scholarly journals Functional Connectivity in Pediatric Sickle Cell Disease

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2049-2049
Author(s):  
SaRah R. McNeely ◽  
Xirui Hou ◽  
Alicia D. Cannon ◽  
Zixuan Lin ◽  
Sophie M. Lanzkron ◽  
...  

Abstract Children with sickle cell disease (SCD) have a high risk of developing cerebrovascular complications, such as stroke and silent cerebral infarction (SCI). SCI is associated with increased risk of future infarction as well as neurocognitive deficits related to brain injury location and size; however, neurocognitive impairment may occur in the absence of neuroimaging abnormalities. Resting state functional magnetic resonance imaging (RS-fMRI) measures blood oxygen level dependent (BOLD) signal during rest to evaluate functional connectivity between brain regions. Functional connectivity is the temporal correlation between the BOLD signal in spatially distant brain regions, which reflects synchronous activity. For this study, we hypothesized that participants with SCI would have lower functional connectivity than participants without SCI and that specific resting state networks would be associated with specific cognitive tests in SCD and control participants. We recruited 26 participants from the local pediatric hematology and SCD clinics. Children with SCD were included in the study if they had a SCD diagnosis confirmed by laboratory studies and no known prior history of overt stroke or seizure. We obtained clinical history, laboratory tests, neuropsychological testing scores, and RS-fMRI scans in 21 participants with SCD and 5 control participants without SCD, 2 of who had sickle cell trait. Each participant received a resting state functional connectivity scan using a 3T MR scanner. Participants were asked to remain still, stay awake, and keep their eyes open during the resting state scan. The MRI study protocol included a BOLD scan and a T1-weighted magnetization-prepared rapid gradient-echo sequence (MPRAGE) with a scan duration of 8 minutes. We performed standard image pre-processing steps, including realignment, normalization to Montreal Neurologic Institute (MNI) standard brain space via MPRAGE image, spatial smoothing, and slice timing correction. Table 1 shows the characteristics of the study participants. Eight participants with SCD had SCI diagnosed as an incidental finding during the study. The average connectivity within 7 resting state networks (control, default mode, dorsal attention, limbic, salience ventral attention, somato-motor, and visual networks) was compared between all (both SCD and control) participants with SCI and without SCI (Table 2). Participants with SCI had significantly lower functional connectivity in the control network (p = 0.0231, 95% CI: 0.073- 0.144) in comparison to participants without SCI. We also analyzed the relationship between 4 clinical variables and functional connectivity within each resting state network for all of the participants, with and without SCD. After adjusting for age and sex, there was a significant association between 3 resting state networks (control, salience ventral attention, and visual networks) and both hemoglobin and hematocrit (Table 3). There was a significant association between functional connectivity in the visual network and hemoglobin when adjusting for age and sex among just the participants with SCD (p = 0.045, 95% CI: 0.001-0.082). We analyzed the relationship between functional connectivity within each resting state network and neuropsychological test scores and found multiple significant associations between control, default mode, dorsal attention, salience ventral attention, and visual networks and attention/executive functioning test scores for all participants as well as just participants with SCD. Our findings suggest that children with SCD and SCI have decreased functional connectivity in the control network in comparison to children with and without SCD without SCI, which may indicate abnormalities in brain regions underlying executive dysfunction. Our data also established a relationship between the degree of anemia and functional connectivity, showing increased functional connectivity in the control, salience ventral attention, and visual network in participants with higher hemoglobin and hematocrit levels. Neuropsychological data shows that select test scores are associated with changes in functional connectivity in resting state networks primarily involved with attention and executive functioning. This research supports the utility of RS-fMRI as an adjunct analysis for investigating neurocognitive abnormalities in pediatric SCD. Figure 1 Figure 1. Disclosures Lanzkron: Novartis: Research Funding; Imara: Research Funding; CSL Behring: Research Funding; Bluebird Bio: Consultancy; Shire: Research Funding; Novo Nordisk: Consultancy; Pfizer: Current holder of individual stocks in a privately-held company; Teva: Current holder of individual stocks in a privately-held company; GBT: Research Funding. Mirro: NOUS Imaging: Current Employment, Current holder of stock options in a privately-held company. Fields: Global Blood Therapeutics: Consultancy; Proclara Biosciences: Current equity holder in publicly-traded company. Lance: Novartis: Other: participated in research advisory board in 2020.

2019 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Christian F. Beckmann ◽  
Mark W. Woolrich ◽  
Stephen M. Smith ◽  
Samuel J. Harrison

AbstractIn our previous paper (Bijsterbosch et al., 2018), we showed that network-based modelling of brain connectivity interacts strongly with the shape and exact location of brain regions, such that cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Here we show that these spatial effects on connectivity estimates actually occur as a result of spatial overlap between brain networks. This is shown to systematically bias connectivity estimates obtained from group spatial ICA followed by dual regression. We introduce an extended method that addresses the bias and achieves more accurate connectivity estimates.Impact statementWe show that functional connectivity network matrices as estimated from resting state functional MRI are biased by spatially overlapping network structure.


2020 ◽  
Author(s):  
Behnaz Yousefi ◽  
Shella Keilholz

The intrinsic activity of the human brain, observed with resting-state fMRI (rsfMRI) and functional connectivity, exhibits macroscale spatial organization such as resting-state networks (RSNs) and functional connectivity gradients (FCGs). Dynamic analysis techniques have shown that the time-averaged maps captured by functional connectivity are mere summaries of time-varying patterns with distinct spatial and temporal characteristics. A better understanding of these patterns might provide insight into aspects of the brain intrinsic activity that cannot be inferred by functional connectivity, RSNs or FCGs. Here, we describe three spatiotemporal patterns of coordinated activity across the whole brain obtained by averaging similar ~20-second-long segments of rsfMRI timeseries. In each of these patterns, activity propagates along a particular macroscale FCG, simultaneously across the cortical sheet and in most other brain regions. In some areas, like the thalamus, the propagation suggests previously-undescribed FCGs. The coordinated activity across areas is consistent with known tract-based connections, and nuanced differences in the timing of peak activity between brain regions point to plausible driving mechanisms. The magnitude of correlation within and particularly between RSNs is remarkably diminished when these patterns are regressed from the rsfMRI timeseries, a quantitative demonstration of their significant role in functional connectivity. Taken together, our results suggest that a few recurring patterns of propagating intrinsic activity along macroscale gradients give rise to and coordinate functional connections across the whole brain.


2020 ◽  
Vol 14 ◽  
Author(s):  
Bozhi Li ◽  
Liwei Zhang ◽  
Ying Zhang ◽  
Yang Chen ◽  
Jiaxi Peng ◽  
...  

ObjectivesAcute sleep deprivation (SD) seriously affects cognitive functions, such as attention, memory, and response inhibition. Previous neuroimaging studies have demonstrated a close relationship between the functional activities of the precuneus (PC) and the function of alert attention. However, the specific effect of the PC on attention decline after acute SD has not been elucidated. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to study the relationship between the changes of the PC functional connectivity and alertness decline after total SD.MethodsThirty healthy, right-handed adult men participated in the experiment. Alert attention and functional connectivity were assessed by the Psychomotor Vigilance Test and a resting-state fMRI scan before and after total SD. The region of interest to region of interest (“ROI-to-ROI”) correlation was employed to analyze the relationship between the PC and other brain regions after acute SD.ResultsParticipants showed decreased alert attention after total SD. In addition, SD induced decreased functional connectivity between the right PC and the right middle frontal gyrus (MFG). Moreover, there was a significant correlation between the decreased PC functional connectivity and alertness decline after total SD.ConclusionOur findings suggest that the interruption of the connection between the right PC and the right MFG is related to the observed decline in alert attention after acute SD. These results provide evidence further elucidating the cognitive impairment model of SD.


2021 ◽  
Author(s):  
Stephanie Matijevic ◽  
Jessica R. Andrews-Hanna ◽  
Aubrey Anne Ladd Wank ◽  
Lee Ryan ◽  
Matthew D. Grilli

The ability to generate episodic details while recollecting autobiographical events is believed to depend on a collection of brain regions that form a posterior medial network (PMN). How age-related differences in episodic detail generation relate to the PMN, however, remains unclear. The present study sought to examine individual differences, and the role of age, in PMN resting state functional connectivity (rsFC) associations with episodic detail generation. Late middle-aged and older adults (N = 41, ages 52-81), and young adults (N = 21, ages 19-35) were asked to describe recent personal events, and these memory narratives were coded for episodic, semantic and ‘miscellaneous’ details. Independent components analysis and regions-of-interest analyses were used to assess rsFC within anterior PMN connections (hippocampal and medial prefrontal) and posterior PMN connections (hippocampal, parahippocampal and parieto-occipital). Compared to younger adults, older adults produced memory narratives with lower episodic specificity (ratio of episodic:total details) and a greater amount of semantic detail. Among the older adults, episodic detail amounts and episodic specificity were reduced with increasing age. There were no significant age differences in PMN rsFC. Stronger anterior PMN rsFC was related to lower episodic detail in the older adult group, but not in the young. Among the older adults, increasing age brought on an association between increased anterior PMN rsFC and reduced episodic specificity. The present study provides evidence that functional connectivity within the PMN, particularly anterior PMN, tracks individual differences in the amount of episodic details retrieved by older adults. Furthermore, these brain-behavior relationships appear to be age-specific.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wenjuan Li ◽  
Ke Xie ◽  
Ronald K. Ngetich ◽  
Junjun Zhang ◽  
Zhenlan Jin ◽  
...  

The previous neuroimaging functional connectivity analyses have indicated that the association between the inferior frontal gyrus (IFG) and other brain regions results in better emotion regulation in reappraisal tasks. However, no study has explored the relationship between IFG-based resting-state functional connectivity (rsFC) and the dispositional use of reappraisal strategy. Therefore, the present study examined the potential associations between rsFC patterns of both left and right IFG and dispositional reappraisal use. One hundred healthy participants completed the Emotion Regulation Questionnaire (ERQ) and underwent a resting-state functional magnetic resonance imaging (fMRI) acquisition. An approach of the seed-based rsFC analysis was recruited to estimate the functional connectivity maps of bilateral IFG with other brain regions, and the reappraisal scores from the ERQ were then correlated with the functional maps. Our findings showed that IFG-based rsFC was positively correlated with dispositional reappraisal only in the range of 4 to 5.5 points [medium reappraisal group (MRG)]. Specifically, medium dispositional reappraisal was positively correlated with rsFC between left/right IFG and bilateral temporal gyrus. Besides, medium dispositional reappraisal was positively correlated with rsFC between left IFG and bilateral superior parietal lobe (SPL), middle cingulate cortex (MCC), and right insula, as well as between right IFG and dorsomedial prefrontal cortex (DMPFC) and anterior cingulate cortex (ACC). In conclusion, these results indicate that bilateral IFG plays an important role in the medium use of the reappraisal strategy.


2020 ◽  
Vol 4 (4) ◽  
pp. 1197-1218
Author(s):  
Anirudh Wodeyar ◽  
Jessica M. Cassidy ◽  
Steven C. Cramer ◽  
Ramesh Srinivasan

The relationship between structural and functional connectivity has been mostly examined in intact brains. Fewer studies have examined how differences in structure as a result of injury alters function. In this study we analyzed the relationship of structure to function across patients with stroke among whom infarcts caused heterogenous structural damage. We estimated relationships between distinct brain regions of interest (ROIs) from functional MRI in two pipelines. In one analysis pipeline, we measured functional connectivity by using correlation and partial correlation between 114 cortical ROIs. We found fMRI-BOLD partial correlation was altered at more edges as a function of the structural connectome (SC) damage, relative to the correlation. In a second analysis pipeline, we limited our analysis to fMRI correlations between pairs of voxels for which we possess SC information. We found that voxel-level functional connectivity showed the effect of structural damage that we could not see when examining correlations between ROIs. Further, the effects of structural damage on functional connectivity are consistent with a model of functional connectivity, diffusion, which expects functional connectivity to result from activity spreading over multiple edge anatomical paths.


2019 ◽  
Author(s):  
Dionissios T. Hristopulos ◽  
Arif Babul ◽  
Shazia’Ayn Babul ◽  
Leyla R. Brucar ◽  
Naznin Virji-Babul

ABSTRACTChildren and youth are at a greater risk of concussions than adults, and once injured, take longer to recover. A key feature of concussion is a diffuse increase in functional connectivity; yet it remains unclear how changes in functional connectivity relate to the patterns of information flow within resting state networks following concussion and how these relate to brain function. We applied a data-driven measure of directed effective brain connectivity to compare the patterns of information flow in healthy adolescents and adolescents with subacute concussion during the resting state condition. Data from 32 healthy adolescents (mean age =16 years) and 24 concussed adolescents (mean age = 13.8 years) with subacute concussion (< 3 months post injury) took part in the study. Five minutes of resting state data EEG were collected while participants sat quietly with their eyes closed. We applied the Kleeman-Liang information flow rate to measure the transfer of information between the EEG time series of each individual at different source locations, and therefore between different brain regions. Based on the ensemble means of the magnitude of normalized information flow rate, our analysis shows that information flow in the healthy adolescents is characterized by a predominantly (L) lateralized pattern with bidirectional information flow between frontal regions, between frontal and central/temporal regions and between parietal and occipital regions. In contrast, adolescents with concussion show distinct differences in information flow marked by a more symmetrical pattern with connections evenly distributed across the entire brain, increased information flow in the posterior regions of the brain and the emergence of bidirectional, inter-hemispheric connections between the left and right temporal regions of the brain. We also find that the statistical distribution of the normalized information flow rates in each group (control and concussed) is significantly different. Our results are the first to describe altered patterns of information flow in adolescents with concussion as well as differences in the statistical distribution of information flow rate. We hypothesize that the observed changes in information flow in the concussed group are a consequence of the brain injury and indicate functional reorganization of resting state networks.


2018 ◽  
Author(s):  
Sol Lim ◽  
Filippo Radicchi ◽  
Martijn P van den Heuvel ◽  
Olaf Sporns

AbstractSeveral studies have suggested that functional connectivity (FC) is constrained by the underlying structural connectivity (SC) and mutually correlated. However, not many studies have focused on differences in the network organization of SC and FC, and on how these differences may inform us about their mutual interaction. To explore this issue, we adopt a multi-layer framework, with SC and FC, constructed using Magnetic Resonance Imaging (MRI) data from the Human Connectome Project, forming a two-layer multiplex network. In particular, we examine whether node strength assortativity within and between the SC and FC layer may confer increased robustness against structural failure. We find that, in general, SC is organized assortatively, indicating brain regions are on average connected to other brain regions with similar node strengths. On the other hand, FC shows disassortative mixing. This discrepancy is apparent also among individual resting-state networks within SC and FC. In addition, these patterns show lateralization, with disassortative mixing within FC subnetworks mainly driven from the left hemisphere. We discuss our findings in the context of robustness to structural failure, and we suggest that discordant and lateralized patterns of associativity in SC and FC may explain laterality of some neurological dysfunctions and recovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zijin Gu ◽  
Keith Wakefield Jamison ◽  
Mert Rory Sabuncu ◽  
Amy Kuceyeski

AbstractWhite matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.


Sign in / Sign up

Export Citation Format

Share Document