple myeloma (NDMM) patients (pts). Cyclophosphamide is a less toxic alkylating alternative agent. EMN01 is the first trial to formally compare these three different Lenalidomide-based combinations. Maintenance with Lenalidomide has been recently approved in patients eligible for autologous stem cell transplant (ASCT). Few data are available about the best combination as maintenance in patients not eligible for ASCT. Methods : 662 pts with NDMM were randomized to receive 9 28-day cycles of Rd (lenalidomide 25 mg/day for 21 days; dexamethasone 40 mg on days 1,8,15 and 22 in pts 65-75 years old and 20 mg in those &gt;75 years), MPR (lenalidomide 10 mg/day for 21 days; melphalan orally 0.18 mg/Kg for 4 days in pts 65-75 years old and 0.13 mg/Kg in &gt;75 years pts; prednisone 1.5 mg/Kg for 4 days) or CPR (lenalidomide 25 mg/day for 21 days; cyclophosphamide orally 50 mg/day for 21 days in pts 65-75 years old and 50 mg every other day in &gt;75 years pts; prednisone 25 mg every other day). After induction, pts were randomized to receive maintenance with lenalidomide alone (R; 10 mg/day for 21 days) or with prednisone (RP; R, 10 mg/day for 21 days and P, 25 mg every other day), until disease progression. Results : Pts characteristics were well balanced in all groups; 217 pts in Rd, 217 in MPR and 220 in CPR arms could be evaluated. After a median follow-up of 63.7 months, median PFS was 23.2 months in MPR, 18.9 months in CPR and 18.6 months in Rd (MPR vs CPR p=0.02; MPR vs Rd p=0.08). Median overall survival (OS) was 79.9 months in MPR, 69.4 months in CPR and 68.1 months in Rd (MPR vs CPR p=0.98; MPR vs Rd p=0.64). The most common grade ≥3 adverse event (AEs) was neutropenia: 64% in MPR, 29% in CPR and 25% in Rd pts (p&lt;0.0001). Grade ≥3 non hematologic AEs were similar among arms. At the end of induction, 402 pts were eligible for maintenance, 198 in the RP and 204 in the R groups. PFS from start of maintenance was 22.2 months in the RP group and 17.6 in the R group, with 20% reduced the risk of death/progression for pts receiving RP maintenance (HR 0.81, p=0.07; Figure 1). A subgroup analysis was performed to determine the consistency of RP vs R treatment effect in different subgroups using interaction terms between treatment and cytogenetic abnormalities, ISS, age, sex, induction treatment and response before maintenance (Figure 1). No difference in OS was observed (HR 1.02, p=0.93) but the OS analysis was limited by the low number of events. Median duration of maintenance was 23.0 months in RP pts and 20.5 months in R pts, 14% and 13% of pts discontinued due to AEs, in RP and R groups, respectively. Conclusion : This phase III trial compared 2 different Lenalidomide-containing induction regimens and 2 different Lenalidomide-containing maintenance regimens in an elderly community-based NDMM population. MPR prolonged PFS by approximately 5 months, yet the higher incidence of hematologic toxicity should be carefully considered. The addition of low-dose prednisone to standard lenalidomide maintenance reduced the risk of death/progression by 20%, with a good safety profile. Updated results will be presented at the meeting. Disclosures Bringhen: Mundipharma: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; Celgene: Honoraria; Bristol Myers Squibb: Honoraria; Karyipharm: Membership on an entity's Board of Directors or advisory committees. Offidani: celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Musto: Celgene: Honoraria; Janssen: Honoraria. Gaidano: Gilead: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Roche: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria. De Sabbata: Celgene: Membership on an entity's Board of Directors or advisory committees. Palumbo: Sanofi: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Binding Site: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding; Genmab A/S: Consultancy, Honoraria, Research Funding; Janssen-Cilag: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau; Takeda: Consultancy, Employment, Equity Ownership, Honoraria, Research Funding. Hájek: Amgen, Takeda, BMS, Celgene, Novartis, Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Consultancy, Honoraria; Pharma MAR: Consultancy, Honoraria. Boccadoro: Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; AbbVie: Honoraria; Mundipharma: Research Funding; Sanofi: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1835-1835 ◽  
Author(s):  
Katrina M Piedra ◽  
Hani Hassoun ◽  
Larry W. Buie ◽  
Sean M. Devlin ◽  
Jessica Flynn ◽  
...  

Introduction Immunomodulatory agents (IMiD's) are associated with an increased risk of venous thromboembolism (VTE), particularly when combined with high dose steroids. Studies evaluating the use of lenalidomide-bortezomib-dexamethasone (RVD) and carfilzomib-lenalidomide-dexamethasone (KRD) in the frontline setting for multiple myeloma (MM) have reported a 6% and 24% incidence of thrombosis, respectively, despite primary thrombotic prophylaxis with aspirin (ASA) (Richardson, et al. Blood. 2010; Korde, et al. JAMA Oncol 2015). Recent data, including the Hokusai VTE Cancer Trial, have suggested that safety and efficacy of direct oral anticoagulants (DOACs) are preserved in the setting of treatment of solid malignancy-associated thrombosis (Raskob, et al. N Engl J Med. 2018; Mantha, et al. J Thromb Thrombolysis. 2017). Despite this data, there is limited experience and use of DOACs in prevention of thromboses in the setting of hematologic malignancies, specifically MM. After careful review of literature, since early 2018, we changed our clinical practice and routinely placed newly diagnosed MM (NDMM) patients receiving KRD at Memorial Sloan Kettering Cancer Center (MSKCC) on concomitant rivaroxaban 10 mg once daily, regardless of VTE risk stratification. In the following abstract, we present VTE rates and safety data for newly diagnosed MM patients receiving RVD with ASA vs. KRD with ASA vs. KRD with rivaroxaban prophylaxis. Methods This was an IRB-approved, single-center, retrospective chart review study. All untreated patients with newly diagnosed MM, receiving at least one cycle of RVD or KRD between January 2015 and October 2018 were included. The period of observation included the time between the first day of therapy until 90 days after completion of induction therapy. Patients were identified by querying the pharmacy database for carfilzomib or bortezomib administration and outpatient medication review of thromboprophylaxis with rivaroxaban or ASA. VTE diagnoses were confirmed by ICD-10 codes and appropriate imaging studies (computed tomography and ultrasound). Descriptive statistics were performed. Results During the observation period, 241 patients were identified to have received RVD or KRD in the frontline (99 RVD with ASA; 97 KRD with ASA; 45 KRD with rivaroxaban). Baseline characteristics were well distributed among the three arms, with a median age of 60 (30-94) in the RVD ASA arm, 62 (33-77) in the KRD ASA arm, and 60 (24-79) in the KRD rivaroxaban arm. Patients had International Staging System (ISS) stage 3 disease in 13% (N=13), 9.3% (N=9), and 11% (N=5) of the RVD ASA, KRD ASA, and KRD rivaroxaban arms, respectively. Median weekly doses of dexamethasone were higher in both KRD arms, 40 mg (20-40) vs. 20 mg (10-40) in the RVD ASA arm. The average initial doses of lenalidomide were 22 mg in the RVD ASA arm compared to 25 mg in both the KRD ASA and KRD rivaroxaban arms. After querying the pharmacy database, no patients were identified to have a history or concomitant use of erythropoietin stimulating agent (ESA) use. Treatment-related VTE's occurred in 4 patients (4.0%) in the RVD ASA arm, 16 patients (16.5%) in the KRD ASA arm, and in 1 patient (2.2%) in the KRD rivaroxaban arm. Average time to VTE was 6.15 months (Range 5.42, 9.73) after treatment initiation in the RVD ASA group, while it was 2.61 months (Range 0.43, 5.06) in the KRD ASA group and 1.35 months in the KRD rivaroxaban group. Minor, grade 1 bleeding events per the Common Terminology Criteria for Adverse Events (CTCAE) were identified in 1 (1.1%) patient in the RVD ASA arm, 5 (5.2%) patients in the KRD ASA arm, and 1 (2.2%) patient in the KRD rivaroxaban arm. Conclusion More efficacious MM combination therapies have been found to increase the risk of VTE when using ASA prophylaxis, indicating better thromboprophylaxis is needed. We found patients receiving ASA prophylaxis with KRD were more likely to experience a VTE and these events occurred earlier compared to patients receiving ASA prophylaxis with RVD. Importantly, the rate of VTE was reduced to the same level as ASA prophylaxis with RVD when low-dose rivaroxaban 10 mg daily was used with KRD, and without necessarily increasing bleeding risk. Our retrospective data support the development of prospective clinical trials further investigating DOAC use in thromboprophylaxis for NDMM patients receiving carfilzomib-based treatments. Figure Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Lesokhin:BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; GenMab: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landgren:Theradex: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Other: IDMC; Sanofi: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: Off-label use of rivaroxaban for outpatient prophylaxis of venous thromboembolism (VTE) will be explicitly disclosed to the audience.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3306-3306
Author(s):  
Yi L. Hwa ◽  
Qian Shi ◽  
Shaji Kumar ◽  
Martha Q. Lacy ◽  
Morie A. Gertz ◽  
...  

Abstract Introduction: A recent study revealed an antiproliferative and apoptotic effect of propranolol on multiple myeloma (MM) cells. Our previous small matched case-control study showed longer survival in patients with propranolol and other beta-blockers (BB) intake than those without. This larger scale study was conducted to confirm the positive association of BB and MM survival. Methods: We identified 1971 newly diagnosed pts seen at Mayo Clinic between 1995 and 2010. Cardiac medication usage after diagnosis of MM was extracted from patient records and categorized based on BB intake. Cause of death was collected with death due to MM as the primary interest event and death due to cardiac disease or other reasons as competing risk events. The primary outcomes were MM disease-specific survival (DSS) and overall survival (OS). Cumulative incidence functions and Kaplan-Meier method were used to estimate the 5-year cumulative incidence rate (CIR) of MM death and OS rate, respectively. DSS and OS were compared by Gray's test and log-rank test, respectively. Multivarable Cox proportional hazard models were used to estimate the adjusted cause-specific HR (HRCSadj.) and hazard ratio (HRadj.) for DSS and OS, respectively, adjusting for demographics, disease characteristics, diagnosis year, and various chemotherapies. Results: 930 (47.2%) of MM patients had no intake of any cardiac medications; 260 (13.2%) had BB only; 343 (17.4%) used both BB / non-BB cardiac medications; and 438 patients (22.2%) had non-BB cardiac drugs. Five-year CIR of MM death and OS rate were shown in table. Superior MM DSS was observed for BB only users, compared to patients without any cardiac drugs (HRCSadj., .53, 95% confidence interval [CI], .42-.67, padj.<.0001) and non-BB cardiac drugs users (HRCSadj., .49, 95% CI, .38-.63, padj.<.0001). Patients received both BB and other cardiac drugs also showed superior MM DSS than non-cardiac drugs users (HRCSadj.., .54, 95% CI, .44-.67, padj.<.0001) and non-BB cardiac drug users. (HRCSadj., .50, 95% CI, .40-.62, padj.<.0001). MM DSS does not differ between BB users with and without other cardiac drugs (padj.=0.90). Multivariable analysis showed the same pattern for OS. None of the MM therapies impacted the differences in DSS and OS among BB intake groups (interaction padj.>.60). Conclusion: MM patients with BB intake showed reduced risk of death due to MM and overall mortality compared to patients who used non-BB cardiac or never used cardiac drugs. The result warrants further investigation for anti-cancer effect of BB in MM. Disclosures Shi: Mayo Clinic: Employment. Kumar:Onyx: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding; Skyline: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Glycomimetics: Consultancy; Janssen: Consultancy, Research Funding; Noxxon Pharma: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; BMS: Consultancy; Kesios: Consultancy. Gertz:NCI Frederick: Honoraria; Celgene: Honoraria; Med Learning Group: Honoraria, Speakers Bureau; Research to Practice: Honoraria, Speakers Bureau; Alnylam Pharmaceuticals: Research Funding; Novartis: Research Funding; Prothena Therapeutics: Research Funding; Ionis: Research Funding; Annexon Biosciences: Research Funding; GSK: Honoraria; Sandoz Inc: Honoraria. Kapoor:Celgene: Research Funding; Amgen: Research Funding; Takeda: Research Funding. Dispenzieri:pfizer: Research Funding; Celgene: Research Funding; Alnylam: Research Funding; Jannsen: Research Funding; GSK: Membership on an entity's Board of Directors or advisory committees; Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-3
Author(s):  
Rita V Masese ◽  
Dominique Bulgin ◽  
Liliana Preiss ◽  
Mitchell Knisely ◽  
Eleanor Stevenson ◽  
...  

Introduction Pregnancy in sickle cell disease (SCD) is associated with an exacerbation of SCD-related complications and an increased risk of maternal complications. The increased risk is partly due to physiologic adaptations in pregnancy, which include increased metabolic demands and a hypercoagulable state. The maternal death rate for SCD is 629 per 100,000 deliveries, compared to 12 per 100,000 deliveries in black women and 6 per 100,000 deliveries in the general population (Raider et al., 2016). Studies on maternal and perinatal outcomes of patients with SCD present inconsistent and conflicting results. Some studies have reported an increase in maternal complications such as pre-eclampsia, acute chest syndrome and thromboembolic events, while other studies have reported no significant risk in adverse maternal outcomes. The inconsistent findings reported in prior studies may be attributed to small sample sizes and single-centered sites. Our study aims to determine the prevalence and predictors of maternal morbidity among participants enrolled in the SCD Implementation Consortium (SCDIC) registry, which is the largest, most geographically diverse SCD participant sample in the United States. Methods This cross-sectional study included women enrolled in the SCDIC registry who had at least one pregnancy event. The SCDIC is composed of eight academic SCD centers across the United States and one data-coordinating center. Participants were enrolled in the SCDIC registry if they were 18 to 45 years of age and had a confirmed diagnosis of SCD. Enrolled participants completed a series of surveys that collected sociodemographic information, SCD and pregnancy history and data abstractions of participants' medical records was completed. Medical complications queried during pregnancy included: vaso-occlusive episodes, acute chest syndrome, blood transfusion requirement, preeclampsia, maternal diabetes and deep venous thrombosis. Descriptive analysis of sociodemographic, clinical and maternal characteristics was conducted. Bivariate analysis was performed using Chi-Square test, Mann-Whitney U test, t-test, and logistic regressions, as appropriate. A p-value of ≤ 0.05 was considered statistically significant for all analysis. Results The study sample included 743 women who had at least one pregnancy event, and a total of 1066 live births. Almost all women (96.3%) were African American, with a median age of 21 years (inter-quartile range of 19 to 23 years) at first birth. The majority had Hb SS SCD genotype (69.5%; 513 of the 738 with SCD genotype data). Of all reported pregnancies, participants did not use hydroxyurea during conception (78%), and pregnancy (84.5%). Only 2.7 % of the women reported using fertility drugs or assisted reproductive procedures. Seventy five percent of the pregnancies that ended in live births had maternal complications. The leading complications were vaso-occlusive episodes (61.2%), pregnancy requiring blood transfusion(s) (33.2%), preeclampsia (15.4%), deep venous thrombosis (5.6%) and acute chest syndrome (7.7%). When the pregnancies were stratified by SCD genotype, women with Hb SS had a higher occurrence of acute chest syndrome (63.4% vs. 26.7%), transfusion requirement (70.8% vs. 21%) and preeclampsia (66.7% vs 22.4%). In the univariate logistic regressions, multiparous women, with a history of adverse maternal outcomes in a previous pregnancy, had higher odds of vaso-occlusive episodes (OR: 3.42; 95% CI: 2.42-4.94) acute chest syndrome (OR:4.99; 95% CI:2.56- 9.48), transfusion requirement (OR:3.86; 95% CI:2.64- 5.69), and pre-eclampsia (OR:3.36; 95% CI:2.05-5.45). Conclusion In this large multicenter registry, we found pregnant women with SCD have significant maternal complications. Early antenatal care by healthcare providers knowledgeable about risk factors for adverse maternal outcomes in SCD is essential improve maternal and fetal outcomes and reduce the maternal death rate for SCD. Disclosures Hankins: Novartis: Research Funding; Global Blood Therapeutics: Consultancy, Research Funding; MJH Life Sciences: Consultancy, Patents & Royalties; UptoDate: Consultancy; National Heart, Lung, and Blood Institute: Honoraria, Research Funding; LINKS Incorporate Foundation: Research Funding; American Society of Pediatric Hematology/Oncology: Honoraria. Treadwell:Global Blood Therapeutics: Consultancy; UpToDate: Honoraria. King:Amphivena Therapeutics: Research Funding; Bioline: Consultancy; Celgene: Consultancy; Cell Works: Consultancy; Incyte: Consultancy; Magenta Therapeutics: Membership on an entity's Board of Directors or advisory committees; Novimmune: Research Funding; RiverVest: Consultancy; Tioma Therapuetics: Consultancy; WUGEN: Current equity holder in private company. Gordeuk:CSL Behring: Consultancy, Research Funding; Global Blood Therapeutics: Consultancy, Research Funding; Imara: Research Funding; Ironwood: Research Funding; Novartis: Consultancy. Kanter:SCDAA Medical and Research Advisory Board: Membership on an entity's Board of Directors or advisory committees; AGIOS: Membership on an entity's Board of Directors or advisory committees; BEAM: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; GLG: Honoraria; Jeffries: Honoraria; Cowen: Honoraria; Wells Fargo: Honoraria; NHLBI Sickle Cell Advisory Board: Membership on an entity's Board of Directors or advisory committees; Medscape: Honoraria; Guidepoint Global: Honoraria; bluebird bio, inc: Consultancy, Honoraria; Sanofi: Consultancy. Glassberg:Pfizer: Research Funding; Global Blood Therapeutics: Consultancy; Eli Lilly and Company: Research Funding. Shah:Novartis: Consultancy, Research Funding, Speakers Bureau; Alexion: Speakers Bureau; CSL Behring: Consultancy; Bluebird Bio: Consultancy; Global Blood Therapeutics: Consultancy, Research Funding, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2409-2409
Author(s):  
Tiffany Lin Lucas ◽  
Shveta Gupta ◽  
Joanna A. Davis ◽  
Fernando F. Corrales-Medina

Introduction: With the Federal Drug and Administration approval of the use of emicizumab from birth to adulthood, clinicians will now grapple with when to choose and offer emicizumab for routine prophylaxis, especially in previously untreated patients (PUPs). Given the overall limited real-world reported data and experience using emicizumab in PUPs, we created and administered a survey to medical providers in the United States who care for paediatric patients with haemophilia to investigate real-world practice strategies and treatment selection for PUPs. Methods: After review and endorsement by the Haemostasis and Thrombosis Research Society (HTRS), the survey was electronically distributed by e-mail to all providers included in the HTRS core member list. The survey was also sent to those providers included in a list of Haemophilia Treatment Centre (HTC) physicians (with duplicate emails reconciled). Providers needed to self-identify as ones that treat pediatric patients to be included. The survey was developed as a tiered survey with questions presented to each recipient based on their prior responses. Results: Seventy-seven completed surveys were included and analysed. All participants were active providers at a comprehensive HTC and the majority (93.4%) were practicing at an academically affiliated site. In terms of characteristics of those that answered the survey, forty-eight percent of responders reported that 1-20% of their patients had expressed interest in emicizumab. 46% of participants (34/74) reported that they would personally consider emicizumab as their prophylaxis recommendation for the majority (>50%) of their hemophilia A patients without inhibitors. 57% (44/76) reported that 1-10% of their non-inhibitor hemophilia A patients were already prescribed emicizumab prophylaxis. Each participant was then asked about his or her consideration of emicizumab as prophylaxis therapy for a 2 month old PUP. Just over the majority were unsure or said no to this consideration (51.3%) and their concerns were lack of information on safety and efficacy in this young age group and increased risk for inhibitor development. If the 2 month old PUP had a high risk of inhibitor, the majority of providers who initially were hesitant to start emicizumab prophylaxis would remain so. Of note, those providers went on to be asked if the patient had gone on to complete 50 exposure days without inhibitor development, they would then become more likely to initiate emicizumab prophylaxis therapy. Use of concurrent factor replacement was posed to all participants and there were varied responses. Discussion: Overall, our results reflect a widespread practice variation and a not yet well-standardized or defined approach for the use of emicizumab in PUPs with haemophilia A. In this survey, patient preference and individual bleeding risk were the top reasons for which a provider would consider using switching to emicizumab prophylaxis in both severe and mild/moderate haemophilia A patients. This pattern of practice reflects the current era of individualized medicine. Overall, our findings reinforce the need for more studies to investigate the outcomes of a combined treatment approach with FVIII concentrates and emicizumab focusing in the potential benefit of this approach in decreasing the risk for inhibitor development PUPs. Clinicians also feel the need for further data to help clarifying the safety of emicizumab in this population. Figure Disclosures Gupta: Novartis: Honoraria, Speakers Bureau; CSL Behring: Research Funding; Novo Nordisk: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Octapharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda-Shire: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Davis:Sanofi: Membership on an entity's Board of Directors or advisory committees; Kedrion: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees; CSL Behring: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda Shire: Consultancy; Spark Therapeutics: Consultancy. Corrales-Medina:Kedrion: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda-Shire: Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5444-5444
Author(s):  
Sæmundur Rögnvaldsson ◽  
Ingemar Turesson ◽  
Magnus Björkholm ◽  
Ola Landgren ◽  
Sigurður Yngvi Kristinsson

Introduction Peripheral neuropathy (PN) is a common disorder that can be caused by amyloid light-chain amyloidosis (AL). AL is a rare disorder caused by the deposition of amyloid fibers, originating from malignant plasma cells. Amyloid deposition in peripheral nerves causes PN and is present in 35% of patients with newly diagnosed AL. Diagnosis of AL can be difficult, leading to under-recognition, diagnostic delay, and delayed treatment. Virtually all instances of AL are preceded by monoclonal gammopathy of undetermined significance (MGUS). MGUS is relatively common with a reported prevalence of 4.2% in the general Caucasian population over the age of 50 years. Although MGUS is usually considered asymptomatic, a significant proportion of affected individuals develop PN. However, we are not aware of any studies assessing how PN affects risk of MGUS progression to AL. We were therefore motivated to conduct a large population-based study including 15,351 Swedish individuals with MGUS diagnosed 1986-2013. Methods Participants diagnosed with MGUS between 1986-2013 were recruited from a registry of a nationwide network of hematology- and oncology centers and the Swedish Patient Registry. We then cross-linked data on recorded diagnoses of AL and PN from the Swedish Patient Registry, diagnoses of lymphoproliferative disorders form the Swedish Cancer Registry, and dates of death from the Cause of Death Registry to our study cohort. Individuals with a previous history of other lymphoproliferative disorders were excluded from the study. A multi-state survival model was created. At inclusion, participants started providing person time into the PN or the non-PN states depending on whether they had a previous diagnosis of PN. Those with MGUS who developed PN after inclusion were included into the PN state at the time of PN diagnosis and provided person time in the PN state after that. We then created a Cox proportional hazard regression model with AL as the endpoint. Participants were censored at diagnosis of other lymphoproliferative disorders. We adjusted for sex, age, and year of MGUS diagnosis. Results We included 15,351 participants with MGUS. Of those, 996 participants provided person-time with PN (6.5%). About half of those had PN at MGUS diagnosis (55%). A total of 174 cases of AL were recorded, with AL being more common among those who had PN (2.1% vs 1.0% p=0.002). Those who had PN had a 2.3-fold increased risk of AL as compared to those who did not have PN (hazard ratio (HR): 2.3; 95% confidence interval (95% CI): 1.5-3.7; p<0.001). The results were similar for those who had PN at MGUS diagnosis and those who did not. More than half of AL cases (53%) were diagnosed within one year after MGUS diagnosis. The rate was even higher among those with PN, with 82% of AL cases among those who presented with PN being diagnosed within one year after MGUS diagnosis. In the first year after inclusion, the incidence of AL was 15.2 and 6.1 per 1000 person-years for participants with and without PN respectively (HR: 1.8; 95% CI:1.0-3.4; p=0.04). Participants with PN continued to have an increased risk of progression to AL after the first year with an incidence of AL of 2.6 per 1000 person-years as compared to 1.1 per 1000 person-years among participants who did not have PN (HR:2.4; 95% CI: 1.1-5.0; p=0.02) (Figure). Discussion In this large population-based study, including 15,351 individuals with MGUS, we found that individuals with MGUS who develop PN have an increased risk of progression to AL. In fact, individuals with MGUS who have PN at MGUS diagnosis might already have AL. This risk of AL was highest during the first year after MGUS diagnosis with participants with PN having a higher risk than those who did not have PN. PN continued to be associated with a higher risk of MGUS progression to AL throughout the study period. This is the largest study that we are aware of assessing the association of PN and MGUS progression to AL. Since this is a registry-based study based on recorded diagnoses, some clinical data, including MGUS isotype, is not available. These findings suggest that increased awareness of PN as a feature of MGUS might decrease diagnostic delay and improve outcomes for patients with AL. Figure Disclosures Landgren: Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Other: IDMC; Abbvie: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document