scholarly journals Pharmacologic Inhibition of DYRK1A Results in Hyperactivation and Hyperphosphorylation of MYC and ERK Rendering KMT2A-R ALL Cells Sensitive to BCL2 Inhibition

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 506-506
Author(s):  
Christian Hurtz ◽  
Gerald Wertheim ◽  
John Chukinas ◽  
Joseph Patrick Loftus ◽  
Sung June Lee ◽  
...  

Abstract Background: KMT2A-rearranged (R) ALL is a high-risk disease with a frequency of 75% in infants and 10% in children and adults with ALL and is associated with chemoresistance, relapse, and poor survival. Current intensive multiagent chemotherapy regimens induce significant side effects, yet fail to cure many patients, demonstrating continued need for novel therapeutic approaches. We performed a kinome-wide CRISPR screen and identified that DYRK1A is specifically required for the survival of KMT2A-R ALL cell. DYRK1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase family and has been reported as negatively regulator of cell proliferation. Results: We performed a kinome-wide CRISPR screen in human ALL cell lines and PDX models and identified DYRK1A as a novel target in KMT2A-R ALL. DYRK1A is a serine-threonine kinase with a proposed, but poorly defined role in cell cycle regulation. We performed a meta-analysis of multiple ChIP-Seq experiments and identified that oncogenic KMT2A fusions directly bind to the DYRK1A promoter. Our RT-PCR and Western blot analyses of KMT2A-R ALL cells treated with a menin inhibitor (MI-503) to disrupt the transcriptional activity of the KMT2A-R complex resulted in the downregulation of DYRK1A, indicating that DYRK1A is directly regulated by the KMT2A fusion complex. We further observed that pharmacologic inhibition of DYRK1A with EHT1610 induced potent leukemic cell growth inhibition in vitro and in vivo, demonstrating that DYRK1A could be a new therapeutic target in KMT2A-R ALL cells. To further elucidate the mechanism of DYRK1A function, we treated several KMT2A-R ALL cell lines in vitro with EHT1610, which surprisingly resulted in the upregulation of MYC and hyperphosphorylation of the RAS/MAPK target ERK. Given that ERK hyperactivation stops B cell proliferation during early B cell development to allow them to rearrange their B cell receptor, we hypothesized that cell cycle inhibition upon ERK hyperactivation remains as a conserved mechanism of cell cycle regulation in KMT2A-R ALL. Strikingly, combining DYRK1A inhibition with the MEK inhibitor trametinib antagonistically rescued KMT2A-R ALL cell proliferation, indicating that ERK hyperactivation is the main driver of DYRK1A inhibitor mediated cell cycle arrest. Given that DYRK1A inhibitor does not induce apoptosis and cells restart cell proliferation after EHT1610 withdrawal we concluded that a DYRK1A monotherapy may not be an ideal new treatment option. However, it has been reported that increased MYC activity induces the accumulation of BIM in Burkitt's Lymphoma. Given the increased expression of MYC following DYRK1A inhibition we performed a new Western blot analysis and validated increased expression of BIM in our KMT2A-R ALL cell lines after EHT1610 treatment. To test if targeting the interaction of BIM with BCL2 will induce an apoptotic effect when combined with EHT1610, we treated four KMT2A-R ALL cell lines with increasing concentrations of EHT1610 and the BCL2 inhibitor venetoclax. Strikingly, the combination of DYRK1A inhibition with BCL2 inhibition synergistically killed KMT2A-R ALL cells. Conclusion: Our results validate DYRK1A as an important molecule to regulate cell proliferation via inhibition of MYC and ERK. Targeting DYRK1A results in the accumulation of BIM, which renders the cells sensitive to BCL2 inhibition via venetoclax. While further in vivo studies are needed, we predict that combining DYRK1A inhibition with venetoclax may be a novel precision medicine strategy for the treatment of KMT2A-R ALL. Figure 1 Figure 1. Disclosures Crispino: Forma Therapeutics: Research Funding; Scholar Rock: Research Funding; MPN Research Foundation: Membership on an entity's Board of Directors or advisory committees; Sierra Oncology: Consultancy. Tasian: Aleta Biotherapeutics: Consultancy; Gilead Sciences: Research Funding; Kura Oncology: Consultancy; Incyte Corporation: Research Funding. Carroll: Incyte Pharmaceuticals: Research Funding; Janssen Pharmaceutical: Consultancy.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 396-396
Author(s):  
Kohta Miyawaki ◽  
Takuji Yamauchi ◽  
Takeshi Sugio ◽  
Kensuke Sasaki ◽  
Hiroaki Miyoshi ◽  
...  

Diffuse large B-cell lymphoma (DLBCL) is among the most common hematological malignancies with varying prognosis. As many as forty percent of patients eventually experience relapsed/refractory disease after combinatorial chemo-immunotherapies, R-CHOP, and prognosis after relapse is dismal. MYC is among the most established prognostic factors and associated with clinically-distinct subsets of DLBCL with poor prognosis: double-expressor lymphoma (DEL) and double-hit lymphoma (DHL). MYC is co-expressed with BCL2 in DEL, which consists of 60% of activated B-cell type DLBCL (ABC-DLBCL) cases, while DHL, defined by coexistence of MYC and BCL2/BCL6 rearrangements, were reportedly observed in 15% of germinal center B-cell like DLBCL (GCB-DLBCL). Considering that MYC-positive DLBCLs exhibit dismal outcomes, pharmacological inhibition of MYC activity is highly demanded; however, direct targeting of MYC has been proven challenging. Here we show that PAICS (phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase), which catalyzes a critical step in de novo purine synthesis, functions downstream of MYC in DLBCL cells. We further show MRT252040, a newly-developed PAICS inhibitor, effectively suppresses proliferation of MYC-driven DLBCL cells in vitro and in vivo. Through the nCounter-based transcriptome profiling of formalin-fixed paraffin-embedded (FFPE) tissues from 170 untreated DLBCL patients, we found that MYC and PAICS were co-expressed and their mRNA levels were among the most predictive for poor prognosis after standard R-CHOP therapy. Their expression levels were particularly high in a subset of ABC-DLBCL and extranodal DLBCL, namely in DEL and DHL cases. Importantly, these findings were validated using three independent cohorts (Schmitz et al. NEJM, 2018). MYC and PAICS expression levels were high in most DLBCL lines and low in normal B cells in the lymph nodes, while they were variable in primary DLBCL tissues, revealed by nCounter and immunofluorescence. This trend was more evident in PAICS due presumably to active de novo purine biosynthesis in highly-proliferative cell lines and a subset of DLBCLs, including MYC-positive DLBCLs. These findings were also validated using the DepMap, a publicly-available genome-wide CRISPR/Cas9 dropout screen datasets. PAICS was among the top-ranked essential genes for the survival of DLBCL cell lines. Since co-expression of MYC and PAICS in a subset of DLBCL were indicative of a functional relationship between the two factors, we explored publicly-available ChIP-seq datasets to see if MYC directly regulates PAICS expression. As expected, MYC ChIP-seq signals were highly enriched near the PAICS promoter in a series of cancer cell lines. Furthermore, shRNA-mediated MYC knockdown led to reduced levels of PAICS mRNA in MYC-positive DLBCL cells and significantly slowed their growth. Collectively, these data suggest that PAICS is a direct transcriptional target of MYC, playing a key role in proliferation of MYC-positive DLBCL cells. To assess the feasibility of PAICS-inhibition as a therapeutic option for MYC-positive DLBCLs, we tested MRT252040 for its anti-lymphoma activity in vitro and in vivo. To do so, we first assessed cell cycle status and Annexin positivity upon MRT252040 treatment using a series of DLBCL cell lines. As expected, MRT252040-mediated PAICS inhibition induced cell cycle arrest and apoptosis. Furthermore, MRT252040 treatment significantly delayed proliferation of DLBCL cell lines, namely those harboring MYC rearrangements. Finally, to assess anti-lymphoma activity of MRT252040 in vivo, we tested MRT252040 efficacy using patient-derived xenograft DLBCL. After xenotransplantation, proportions of lymphoma cells per total mononuclear cells in peripheral blood were examined over time by FACS, and MRT252040 (or vehicle) treatment was initiated once lymphoma cells constituted >0.1%. MRT252040-treated mice survived significantly longer than vehicle-treated mice, indicative of therapeutic efficacy of MRT252040 monotherapy against DLBCL in vivo. Our data suggest that MYC regulates the de novo purine synthesis pathway via directly transactivating PAICS expression. We propose that MRT252040, a newly-developed PAICS inhibitor, warrants attention as a novel therapeutic approach for MYC-positive DLBCLs, which otherwise exhibit poor clinical outcomes. Disclosures Ohshima: SRL, Inc.: Consultancy; Kyowa Kirin Co., Ltd.: Honoraria, Research Funding; Chugai Pharmaceutical Co., Ltd.: Honoraria, Research Funding; Celgene Corp.: Honoraria, Research Funding; NEC Corp.: Research Funding. Akashi:Sumitomo Dainippon, Kyowa Kirin: Consultancy; Celgene, Kyowa Kirin, Astellas, Shionogi, Asahi Kasei, Chugai, Bristol-Myers Squibb: Research Funding.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that is transcriptionally classified into germinal center B-cell (GCB) and activated B-cell (ABC) subtypes. A subset of both GCB- and ABC-DLBCLs are dependent on B-cell receptor (BCR) signaling. Previously, we defined distinct BCR/PI3K-mediated survival pathways and subtype-specific apoptotic mechanisms in BCR-dependent DLBCLs (Cancer Cell 2013 23:826). In BCR-dependent DLBCLs with low baseline NF-κB activity (GCB tumors), targeted inhibition or genetic depletion of BCR/PI3K pathway components induced expression of the pro-apoptotic HRK protein. In BCR-dependent DLBCLs with high NF-κB activity (ABC tumors), BCR/PI3K inhibition decreased expression of the anti-apoptotic NF-κB target gene, BFL1. Our recent analyses revealed genetic bases for perturbed BCR/PI3K signaling and defined poor prognosis DLBCL subsets with discrete BCR/PI3K/TLR pathway alterations (Nat Med 2018 24:679). Cluster 3 DLBCLs (largely GCB tumors) exhibited frequent PTEN deletions/mutations and GNA13 mutations. Cluster 5 DLBCLs (largely ABC tumors) had frequent MYD88L265P and CD79B mutations that often occurred together. These DLBCL subtypes also had different genetic mechanisms for deregulated BCL2 expression - BCL2 translocations in Cluster 3 and focal (18q21.33) or arm level (18q) BCL2 copy number gains in Cluster 5. These observations prompted us to explore the activity of PI3K inhibitors and BCL2 blockade in genetically defined DLBCLs. We utilized a panel of 10 well characterized DLBCL cell line models, a subset of which exhibited hallmark genetic features of Cluster 3 and Cluster 5. We first evaluated the cytotoxic activity of isoform-specific, dual PI3Kα/δ and pan-PI3K inhibitors. In in vitro assays, the PI3Kα/δ inhibitor, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. We next assessed the transcriptional abundance of BCL2 family genes in the DLBCLs following copanlisib treatment. In BCR-dependent GCB-DLBCLs, there was highly significant induction of the pro-apoptotic HRK. In BCR-dependent ABC-DLBCLs, we observed significant down-regulation of the anti-apoptotic BFL1 protein and another NF-κB target gene, BCLxL (the anti-apoptotic partner of HRK). We then used BH3 profiling, to identify dependencies on certain BCL2 family members and to correlate these data with sensitivity to copanlisib. BCLxL dependency significantly correlated with sensitivity to copanlisib. Importantly, the BCLxL dependency was highest in DLBCL cell lines that exhibited either transcriptional up-regulation of HRK or down-regulation of BCLxL following copanlisib treatment. In all our DLBCL cell lines, PI3Kα/δ inhibition did not alter BCL2 expression. Given the genetic bases for BCL-2 deregulation in a subset of these DLBCLs, we next assessed the activity of the single-agent BCL2 inhibitor, venetoclax, in in vitro cytotoxicity assays. A subset of DLBCL cell lines was partially or completely resistant to venetoclax despite having genetic alterations of BCL2. We postulated that BCR-dependent DLBCLs with structural alterations of BCL2 might exhibit increased sensitivity to combined inhibition of PI3Kα/δ and BCL2 and assessed the cytotoxic activity of copanlisib (0-250 nM) and venetoclax (0-250 nM) in the DLBCL cell line panel. The copanlisib/venetoclax combination was highly synergistic (Chou-Talalay CI<1) in BCR-dependent DLBCL cell lines with genetic bases of BCL2 deregulation. We next assessed copanlisib and venetoclax activity in an in vivo xenograft model using a DLBCL cell line with PTENdel and BCL2 translocation (LY1). In this model, single-agent copanlisib did not delay tumor growth or improve survival. Single-agent venetoclax delayed tumor growth and improved median survival (27 vs 51 days, p<0.0001). Most notably, we found that the combination of copanlisib and venetoclax delayed tumor growth significantly longer than single-agent venetoclax (p<0.0001). Additionally, the combined therapy significantly increased survival in comparison with venetoclax alone (median survival 51 days vs not reached, p<0.0013). Taken together, these results provide in vitro and in vivo pre-clinical evidence for the rational combination of PI3Kα/δ and BCL2 blockade and set the stage for clinical evaluation of copanlisib/venetoclax therapy in patients with genetically defined relapsed/refractory DLBCL. Disclosures Letai: AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership; AstraZeneca: Consultancy, Other: Lab research report. Shipp:AstraZeneca: Honoraria; Merck: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3830-3830
Author(s):  
Gullu Gorgun ◽  
Elisabetta Calabrese ◽  
Teru Hideshima ◽  
Jeffrey Ecsedy ◽  
Giada Bianchi ◽  
...  

Abstract Abstract 3830 Poster Board III-766 Multiple myeloma (MM) is an incurable bone marrow derived plasma cell malignancy. Despite significant improvements in treating patients suffering from this disease, MM remains uniformly fatal due to intrinsic or acquired drug resistance. Thus, additional modalities for treating MM are required. Targeting cell cycle progression proteins provides such a novel treatment strategy. Here we assess the in vivo and in vitro anti-MM activity of MLN8237, a small molecule Aurora A kinase (AURKA) inhibitor. AURKA is a mitotic kinase that localizes to centrosomes and the proximal mitotic spindle, where it functions in mitotic spindle formation and in regulating chromatid congression and segregation. In MM, increased AURKA gene expression has been correlated with centrosome amplification and a worse prognosis; thus, inhibition of AURKA in MM may prove to be therapeutically beneficial. Here we show that AURKA protein is highly expressed in eight MM cell lines and primary patient MM cells. The affect of AURKA inhibition was examined using cytotoxicity (MTT viability) and proliferation (3[H]thymidine incorporation) assays after treatment of these cell lines and primary cells with MLN8237 (0.0001 μM – 4 μM) for 24, 48 and 72h Although there was no significant inhibition of cell viability and proliferation at 24h, a marked effect on both viability and proliferation occurred after 48 and 72h treatment at concentrations as low as 0.01 μM. Moreover, MLN8237 inhibits cell growth and proliferation of primary MM cells and cell lines even in the presence of bone marrow stromal cells (BMSCs) or cytokines IL-6 and IGF1. Similar experiments revealed that MLN8237 did not induce cytotoxicity in normal peripheral blood mononuclear cells (PBMCs) as measured by MTT assay, but did inhibit proliferation at 48 and 72h, as measured by the 3[H]thymidine incorporation assay. To delineate the mechanisms of cytotoxicity and growth inhibitory activity of MLN8237, apoptotic markers and cell cycle profiles were examined in both MM cell lines and primary MM cells. Annexin V and propidium iodide staining of MM cell lines cultured in the presence or absence of MLN8237 (1 μM) for 24, 48 and 72h demonstrated apoptosis, which was further confirmed by increased cleavage of PARP, capase-9, and caspase-3 by immunoblotting. In addition, MLN8237 upregulated p53-phospho (Ser 15) and tumor suppressor genes p21 and p27. Cell cycle analysis demonstrated that MLN8237 treatment induces an accumulation of tetraploid cells by abrogating G2/M progression. We next determined whether combining MLN8237 with conventional (melphalan, doxorubucin, dexamethasone) and other novel (VELCADE®) therapeutic agents elicited synergistic/additive anti-MM activity by isobologram analysis using CalcuSyn software. Combining MLN8237 with melphalan, dexamethasone, or VELCADE® induces synergistic/additive anti-MM activity against MM cell lines in vitro (p≤0.05, CI<1). To confirm in vivo anti-MM effects of MLN8237, MM.1S cells were injected s.c. into g-irradiated CB-17 SCID mice (n=40, 10 mice EA group). When tumors were measurable (>100 mm3), mice were treated with daily oral doses of vehicle alone or 7.5mg/kg, 15mg/kg, 30mg/kg MLN8237 for 21 days. Overall survival (defined as time between initiation of treatment and sacrifice or death) was compared in vehicle versus- MLN8237- treated mice by Kaplan-Meier method. Tumor burden was significantly reduced (p=0.02) and overall survival was significantly increased (p=0.02, log-rank test) in animals treated with 30mg/kg MLN8237. In vivo anti-MM effects of MLN8237 were further validated by performing TUNEL apoptosis-cell death assay in tumor tissues excised from control or treated animals. Importantly, a significant dose-related increase in apoptotic cells was observed in tumors from animals that received MLN8237 versus controls. These results suggest that MLN8237 represents a promising novel targeted therapy in MM. Disclosures: Ecsedy: Millennium Pharmaceutical: Employment. Munshi:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium: Research Funding; Novartis: Research Funding; Celgene: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 467-467
Author(s):  
Shyril O'Steen ◽  
Amelia Waltman ◽  
Garrett Booth ◽  
Aimee L Kenoyer ◽  
Margaret Nartea ◽  
...  

Abstract Introduction: An estimated 19,970 Americans died of non-Hodgkin lymphoma (NHL) in 2015, with diffuse large B-cell lymphoma (DLBCL) accounting for roughly 30% of newly diagnosed NHL. Our study focuses on three NHL subtypes: germinal center (GCB)-DLBCL, the most common DLBCL subtype; activated (ABC)-DLBCL, a particularly aggressive and high-risk subtype; and mantle cell lymphoma (MCL), considered incurable. Constitutive B-cell receptor signaling is implicated in the pathogenesis of ABC-DLBCL and MCL and may couple with aberrant apoptotic BCL-2 pathway proteins. The BCL-2 inhibitor venetoclax is a promising targeted agent that promotes apoptosis in a variety of NHL subtypes, but is almost never curative as a single agent. Radiotherapy promotes apoptosis by creating DNA strand breaks, and we hypothesized that the combination of radiotherapy and venetoclax would act synergistically in NHL to increase the probability of cures. Methods: We tested in vitro killing efficacy of sublethal 137Cesium irradiation combined with venetoclax in 15 cell lines, representing a diversity of NHL subtypes. Cells were treated with 137Cesium and venetoclax in 8 x 8 dose combination matrices, incubated 72-120 hrs, then assayed for viability with Celltiter-Glo (Promega). The degree of treatment antagonism, additivity, or synergism was determined using isobolographic analyses. For in vivo studies, we tested combinations of venetoclax with either 137Cesium total body irradiation (TBI), or CD20 pre-targeted radioimmunotherapy (PRIT), in threetumor models chosen for divergent single agent sensitivities. Tumor xenografts of Rec-1 (MCL), U2932 (ABC-DLBCL), and SU-DHL-6 (GCB-DLBCL) were produced by subcutaneous flank injection of 10 x 106 cells in male and female NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ (NRG) mice. When tumor volumes were 50 mm3, mice (n = 8-12/group) were treated with either venetoclax (100-200mg/kg daily for 10-30 days), diluent control, TBI (single dose, 6-10 Gy 137Cesium), or a combination of venetoclax and TBI. In PRIT studies, mice were coinjected with 300µg unlabeled streptavidin-conjugated anti-CD20 antibody (murine IgG2a) and 400µg HB8181 (IgG2a isotype control to block non-specific binding) in place of TBI. Twenty-one hours later, 5.8 nmol biotin-galactose "clearing agent" was administered, followed in 3 hours by 1.2 nmol DOTA-biotin labeled with 400, 800, or 1200 µCi of 90Y (14.8, 29.6, or 44.4 MBq, respectively). Results: In vitro, 10 of 15 lymphoma cell lines responded synergistically to combined radiotherapy and venetoclax, including GCB-DLBCL, ABC-DLBCL and MCL lines (p < .04 in 10 cell lines). In vivo, each of 3 lymphoma models responded synergistically to combination therapy. In mice bearing Rec-1 xenografts, venetoclax alone did not affect mean survival time (p = .32), 8 Gy TBI lengthened survival by 44% compared to controls (p < .0001), but TBI combined with venetoclax tripled survival time compared to controls (p < .0001, combination group > TBI alone). The SU-DHL-6 model produced similar results. In the U2932 model, tumors disappeared during venetoclax monotherapy, but recurred in all mice, such that mean survival time doubled compared to controls (p = .0001). Six Gy TBI had no effect (p = .73), but combining TBI with venetoclax tripled survival time compared to controls (p = .0003, combination group > venetoclax alone). Using PRIT in place of TBI produced yet greater efficacy. In Rec-1 bearing mice, venetoclax had no effect alone (p = .12), 800µCi PRIT lengthened survival time 111% beyond controls (p = .0001), while the combination extended survival 483% beyond controls and cured 40% (p = .001, combination group > PRIT alone). In the U2932 xenograft model, venetoclax alone doubled survival time compared to controls (p < .0001) and 800µCi PRIT alone doubled survival and cured 30% (Fig. 1, p < .0001). Combination treatments cured 100% (Fig. 1). Conclusion: In vitro and in vivo results support our hypothesis that radiotherapy combines effectively with venetoclax to treat NHL. Despite differences in single agent sensitivity, xenograft models of GCB-DLBCL, ABC-DLBCL and MCL all responded synergistically to combinations of either TBI or PRIT with venetoclax. PRIT combinations with venetoclax produced cures (Fig. 1) without detectable toxicity, and merit clinical preference. Ongoing studies examine predictive biomarkers and optimal treatment protocols for therapeutic efficacy. Disclosures Gopal: Paid Consultancy- Gilead, Janssen, Seattle Genetics, Spectrum, Research funding- Gilead, Janssen, Pfizer, BMS, Merck, Teva, Takeda, Spectrum, Seattle Genetics: Consultancy, Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1182-1182
Author(s):  
Yang Liu ◽  
Changying Jiang ◽  
Fangfang Yan ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
...  

Abstract Background Mantle cell lymphoma (MCL) is a rare and aggressive B-cell lymphoma characterized by poor prognosis. Although remarkable therapeutic advances have been made by covalent Bruton's tyrosine kinase (BTK) inhibition and CAR T cell therapy, therapeutic resistance inevitably occurs and leads to dismal clinical outcome. Pirtobrutinib (LOXO-305) is a next-generation, highly selective and non-covalent BTK inhibitor. A phase 1/2 BRUIN study showed that pirtobrutinib demonstrated promising efficacy in heavily pretreated MCL patients with or without prior covalent BTK inhibition. Here, we investigated the mechanism of action of pirtobrutinib in MCL cells in vitro and proposed the potential combination therapy in a venetoclax-resistant xenograft model. Methods MCL cell proliferation was monitored by trypan blue exclusion assay after 24-, 48- and 72-hour treatment with pirtobrutinib and ibrutinib. We performed Annexin V/PI staining to measure the apoptosis inductive effects. Cell cycle analysis using propidium iodide (PI) DNA staining was conducted to compare cell cycle progression kinetics between pirtobrutinib and ibrutinib. We performed RNAseq analysis in Z138 cells to compare differentially expressed genes (DEGs) between pirtobrutinib and ibrutinib treatment. Western blotting was utilized to detect specific signaling proteins. Mino-venetoclax-R cells were inoculated subcutaneously into NSG mice and used for in vivo drug efficacy determination. Results Compared to covalent BTK inhibitor ibrutinib, the novel non-covalent BTK inhibitor pirtobrutinib was more potent in inhibiting MCL cell proliferation in a panel of MCL cell lines, especially in ibrutinib/venetoclax resistant cell lines (pirtobrutinib vs. ibrutinib, p&lt;0.01). Treatment with pirtobrutinib (10μM) for 24 hours induced higher levels of apoptosis than that by ibrutinib in all the MCL cell lines tested (p&lt;0.05), which was also confirmed at the molecular level by stronger caspase-3 activation and PARP cleavage. To understand the mechanism of action, we performed whole transcriptomic profiling by RNAseq analysis using Z138 cells treated with/without pirtobrutinib or ibrutinib. Pirtobrutinib treatment resulted in upregulation of 137 genes and downregulation of 97 genes compared to the ibrutinib treatment (adjusted p&lt;0.05). In addition to the downregulated MYC targets and PI3K/Akt pathway, gene set enrichment analysis (GSEA) revealed a significant enrichment for G2/M checkpoints and E2F targets signatures (key genes: PLK1, CDKN1A and CCNB1) in pirtobrutinib treated cells. Consistently, follow-up studies showed that γH2AX level was highly increased upon pirtobrutinib treatment. Pirtobrutinib treatment but not ibrutinib treatment resulted in G2/M cell cycle arrest. The blockade of cell cycle progression is positively correlated with decreased protein levels of critical regulators of S and G2/M phase transition such as cyclin B and CDC25C. BTK inhibitor (ibrutinib) in combination with venetoclax has shown great efficacy in preclinical models and in MCL patients. Therefore, here we assessed the in vivo efficacy of pirtobrutinib in combination with venetoclax with side-by-side comparison to ibrutinib & venetoclax in the Mino-venetoclax-R mouse model. Pirtobrutinib & venetoclax combination enhanced the efficacy of pirtobrutinib in restraining the tumor size (p&lt;0.001) in the xenograft model. Notably, this novel combinatorial treatment exerted much higher potency than ibrutinib and venetoclax combination therapy (p&lt;0.001). In addition, the pirtobrutinib & venetoclax combination was well tolerated and did not reduce overall mouse body weights compared with the vehicle treated mice. Conclusions Pirtobrutinib overcame both ibrutinib and venetoclax resistance in MCL cells in vitro and in vivo. G2/M checkpoints and E2F targets pathways were significantly enriched in both cases. Pirtobrutinib & venetoclax showed better in vivo efficacy in MCL models than combination of ibrutinib & venetoclax. Figure 1 Figure 1. Disclosures Wang: Genentech: Consultancy; Juno: Consultancy, Research Funding; Kite Pharma: Consultancy, Honoraria, Research Funding; Clinical Care Options: Honoraria; CAHON: Honoraria; InnoCare: Consultancy, Research Funding; Moffit Cancer Center: Honoraria; Molecular Templates: Research Funding; Oncternal: Consultancy, Research Funding; DTRM Biopharma (Cayman) Limited: Consultancy; Hebei Cancer Prevention Federation: Honoraria; Lilly: Research Funding; Loxo Oncology: Consultancy, Research Funding; BioInvent: Research Funding; OMI: Honoraria; Miltenyi Biomedicine GmbH: Consultancy, Honoraria; Imedex: Honoraria; Physicians Education Resources (PER): Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Bayer Healthcare: Consultancy; Chinese Medical Association: Honoraria; Dava Oncology: Honoraria; Celgene: Research Funding; Mumbai Hematology Group: Honoraria; Acerta Pharma: Consultancy, Honoraria, Research Funding; BeiGene: Consultancy, Honoraria, Research Funding; Newbridge Pharmaceuticals: Honoraria; CStone: Consultancy; BGICS: Honoraria; The First Afflicted Hospital of Zhejiang University: Honoraria; Scripps: Honoraria; Epizyme: Consultancy, Honoraria; Pharmacyclics: Consultancy, Research Funding; AstraZeneca: Consultancy, Honoraria, Research Funding; VelosBio: Consultancy, Research Funding; Anticancer Association: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 615-615
Author(s):  
Yuxuan Liu ◽  
Lucille Stuani ◽  
Dorra Jedoui ◽  
Milton Merchant ◽  
Astraea Jager ◽  
...  

Abstract Despite improvements in overall survival for children with B-cell progenitor acute lymphoblastic leukemia (BCP-ALL), it remains the second-leading cause of cancer related death in children with approximately 200 deaths per year in the U.S. Thus, there remains a critical need for a definitive cure to prevent relapse for patients with BCP ALL. The accumulation of BCP ALL blasts results from the disruption of normal developmental checkpoints. One of these checkpoints, as pro-B cells transition to become pre-B cells, involves surface expression of the precursor-B-cell receptor (pre-BCR). Prior work has categorized BCP ALL into pre-BCR positive and pre-BCR negative subtypes based on the protein expression of Ig light chain and active signaling of SRC family kinases, SYK, BTK. Combining single cell analysis and machine learning, we previously identified pre-B cells with activation of pre-BCR signaling, namely CREB, 4EBP1, rpS6 and SYK, that are present at diagnosis and highly predictive of relapse. We call these relapse predictive cells. Relapse predictive cells were enriched in relapse samples, demonstrating their persistence from diagnosis to relapse and making them an actionable target to prevent relapse altogether. To better understand relapse predictive cells, we enriched pre-B cells from patients with known relapse status and performed whole transcriptome sequencing. Relapse predictive cells demonstrated significant upregulation of genes in the oxidative phosphorylation (OXPHOS), glycolysis, and reactive oxygen species (ROS) pathways compared to pre-B-like leukemia cells from patients who will not go on to relapse. Analysis of public genome-wide CRISPR screen datasets in 2 pre-BCR+ and 4 pre-BCR- cell lines found 69 essential genes uniquely present in pre-BCR+ cell lines, related to mitochondria translation, OXPHOS and TCA cycle pathway. We performed CRISPR knock down of proximal pre-BCR related tyrosine kinase SYK in pre-BCR+ (Nalm6, Kasumi-2) and pre-BCR- (697, REH, SUPB15) cell lines to understand how activated pre-BCR impacts cellular metabolism in pre-BCR+ and pre-BCR- cells. CyTOF analysis of pre-BCR signaling demonstrated effective inhibition of downstream pre-BCR pathway members in the KD cells (pSYK, pBLNK, pBTK). RNA sequencing demonstrated upregulation of mitochondrial translation and OXPHOS pathways with downregulation of hypoxia pathways in pre-BCR+ but not pre-BCR- SYK KD cells. Functional extracellular flux experiments by Seahorse confirmed pre-BCR+ SYK KD cells to have higher basal oxygen consumption rate (OCR) and lower extracellular acidification rate (ECAR) compared to wild-type pre-BCR+ cells, indicating a switch from highly glycolytic to aerobic metabolism. To determine the interplay between pre-BCR signaling and cellular metabolism at the single cell level, we performed CYTOF with a panel examining pre-BCR pathway members, developmental phenotype and metabolism in these cell lines as well as matched diagnosis-relapse patient-derived xenografts. These results indicate, in line with the RNA sequencing and Seahorse data, that inhibiting pre-BCR signaling is accompanied by inhibition of glycolysis with lower protein expression of glycolytic related enzymes HIF1A, GLUT1, PFKFB4, GAPDH, ENO1 and LDHA. Further, we observed in cells completely deficient in the ability to initiate pre-BCR signal (SYK knock out), activated p4EBP1 indicating signaling feedback from the PI3K-AKT pathway and a metabolic adaption indicating utilization of energy sources other than glucose in cells surviving SYK loss. Finally, to determine the impact of loss of pre-BCR signaling on proliferation, in vitro competition assays demonstrated SYK KD cells to be less proliferative in all the cell lines except pre-BCR- cell line 697. In vivo, SYK KO demonstrated significantly slower engraftment (median %hCD45: 84% vs 54%, P=0.009) in NSG mice and significantly longer survival time than the mice xenografted with wild-type cells (median survival 28 vs 39 days, P=0.0004). Together, our data indicate that individual BCP ALL cells with active pre-BCR signaling are associated with relapse and that these cells have a unique metabolic state that relies on active glycolysis and metabolic flexibility supporting proliferation in vitro as well as engraftment and aggressivity in vivo. Further metabolomics experiments and characterization of primary patient samples are underway. Disclosures Mullighan: Pfizer: Research Funding; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Amgen: Current equity holder in publicly-traded company. Davis: Novartis Pharmaceuticals: Honoraria; Jazz Pharmaceuticals: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 380-380 ◽  
Author(s):  
Daniela Buglio ◽  
Georgios Georgakis ◽  
Kazuhiko Arima ◽  
Yong-Jun Liu ◽  
Anas Younes

Abstract Vorinostat (SAHA) Inhibits STAT6 Phosphorylation and Transcription, Downregulates Bcl-xL, and Induces Apoptosis in Hodgkin Lymphoma (HL) Cell Lines. Although the malignant Hodgkin and Reed Sternberg (HRS) cells of HL are of B-cell origin, they infrequently express B-cell antigens. Recent studies demonstrated that several B-cell specific genes are silenced in HRS cells by epigenetic mechanism, suggesting that this process may be reversible and could be explored therapeutically with deacetylase (DAC) inhibitors or hypomethylating agents. Pan-DAC and isotype-selective DAC inhibitors have shown promising activity in vitro and in vivo in a variety of lymphoid malignancies, including HL. However, the mechanisms of antiproliferative action of DAC inhibitors in HL remain unknown. In this study, we examined the antiproliferative effects of the pan-DAC inhibitor vorinostat (inhibits class I and class II DACs) on HL cell lines and determined its effect on signaling mechanisms that are known to promote HRS cell survival, including STAT3, STAT6, Akt, and ERK pathways. Vorinostat inhibited DACs as evident by the increase in histone-3 acetylation as early as 30 minutes of incubation. Furthermore, vorinostat induced the expression of the cell cycle regulatory protein p21 which was associated with an early increase in the G2M cell cycle fraction in HL cells. Vorinostat had no inhibitory effect on SATA3 or ERK, but inhibited STAT6 phosphorylation and transcription in a dose and time dependant manner. This effect was associated with a decrease in Akt phosphorylation on Ser473 residue. Because STAT6 has been reported to transcriptionally regulate Bcl-XL and Thymus and activation-regulated chemokines (TARC), we examined the effect of vorinostat on these two targets in HL cells. TARC has been shown to play an important role in attracting Th2-type T cells and T-regulatory (T-reg) cells, and to be elevated in sera from patients with HL. Vorinostat downregulated the mRNA expression of TARC in a dose dependent manner, suggesting that it may have a role in regulating chemotaxis of reactive T cells and T-reg cells to HL microenvironment in vivo. Moreover, vorinostat reduced the cellular level of the antiapoptotic protein Bcl-xL which was associated with activation of the caspase pathway, and induction of apoptosis in HL cells. Collectively, these data suggest that DAC inhibition in HL by vorinostat may induce cell death by inhibiting STAT6 and downregulating its antiapoptotic target bcl-xL protein. Furthermore, our data suggest that DAC inhibition may have an added effect in vivo on the cellular component in HL microenvironment by inhibiting TARC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 244-244
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 244 Clathrin assembly lymphoid myeloid leukemia (CALM) protein is implicated in clathrin dependent endocytosis (CDE) and the CALM gene is the target of the t(10;11)(p13;q14-21) CALM/AF10 translocation, which is observed in multiple types of acute leukemia. Although the translocation generally dictates poor prognosis, the molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. To determine the role of CALM and CDE in normal hematopoiesis and leukemogenesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/FMx1Cre+) Calm knockout (KO) mutants. Furthermore, we determined the impact of Calm loss on leukemia cell growth in vitro and in vivo employing a series of leukemia cell lines and leukemia mouse models. Hematopoietic-specific Calm knockout mice (CalmF/FMx1Cre+) exhibited a hypocromatic anemia with increased serum iron levels. We observed significant reduction in mature erythroblasts/erythrocytes (TER119+CD71-) with concomitant increase in immature erythroblasts (TER119+CD71+) in the spleen of CalmF/FMx1Cre+ mice. The frequencies of erythroblasts in S phase were lower and the proportions of apoptotic (cleaved PARP positive) erythroblasts were increased in CalmF/FMx1Cre+ mice. Surface transferrin receptor 1 (Tfr1, CD71) levels were significantly up-regulated in Calm-deficient hematopoietic progenitors, and uptake of Alexa647-conjugated transferrin was abrogated in Calm-deficient erythroblasts, revealed by immunofluorescence analysis. Freez-etch electron microscopy analysis showed a defective clathrin coated vesicle (CCV) formation in Calm-deficient erythroblasts, indicating that Calm is indispensable for iron-bound transferrin internalization by regulating CCV formation, thereby critical for erythroid differentiation and hemoglobinization. CALM was highly expressed in leukemia/lymphoma cell lines and primary acute myeloid leukemia samples, although its expression was limited to erythroblasts in normal hematopoietic lineage cells. Treatment of leukemia cell lines with Desferoxamine (DFO), an iron chelator, led to a significant increase in Calm mRNA levels, suggesting that Calm expression is regulated by intracellular iron levels. Since highly proliferative leukemia cells demand iron as a cofactor for ribonucleotide reductase (RNR), we hypothesized that Calm is required for leukemia cell proliferation by regulating iron-bound transferrin internalization. To determine the effect of Calm inactivation in leukemia cells, we transduced a series of leukemia cell lines with a lentivirus-based ShRNA vector (pLKO-GFP), which allowed shRNA-expressing cells to be traced by green fluorescent protein (GFP). Calm shRNA transduced cells, but not cells transduced with scrambled shRNA, showed a proliferative disadvantage compared to non-transduced cells. To determine the effect of Calm deletion in leukemia cells in vivo, the CALM/AF10 oncogene was retrovirally transduced into either wild type (WT) or CalmF/FMx1Cre+ bone marrow (BM) cells and the cells were subsequently transferred to lethally-irradiated recipient mice. The Calm gene was deleted in donor cells via pIpC injections one month after transplant (before leukemia development) and survival curves generated. The recipients transplanted with the BM cells from CalmF/FMx1Cre+ mice showed a significantly delayed onset of leukemia and longer survivals compared to control (p=0.001), indicating that Calm is necessary for the development of CALM/AF10-induced leukemia. We next assessed whether Calm is required for the “maintenance” of leukemia in vivo. Leukemia cells were harvested from the primary recipients transplanted with the CALM/AF10-transduced CalmF/FMx1Cre+ BM cells (in which the endogenous Calm genes were intact) and transferred to the secondary recipients. The leukemic secondary recipient mice were then injected with pIpC and survival curves generated. Calm inactivation significantly delayed leukemia progression by blocking leukemia cell proliferation. Taken together, our data indicate that Calm is essential for erythroid development and leukemia cell proliferation by regulating TFR1 internalization. Since Calm inactivation significantly blocked the leukemia cell proliferation in vitro and in vivo, our findings may provide new therapeutic strategies for acute myeloid leukemia. Disclosures: Naoe: Kyowa-Hakko Kirin.: Research Funding; Dainipponn-Sumitomo Pharma.: Research Funding; Chugai Pharma.: Research Funding; Novartis Pharma.: Honoraria, Speakers Bureau; Zenyaku-Kogyo: Research Funding; Otsuka Pharma.: Research Funding.


2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 240-240
Author(s):  
Junyao Xu ◽  
Jennifer J. Knox ◽  
Ming Sound Tsao ◽  
Eric Xueyu Chen ◽  
Pinjiang Cao ◽  
...  

240 Background: MEK1/2 is an integral component of the Ras/Raf/MEK/ERK signaling pathway, implicated in uncontrolled cell proliferation and cell survival, a key hallmark of cancer. AZD6244, a novel inhibitor of MEK1/2, is currently completing Phase II clinical trials in biliary cancer, with modest antitumor activity observed as monotherapy. Gemcitabine is a cytotoxic drug commonly used in biliary cancer therapy but many patients showed early resistance. In this preclinical study, we investigated the sequence-dependent antitumor effects of AZD6244 combined with gemcitabine in biliary cancer models. Methods: Two biliary cancer cell lines (EGI-1 and TFK-1) were used. In vitro the effects of single drug or three combination protocols(concurrently; AZD6244 followed by GEM or Gem followed by AZD6244) on cell proliferation, DNA synthesis, and cell cycle distribution were evaluated by MTS, clonogenic assay, EdU uptake and flow cytometry. Drug interactions were analyzed by Chou-Talaly method. In vivo, 4 tumor models subcutaneously xenografted in SCID mice from the two cell lines and 2 human patients were set up to compare the therapeutic effects of different sequence-scheduled combinations. Results: AZD6244 caused G1-S cell cycle arrest in biliary cancer cells in vitro and in vivo, and this effect is correlated with the MEK/ERK signaling pathway blocking. Synchronized progression of the population through S phase were observed in 15h after removal of AZD6244 in cell culture or 48h after final dose of acute AZD6244 treatment in vivo. Antagonistic or additive effects was observed in vitro when combination were given as concurrently(CI=2.03~2.46) or Gem followed by AZD6244(CI=1.34~1.78). In contrast, a synergistic antiproliferative activity was obtained when AZD6244 was given first followed by a drug-free interval before Gem treatment (CI=0.53~0.69). In vivo, the best therapeutic effects were obtained with the sequence of AZD6244 followed by Gem, compared with concurrent or reverse sequence. Conclusions: This study provides a sound rationale for a Phase II trial of a potentially synergistic sequence of MEK inhibitor AZD6244 followed by gemcitabine in patients with advanced biliary cancer.


Sign in / Sign up

Export Citation Format

Share Document