scholarly journals Elevated Central Carbon Metabolism - a Hallmark for Senescent Cells in Aging Human Hematopoietic Stem Cell Compartment

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1088-1088
Author(s):  
Laura Poisa-Beiro ◽  
Jonathan Landry ◽  
Simon Raffel ◽  
Volker Eckstein ◽  
Anne-Claude Gavin ◽  
...  

Abstract Comprehensive proteomic studies of HSC derived from bone marrow of healthy human subjects (n = 59) in different age groups (range: 20 - 72 years) showed that aging HSCs are characterized not only by myeloid lineage skewing, senescence associated secretory phenotype (SASP), accumulation of reactive oxygen species (ROS), anti-apoptosis, but prominently by elevated glycolysis, glucose uptake, and accumulation of glycogen. This is caused by a subset of HSC that has become more glycolytic than others and not on a per cell basis. Subsequent comparative transcriptome studies of HSCs from human subjects >60 years versus those from <30 years have confirmed this association of elevated glycolysis with aging transcriptome signature. Provided with this background and based on glucose metabolism levels, we have developed a method to isolate human HSCs (CD34+ cells) from bone marrow into three distinct subsets with high, intermediate, and low glucose uptake (GU) capacity (GU high, GU inter, GU low). For human subjects >60 years old (n=9), the proportions of these subsets are: GU high= 5.4+3.5 %, GU inter= 66.4+22.5 %, GU low= 28.2+21.7 %. For subjects <30 years (n=5), the proportions are GU high= 1.7+1.5 %, GU inter= 66.5+36.9 %, GU low= 31.8+36.7. Single-cell RNA-sequencing (scRNA-seq) studies and gene ontology analysis of biological processes revealed that, compared to the GU inter and GU low subsets, the GU high cells showed a significantly higher expression of genes involved in myeloid development, inflammation response (AIF1, CASP2, ANXA1, ZFP36), anti-apoptosis (GSTP1, NME1, BCL2, DMNT1, BAX), cell cycle checkpoint (MCL1, CDK1, CDK4, EIF5A), histone regulation (BCL6, EGR1, KDM1A, MLLT3), b-galactosidase, and significantly lower expressions of genes involved in lymphoid development, and of MDM4, MDM2, FOXP1, SOX4, RB1. Functional studies indicated that the glycolytic enzymes were elevated in elderly HSCs, and the GU low subset corresponded to primitive and more pluripotent HSCs than the GU interand GU high subsets. Pathway analyses have then demonstrated that the GU high subset is associated with up-regulated p53 as well as JAK/STAT signaling pathways, characteristic of senescent HSCs observed in murine models. Applying Gene Set Enrichment Analysis (GSEA) algorithms, we have compared the scRNA-seq data of CD34+ cells derived from young (<30 years) versus older (>60 years) subjects, as well as the scRNA-seq data from GU high subset versus GU inter and GU lowsubsets from each individual subject (n = 6). The results are shown in Figure 1. In analogy to the comparison between old (>60 years) versus young (<30 years) HSCs (CD34+ cells), GSEA of the GU high versus GU inter and GU low subsets shows the same pattern of changes - significant upregulation of gene-set expressions for (a) inflammatory response (b) G2M checkpoint, (c) MTORC1, (d) ROS, (Fig. 1B), (e) allograft rejection; and down-regulation of gene-set expressions for (f) pluripotency, (g) androgen response, (h) UV response (Fig. 1C) as well as (i) interferon-a induction during SARS-CoV2-infection (data not shown in Fig. 1). Thus, our novel findings of elevated glycolysis coupled with significant activation of MTORC1 in the senescent cells of the HSC compartment have provided evidence for the important role of calorie restriction (CR) for healthy aging of HSCs. In numerous animal models, aging has been shown to be driven by the nutrient-sensing MTORC1 network. In animal models of aging, CR has been reported to deactivate the MTOR pathway, thus slowing aging and delaying diseases of aging. Conclusion: In a series of multi-omics studies, we have demonstrated that the GU high subset is identical to the senescent cells (SCs) in human HSC compartment. Studies in animal models have shown that SCs in murine bone marrow are responsible for driving the aging process, and elimination of this subset by inhibitors of anti-apoptotic factors is able to rejuvenate hematopoiesis in mice. Our present results have provided cellular and molecular evidence that SCs in human HSC compartment are also dependent on anti-apoptotic factors, elevated MTORC1 as well as increased glycolysis for survival. Inhibition of MTORC1 or glycolysis, either by specific inhibitors or by CR, may eliminate senescent HSCs and promote rejuvenation of human hematopoiesis. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Maria Rosa Lidonnici ◽  
Giulia Chianella ◽  
Francesca Tiboni ◽  
Matteo Barcella ◽  
Ivan Merelli ◽  
...  

Background Beta-thalassemia (Bthal) is a genetic disorder due to mutations in the ß-globin gene, leading to a reduced or absent production of HbA, which interferes with erythroid cell maturation and limits normal red cell production. Patients are affected by severe anemia, hepatosplenomegaly, and skeletal abnormalities due to rapid expansion of the erythroid compartment in bone marrow (BM) caused by ineffective erythropoiesis. In a classical view of hematopoiesis, the blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. In human, novel purification strategies based on differential expression of CD49f and CD90 enrich for long-term (49f+) and short-term (49f−) repopulating hematopoietic stem cells (HSCs), with distinct cell cycle properties, but similar myeloid (My) and lymphoid (Ly) potential. In this view, it has been proposed that erythroid (Ery) and megakaryocytic (Mk) fates branch off directly from CD90-/49f− multipotent progenitors (MPPs). Recently, a new study suggested that separation between multipotent (Ery/My/Ly) long-term repopulating cells (Subset1, defined as CLEC9AhighCD34low) and cells with only My/Ly and no Ery potential (Subset2, defined as CLEC9AlowCD34high)occurs within the phenotypic HSC/MPP and CD49f+ HSCs compartment. Aims A general perturbed and stress condition is present in the thalassemic BM microenvironment. Since its impact on the hematopoietic cell subpopulations is mostly unknown, we will investigate which model of hematopoiesis/erythropoiesis occurs in Bthal. Moreover, since Beta-Thalassemia is an erythropoietic disorder, it could be considered as a disease model to study the 'erythroid branching' in the hematopoietic hierarchy. Methods We defined by immunophenotype and functional analysis the lineage commitment of most primitive HSC/MPP cells in patients affected by this pathology compared to healthy donors (HDs). Furthermore, in order to delineate the transcriptional networks governing hematopoiesis in Beta-thalassemia, RNAseq analysis was performed on sorted hematopoietic subpopulations from BM of Bthal patients and HDs. By droplet digital PCR on RNA purified from mesenchymal stromal cells of Bthal patients, we evaluated the expression levels of some niche factors involved in the regulation of hematopoiesis and erythropoiesis. Moreover, the protein levels in the BM plasma were analyzed by performing ELISA. Results Differences in the primitive compartment were observed with an increased proportion of multipotent progenitors in Bthal patients compared to HDs. The Subset1 compartment is actually endowed with an enhanced Ery potential. Focusing on progenitors (CD34+ CD38+) and using a new sorting scheme that efficiently resolved My, Ery, and Mk lineage fates, we quantified the new My (CD71-BAH1-/+) and Ery (CD71+ BAH1-/+) subsets and found a reduction of Ery subset in Bthal samples. We can hypothesize that the erythroid-enriched subsets are more prone to differentiate quickly due to the higher sensitivity to Epo stimuli or other bone marrow niche signals. Gene set enrichment analysis, perfomed on RNAseq data, showed that Bthal HSC/MPP presented negative enrichment of several pathways related to stemness and quiescence. Cellular processes involved in erythropoiesis were found altered in Bthal HSC. Moreover, some master erythroid transcription factors involved were overrepresented in Bthal across the hematopoietic cascade. We identified the niche factors which affect molecular pathways and the lineage commitment of Bthal HSCs. Summary/Conclusions Overall, these data indicate that Bthal HSCs are more cycling cells which egress from the quiescent state probably towards an erythroid differentiation, probably in response to a chronic BM stimulation. On the other hand,some evidences support our hypothesis of an 'erythroid branching' already present in the HSC pool, exacerbated by the pathophysiology of the disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4363-4363
Author(s):  
Alexandre Janel ◽  
Nathalie Boiret-Dupré ◽  
Juliette Berger ◽  
Céline Bourgne ◽  
Richard Lemal ◽  
...  

Abstract Hematopoietic stem cell (HSC) function is critical in maintaining hematopoiesis continuously throughout the lifespan of an organism and any change in their ability to self-renew and/or to differentiate into blood cell lineages induces severe diseases. Postnatally, HSC are mainly located in bone marrow where their stem cell fate is regulated through a complex network of local influences, thought to be concentrated in the bone marrow (BM) niche. Despite more than 30 years of research, the precise location of the HSC niche in human BM remains unclear because most observations were obtained from mice models. BM harvesting collects macroscopic coherent tissue aggregates in a cell suspension variably diluted with blood. The qualitative interest of these tissue aggregates, termed hematons, was already reported (first by I. Blaszek's group (Blaszek et al., 1988, 1990) and by our group (Boiret et al., 2003)) yet they remain largely unknown. Should hematons really be seen as elementary BM units, they must accommodate hematopoietic niches and must be a complete ex vivo surrogate of BM tissue. In this study, we analyzed hematons as single tissue structures. Biological samples were collected from i) healthy donor bone marrow (n= 8); ii) either biological samples collected for routine analysis by selecting bone marrow with normal analysis results (n=5); or iii) from spongy bone collected from the femoral head during hip arthroplasty (n=4). After isolation of hematons, we worked at single level, we used immunohistochemistry techniques, scanning electronic microscopy, confocal microscopy, flow cytometry and cell culture. Each hematon constitutes a miniature BM structure organized in lobular form around the vascular tree. Hematons are organized structures, supported by a network of cells with numerous cytoplasmic expansions associated with an amorphous structure corresponding to the extracellular matrix. Most of the adipocytes are located on the periphery, and hematopoietic cells can be observed as retained within the mesenchymal network. Although there is a degree of inter-donor variability in the cellular contents of hematons (on average 73 +/- 10 x103 cells per hematon), we observed precursors of all cell lines in each structure. We detected a higher frequency of CD34+ cells than in filtered bone marrow, representing on average 3% and 1% respectively (p<0.01). Also, each hematon contains CFU-GM, BFU-E, CFU-Mk and CFU-F cells. Mesenchymal cells are located mainly on the periphery and seem to participate in supporting the structure. The majority of mesenchymal cells isolated from hematons (21/24) sustain in vitro hematopoiesis. Interestingly, more than 90% of the hematons studied contained LTC-ICs. Furthermore, when studied using confocal microscopy, a co-localization of CD34+ cells with STRO1+ mesenchymal cells was frequently observed (75% under 10 µm of the nearest STRO-1+ cell, association statistically highly significant; p <1.10-16). These results indicate the presence of one or several stem cell niches housing highly primitive progenitor cells. We are confirming these in vitro data with an in vivo xenotransplantation model. These structures represent the elementary functional units of adult hematopoietic tissue and are a particularly attractive model for studying homeostasis of the BM niche and the pathological changes occurring during disease. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 9 (6) ◽  
pp. 1670
Author(s):  
Daniela Cilloni ◽  
Jessica Petiti ◽  
Valentina Campia ◽  
Marina Podestà ◽  
Margherita Squillario ◽  
...  

During the phase of proliferation needed for hematopoietic reconstitution following transplantation, hematopoietic stem/progenitor cells (HSPC) must express genes involved in stem cell self-renewal. We investigated the expression of genes relevant for self-renewal and expansion of HSPC (operationally defined as CD34+ cells) in steady state and after transplantation. Specifically, we evaluated the expression of ninety-one genes that were analyzed by real-time PCR in CD34+ cells isolated from (i) 12 samples from umbilical cord blood (UCB); (ii) 15 samples from bone marrow healthy donors; (iii) 13 samples from bone marrow after umbilical cord blood transplant (UCBT); and (iv) 29 samples from patients after transplantation with adult hematopoietic cells. The results show that transplanted CD34+ cells from adult cells acquire an asset very different from transplanted CD34+ cells from cord blood. Multivariate machine learning analysis (MMLA) showed that four specific gene signatures can be obtained by comparing the four types of CD34+ cells. In several, but not all cases, transplanted HSPC from UCB overexpress reprogramming genes. However, these remarkable changes do not alter the commitment to hematopoietic lineage. Overall, these results reveal undisclosed aspects of transplantation biology.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 873-873
Author(s):  
Marco L Hennrich ◽  
Natalie Romanov ◽  
Patrick Horn ◽  
Samira Jaeger ◽  
Volker Eckstein ◽  
...  

Abstract Background: Diminishing potential to replace damaged tissues is a hallmark for aging of somatic stem cells, but the mechanisms leading to aging remain elusive. Applying comprehensive proteomics studies on human hematopoietic stem and progenitor cells (HPCs) as well as 5 other cell populations that constitute the bone marrow niche, we have acquired a systems understanding of the mechanisms involved in aging of HPCs. Methods and materials: We present a proteome-wide atlas of age-associated alterations in HPCs along with 5 other cell populations including mesenchymal stromal cells (MSC) that comprise the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified was assessed in a cohort of 59 human subjects from different age groups. In selected samples, transcriptomics, metabolomics, and single cell RNA-Sequencing studies were simultaneously performed. Results: As the HPCs become older, one of the most prominent changes is the increase in abundance of proteins involved in the pathways for central carbon metabolism. This change is found only in HPCs and is reminiscent of the Warburg effect where glycolytic intermediates are rerouted towards pentose phosphate shunt and anabolism. Transcriptomic data confirm the increase in abundance of mRNA for the respective glycolytic enzymes in older HPCs. Metabolomics analyses provide further proofs demonstrating the trend towards anabolism upon aging. Altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation at the expense of lymphoid development. Simultaneously, significant and complementary alterations in the bone marrow niche are observed. Whereas key factors responsible for homing, egress and adhesion of HPCs, e.g. SDF1/CXCL12, VCAM1, FN1, integrins α4, αL, β1 andβ2 decrease in abundance in MSCs, soluble factors responsible for myeloid differentiation, e.g.TGF-beta1, increase in abundance in the cellular niche with age. Transcriptomic analyses of single-sorted HPCs have demonstrated unequivocally that the mRNA levels of age-dependent increase in glycolytic enzymes are expressed at significantly higher levels in myeloid-biased versus than those in lymphoid-biased HPCs, whereas age-unaffected enzymes have similar mRNA levels in both subsets. The increase in abundance of glycolytic enzymes is hence linked with skewing of myeloid-biased HPCs in older human subjects. Conclusion: We have generated a comprehensive atlas of alterations in proteome landscapes of human HPCs and niche cells in bone marrow upon aging. In addition to findings that recapitulate the results derived from murine studies, the major novelties are (a) the alterations in central carbon metabolism in aging human HPCs, (b) the complementary decrease in levels of adhesive molecules and respective ligands in MSCs and HPCs. Single-cell studies have demonstrated that the age-related increase in abundance of the glycolytic enzymes is linked to the myeloid-biased HPCs. These data represent a valuable resource and serve as a basis for development of strategies targeting metabolic changes to enhance HPC regeneration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2685-2685
Author(s):  
A. Daisy Narayan ◽  
Jessica L. Chase ◽  
Adel Ersek ◽  
James A. Thomson ◽  
Rachel L. Lewis ◽  
...  

Abstract We used transplantation into 10 and 20 pre-immune fetal sheep recipients (55–65 days-old, term: 145 days) to evaluate the in vivo potential of hematopoietic elements derived from hESC. The in utero human/sheep xenograft model has proven valuable in assessing the in vivo hematopoietic activity of stem cells from a variety of fetal and post-natal human sources. Five transplant groups were established. Non-differentiated hESC were injected in one group. In the second and third group, embroid bodies differentiated for 8 days were injected whole or CD34+ cells were selected for injection. In the fourth and fifth group, hESC were differentiated on S17 mouse stroma layer and injected whole or CD34+ cells were selected for injection. The animals were allowed to complete gestation and be born. Bone marrow and peripheral blood samples were taken periodically up to over 12 months after injection, and PCR and flowcytometry was used to determine the presence of human DNA/blood cells in these samples. A total of 30 animals were analyzed. One primary recipient that was positive for human hematopoietic activity was sacrificed and whole bone marrow cells were transplanted into a secondary recipient. We analyzed the secondary recipient at 9 months post-injection by PCR and found it to be positive for human DNA in its peripheral blood and bone marrow. This animal was further challenged with human GM-CSF and human hematopoietic activity was noted by flowcytometry analyses of bone marrow and peripheral blood samples. Further, CD34+ cells enriched from its bone marrow were cultured in methylcellulose and human colonies were identified by PCR. We therefore conclude that hESC are capable of generating hematopoietic cells that engraft in 1° sheep recipients. These cells also fulfill the criteria for long-term engrafting hematopoietic stem cells as demonstrated by engraftment and differentiation in the 20 recipient.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4253-4253
Author(s):  
Shmuel Yaccoby ◽  
Kenichiro Yata ◽  
Yun Ge ◽  
Bart Barlogie ◽  
Joshua Epstein ◽  
...  

Abstract Recent studies indicate that osteoblasts play an important role in maintaining hematopoietic stem cells (HSCs) niche in the bone marrow microenvironment. The aim of study was to test the effect of osteoclasts on the fate of HSCs in a long term co-culture assay. To generate osteoclasts, peripheral blood mononuclear cells from mobilized donors were cultured for 6–10 days in αMEM media supplemented with 10% FCS, M-CSF and RANKL. After removal of non-adherent cells, the cultures contained 95% multinucleated osteoclasts and their precursors. These osteoclasts expressed TRAP and formed resorption pits on bone slices (Yaccoby et al., Cancer Res., 2004). CD34+ cells were purified from donor PBSCs and cord blood using immunomagnetic beads separation (&gt;95% purity). Adult and cord blood HSCs were co-cultured with osteoclasts for up to 3 and 10 months, respectively, in media lacking any cytokines. Because osteoclasts do not survive long without M-CSF and RANKL, the HSCs were transferred to fresh osteoclast cultures every 6–10 days. Unlike their tight adherence to stromal cells, HSCs did not adhere to the osteoclasts and were easily recovered from co-cultures by gentle pipetting. Following 1 to 3 weeks of co-culture, committed HSCs rapidly differentiated into various hematopoietic cell lineage, followed by phagocytosis of terminal differentiated hematopoietic cells by the osteoclasts. The remaining HSCs were highly viable (&gt;90% by trypan blue exclusion) and gradually lost their CD34 expression, so that the cultures contained subpopulations of HSCs expressing CD34−/lowCD38+ and CD34−/lowCD38−. Quantitive real time RT-PCR (qRT-PCR) revealed loss of expression of CD34 and reduced expression of CD45 by HSCs co-cultured with osteoclasts longer than 6 weeks. Variable expression of CD34 on HSCs was previously reported in murine but not human HSCs (Tajima et al., Blood, 2001). The co-cultured HSCs showed reduced capacity of generating in vitro hematopoietic colonies, and did not differentiate into osteoclasts upon stimulation with M-CSF and RANKL. We next tested the long term engraftment of these co-cultured HSCs in 2 animal models. In the first model, cord blood and adult HSCs from 2 donors recovered after &gt;6 weeks in co-culture were injected I.V. into irradiated NOD/SCID mice. In the second novel model, co-cultured cord blood and adult HSCs from 2 donors were injected directly into rabbit bones implanted subcutaneously in SCID mice (SCID-rab model), 6–8 weeks after rabbit bone implantation. After 2–4 months, 10%±3% human CD45-expressing cells were identified in the NOD/SCID mice femora and 8%±4% in the SCID-rab mice rabbit bone. Our study suggests that osteoclasts promote rapid differentiation of committed HSCs and induce conversion of CD34+ cells to CD34− stem cells with self renewal potential. Intriguingly, long term co-culture of primary CD138-selected myeloma plasma cells (n=16) with osteoclasts resulted in dedifferentiation of tumor cells from a mature CD45− phenotype to an immature, CD45-expressing cells, suggesting a common mechanism of osteoclast-induced HSC and myeloma cell plasticity. This indicates that osteoclasts are important bone marrow component regulating human HSC niche, plasticity and fate.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1652-1652
Author(s):  
Patrick Ziegler ◽  
Steffen Boettcher ◽  
Hildegard Keppeler ◽  
Bettina Kirchner ◽  
Markus G. Manz

Abstract We recently demonstrated human T cell, B cell, dendritic cell, and natural interferon producing cell development and consecutive formation of primary and secondary lymphoid organs in Rag2−/−gc−/− mice, transplanted as newborns intra-hepatically (i.h.) with human CD34+ cord blood cells (Traggiai et al., Science 2004). Although these mice support high levels of human cell engraftment and continuous T and B cell formation as well as CD34+ cell maintenance in bone marrow over at least six month, the frequency of secondary recipient reconstituting human hematopoietic stem and progenitor cells within the CD34+ pool declines over time. Also, although some human immune responses are detectable upon vaccination with tetanus toxoid, or infection with human lymphotropic viruses such as EBV and HIV, these responses are somewhat weak compared to primary human responses, and are inconsistent in frequency. Thus, some factors sustaining human hematopoietic stem cells in bone marrow and immune responses in lymphoid tissues are either missing in the mouse environment, or are not cross-reactive on human cells. Human mesenchymal stem cells (MSCs) replicate as undifferentiated cells and are capable to differentiate to multiple mesenchymal tissues such as bone, cartilage, fat, muscle, tendon, as well as marrow and lymphoid organ stroma cells, at least in vitro (e.g. Pittenger et al., Science 1999). Moreover, it was shown that MSCs maintain CD34+ cells to some extend in vitro, and engraft at low frequency upon transplantation into adult immunodeficient mice or fetal sheep as detected by gene transcripts. We thus postulated that co-transplantation of cord blood CD34+ cells and MSCs into newborn mice might lead to engraftment of both cell types, and to provision of factors supporting CD34+ maintenance and immune system function. MSCs were isolated and expanded by plastic adherence in IMDM, supplemented with FCS and cortisone (first 3 weeks) from adult bone marrow, cord blood, and umbilical vein. To test their potential to support hemato-lymphopoiesis, MSCs were analyzed for human hemato-lymphotropic cytokine transcription and production by RT-PCR and ELISA, respectively. MSCs from all sources expressed gene-transcripts for IL-6, IL-7, IL-11, IL-15, SCF, TPO, FLT3L, M-CSF, GM-CSF, LIF, and SDF-1. Consistently, respective cytokines were detected in supernatants at the following, declining levels (pg/ml): IL-6 (10000-10E6) > SDF-1 > IL-11 > M-CSF > IL-7 > LIF > SCF > GM-CSF (0–450), while FLT3L and TPO were not detectable by ELISA. Upon i.h. transplantation of same passage MSCs (1X10E6) into sublethally irradiated (2x2 Gy) newborn Rag2−/−gc−/− mice, 2-week engraftment was demonstrated by species specific b2m-RT-PCR in thymus, spleen, lung, liver and heart in n=7 and additionally in thymus in n=3 out of 13 animals analyzed. Equally, GFP-RNA transcripts were detectable in the thymus for up to 6 weeks, the longest time followed, upon co-transplantation of same source CD34+ cells and retrovirally GFP-transduced MSCs in n=2 out of 4 animals. Further engraftment analysis of ongoing experiments will be presented. Overall, these results demonstrate that human MSC produce hemato-lymphoid cytokines and engraft in newborn transplanted Rag2−/−gc−/− mice, at least at early time-points analyzed. This model thus might allow studying hematopoietic cell and MSC-derived cell interaction, and might serve as a testing system for MSC delivered gene therapy in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3209-3209
Author(s):  
Sonali Chaudhury ◽  
Johannes Zakarzewski ◽  
Jae-Hung Shieh ◽  
Marcel van der Brink ◽  
Malcolm A.S. Moore

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) is associated with significant post-transplant immunoincompetence which affects in particular the T cell lineage and results in an increased susceptibility to infections. Novel strategies to enhance immune recovery after HSCT could prevent malignant relapse and immune deficiency and improve the overall outcome of this therapy. We have established a serum free culture system using murine bone marrow stroma expressing the Notch ligand Delta-like 1 (DL1) to obtain high numbers of human pre-T cells from CD34+ cells. Human cord blood CD34+ cells were plated on OP9 DL1 stroma transduced with adenovirus expressing thrombopoietin (ad-TPO) at an MOI of 30. Media used was QBSF-60 (Serum free media prepared by Quantity Biologicals) supplemented with Flt-3 ligand and IL-7 (10ng/ml). At 4–5 weeks we obtained a 10 5–10 7 fold expansions of cultured cells of which about 70–80% were CD5, CD7 positive pre T cells (Fig 1). We then developed an optimal system to study human lymphohematopoiesis using mouse models (NOD/SCID/IL2rϒnull and NOD/SCIDβ2null) and established an adequate pre T cell number (4 × 10 6) and radiation dose (300 Rads). We injected CD34 and pre-T cells (CD45 +, CD4−, CD5+, CD7+) derived from OP9 DL1 cultures into these mice and achieved ~50%engraftment of NK in the bone marrow and spleen of the mice at 2 weeks following transplant. The thymus from the same mice showed evidence of about 12–15% CD7+ pre T cells. We are currently studying the function of the generated NK and T cells both in vivo and in vitro studies. Figure Figure


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3106-3106
Author(s):  
Pietro Sodani ◽  
Buket Erer ◽  
Javid Gaziev ◽  
Paola Polchi ◽  
Andrea Roveda ◽  
...  

Abstract Approximately 60% of thalassemic patients can not apply to “gene therapy today” which the insertion of one allogenic HLA identical stem cell into the empty bone marrow as the vector of the normal gene for beta globin chain synthesis. We studied the use of the haploidentical mother as the donor of hematopoietic stem cells assuming that the immuno-tollerance established during the pregnancy will help to bypass the HLA disparity and allow the hemopoietic allogeneic reconstitution in the thalassemic recipient of the transplant. We have employed a new preparative regimen for the transplant in fourteen thalassemic children aged 3 to 12 years (median age 5 years) using T cell depleted peripheral blood stem cell (PBSCTs) plus bone marrow (BM) stem cells. All patients received hydroxyurea (OHU) 60 mg/kg and azathioprine 3 mg/kg from day -59 until day-11, fludarabine (FLU) 30 mg/m 2 from day -17 to day -11, busulphan (BU) 14 mg/kg starting on day -10, and cyclophosphamide(CY) 200mg/kg, Thiotepa 10 mg/kg and ATG Sangstat 2.5 mg/kg, followed by a CD34 + t cell depleted (CliniMacs system), granulocyte colony stimulating factor (G-csf) mobilized PBSC from their HLA haploidentical mother. The purity of CD34+ cells after MACS sorting was 98–99%, the average number of transplanted CD34+ cells was 15, 4 x 10 6/kg and the average number of infused T lymphocytes from BM was 1,8 x 10 5/Kg.The patients received cyclosporin after transplant for graft versus host disease(GVHD) prophylaxis during the first two months after the bone marrow transplantation. Results. Thirteen patients are alive. Four patients rejected the transplant and are alive with thalassemia One patients died six months after bone marrow transplant for central nervous system diffuse large B cell lymphoma EBV related. Nine patients are alive disease free with a median follow up of 30 months (range12–47). None of the seven patients showed AGVHD and CGVHD. This preliminary study suggest that the transplantation of megadose of haploidentical CD34+ cell from the mother is a realistic therapeutic option for those thalassemic patients without genotipically or phenotipically HLA identical donor.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 351-351
Author(s):  
Leah A. Marquez-Curtis ◽  
Kathleen Deiteren ◽  
Lambeir Anne-Marie ◽  
Ali Jalili ◽  
Neeta Shirvaikar ◽  
...  

Abstract Carboxypeptidase M (CPM) is a zinc-dependent phospho-inositol-anchored protease that cleaves carboxy-terminal basic residues such as arginine or lysine from peptides. CPM is primarily membrane-bound, glycosylated, has a neutral pH optimum, and occurs in placental microvilli, seminal plasma, amniotic fluid, peripheral nerves, alveolar epithelial cells and macrophages. In this work, we examined whether CPM is expressed in various cells in the bone marrow (BM) including hematopoietic stem/progenitor cells (HSPC) and whether it plays a role in the stromal cell-derived factor (SDF)-1α-directed mobilization of HSPC from the BM) to peripheral blood (PB). SDF-1α produced by BM stromal cells retains HSPC in the BM and its proteolytic degradation results in mobilization. When exposed to serum, full-length SDF-1α (1–68) undergoes rapid cleavage of the C-terminal lysine yielding SDF-1α (1–67) which is then cleaved at the N-terminus by matrix metalloproteinases, CD26 and serine proteases or elastases, generating a truncated form of SDF-1α (3–67) with reduced chemoattractant activity. In this work, we present the first evidence that CPM can cleave the C-terminal lysine and furthermore reduces the ability of SDF-1α (1–67) to chemoattract HSPC. We found that CPM (i) is expressed by BM CD34+ cells strongly and weakly by PB CD34+ cells, mononuclear cells, neutrophils, mesenchymal stem cells and leukemic cell lines (THP-1 monocytic, KG-1 acute myeloid) by RT-PCR and flow cytometry; (ii) occurs on the cell surface of these cells and co-localizes with the SDF-1α receptor CXCR4 (by confocal microscopy); and (iii) is present on myeloid and megakaryocytic precursor cells, but not erythroid cells. G-CSF, the most commonly used agent for mobilization, slightly increased (1.2-fold) the expression of CPM in CD34+ cells at the gene level. Moreover, because in vivo SDF-1α (i.e., in serum) already lacks the C-terminal lysine, we used biologically active synthetic SDF-1α (1-67), and after treatment with CPM observed a significantly reduced chemoattraction for CD34+ cells. Furthermore, prolonged exposure of SDF-1α (over 24 h) to CPM completely obliterated its chemotactic activity but pre-incubating CPM with the peptidase inhibitor (DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid) restored it. Because CPM is localized on the plasma membrane, it is ideally situated to modulate the activity of this chemokine. As it has been suggested that the C-terminal lysine of SDF-1α binds with heparin on the cell surface, preserving the activity of SDF-1α, we propose that CPM cleavage of lysine could release the SDF-1α from the cell surface and expose it to further proteolytic degradation, resulting in the mobilization of HSPC to the circulation. In conclusion, we present the first evidence that CPM cleaves the C-terminal lysine residue of SDF-1α, and that it is expressed by various cells in the BM microenvironment, which may facilitate HSPC mobilization; however, understanding the full biological functions of this enzyme requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document