scholarly journals Transcriptomic Signitures of Azacitidine (AZA) and Decitabine (DAC) Resistance in MDS and CMML

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4652-4652
Author(s):  
Faezeh Darbaniyan ◽  
Caleb Class ◽  
Guillermo Montalban-Bravo ◽  
Rashmi Kanagal-Shamanna ◽  
Marcos Estecio ◽  
...  

Abstract INTRODUCTION: Myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are heterogeneous myeloid neoplastic disorders characterized by ineffective hematopoiesis leading to cytopenias and increased risk of transformation to acute myeloid leukemia (AML) . The hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) improve the natural history of MDS and CMML patients (Fenaux et al 2009). However, over half of the cases experience primary failure defined by a lack of response to HMA treatment which is associated with poor prognosis and a median survival of 4-6 months (Garcia-Manero et al. 2016, Jabbour et al. 2010). The highly heterogeneous pathophysiology of myeloid neoplasms and poorly understood mechanisms underlying therapeutic action of HMAs pose substantial challenges in understanding the biology of HMA failure in MDS and CMML. METHODS: We established a cohort of baseline bone marrow (BM) cells that were collected from 17 CMML and 34 MDS patients with excessive blasts (MDS-EB) prior to their HMA based therapies (Figure 1). RNA-Seq based transcriptomic analysis was performed in CD34+ BM hematopoietic stem and progenitor cells (HSPCs) of patients, known to be the cellular origin of these diseases, to identify biological signatures of primary HMA resistance. RESULTS: Similar to the recent reports regarding the lack of common gene expression signatures in HMA resistant AML cell lines (Leung et al. 2019) , RNA-Seq in patient cohort detected fewer than 0.5% of the total number of differentially expressed genes in non-responders in common for both AZA and DAC. Of note, all the AZA and a large portion of DAC associated genes with down-regulations in non-responders encode immunoglobulins, which is consistent with several recent findings indicating impaired differentiation B cells in association with unfavorable outcomes in MDS and CMML (Ribeiro et al. 2006 and Kahn et al. 2015). We performed flow cytometry analysis in BM cells available for 13 patients prior to start of HMA treatments (5 non-responders and 8 responders), and detected that HMA non-responders had a strong tendency (P=0.07) of decreased baseline frequencies of B cells in their BM than HMA responders. GSEA analysis based on leading edge genes identified over 200 and 300 biological signaling pathways to be associated with AZA and DAC failure respectively, with 78 pathways commonly correlated with treatment failure of both drugs (28 up-regulated and 60 down-regulated, Table 1). Clustering of these commonly altered pathways based on biological functions revealed that most of them are known to have a role in MDS and CMML pathogenesis and/ or drug resistance. For instance, neurotransmitter, olfactory pathways, and associated G-protein coupled receptor signals was recently reported to play a role in regulating the maintenance and differentiation of BM HSPCs (Shao et al. 2021 and Shim et al. 2013), whereas cell junction signaling that involves integrins and increased MAP2K-MAPK signaling were also reported to be associated with AZA resistance in MDS and CMML (Unnikrishnan et al. 2017). Among commonly down-regulated biological pathways in non-responders of AZA and DAC, there were clusters of immunoglobulin-associated signals, protein translation regulatory pathways that involve ribosomal proteins, cell cycle signaling, respiratory chain, and Golgi transport signals. Decreased expression of ribosomal proteins and related impairment of ribosomal functions were known mechanism in MDS and CMML development (Ebert et al. 2008 and Schneider et al. 2016). Furthermore, decreased respiratory chain and Golgi transport signals were also identified by transcriptomic investigation in the DAC resistant TF1-RES cell lines. In addition to the commonly altered signals for both AZA and DAC resistance, innate immune signaling pathways including interferon and toll-like receptor signals were significantly up-regulated in DAC non-responders but down-regulated in AZA non-responders. CONCLUSIONS: In this study, the transcriptomic data between responders and non-responders to AZA and DAC were investigated separately, thereby drug-specific as well as the common biomarkers associated with treatment failures of both drugs could be identified. The relatively low proportion of genes and pathways shared by AZA and DAC non-responders suggest the difference underlying biological mechanisms of AZA and DAC failure. Figure 1 Figure 1. Disclosures Sasaki: Novartis: Consultancy, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Membership on an entity's Board of Directors or advisory committees. Wei: Daiichi Sanko: Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3010-3010 ◽  
Author(s):  
Hans Lee ◽  
Hua Wang ◽  
Heather Lin ◽  
Veera Baladandayuthapani ◽  
Jin He ◽  
...  

Abstract Background: The role of dysregulation of the proto-oncogene MYC in both early and late myeloma progression events is well established. Among key MYC -downstream targets is upregulation of ribosomal biogenesis, resulting in increased protein translational capacity and biomass accumulation that is characteristic of neoplastic cells. Thus, given the relationship between myeloma pathobiology, MYC dysregulation, and ribosomal biogenesis, we hypothesized that selective targeting of ribosomal RNA (rRNA) transcription with the small molecule RNA polymerase (pol) I inhibitor CX-5461 (Senhwa Biosciences) may represent a novel therapeutic strategy in myeloma. Methods: Studies with CX-5461 were performed in human myeloma cell lines, isogenic p53 wild-type (wt) and knock-out (KO) p53 cells generated using sequence-specific zinc-finger nucleases, drug-resistant cell lines, primary patient samples, and myeloma murine xenograft models using NOD-SCID IL2Rgnull mice. Results: CX-5461 treatment of p53 wt (MM1.S, MOLP-8) and p53 mutant (U266, RPMI-8226) myeloma cell lines demonstrated a time- and dose-dependent decrease in cell proliferation with a median inhibitory concentration (IC50) at nM levels after 72 hours. A corresponding increase in cleaved-PARP, cleaved caspase-9, and cleaved caspase-3 expression was seen on Western blot as well as increased Annexin V staining on flow cytometry analysis, although this was more pronounced in p53 wt versus mutant cell lines. CX-5461 also retained activity in a panel of cell lines resistant to standard myeloma therapeutic agents (bortezomib, carfilzomib, lenalidomide, and doxorubicin) and in primary patient samples, including a heavily pretreated relapsed/refractory patient and a de novo plasma cell leukemia patient with del 17p. In vivo studies using a systemic isogenic MM1.S p53 wt and KO myeloma murine xenograft model demonstrated significant improvement in median overall survival in the CX-5461-treated p53 wt cohort (41 days vs. not reached, P .05), although outcomes were more modest in the p53 KO cohort with only a trend towards improved survival (P.1) in the drug-treated mice. To probe the p53-independent effects of CX-5461, gene expression profiling and gene set enrichment analysis was performed on isogenic MM1.S and MOLP-8 p53 wt and KO myeloma cell lines treated with CX-5461 or vehicle. These results suggested downregulation of MYC downstream targets as one p53-independent effect of RNA pol I inhibition. qPCR and Western blot studies revealed rapid downregulation of MYC at the transcript level within 1-hour of CX-5461 treatment followed by decreases in MYC protein levels. Previous studies have suggested ribosomal biogenesis is tightly controlled by an auto-regulatory feedback mechanism in which ribosomal proteins such as RPL5 and RPL11 can bind to the 3'UTR of MYC mRNA and facilitate its degradation through the RNA-induced silencing complex (RISC). Because RNA pol I inhibition is known to induce a nucleolar stress response and increase the availability of free ribosomal proteins, RISC-mediated degradation of MYC mRNA was explored as one possible mechanism of CX-5461-mediated MYC downregulation. Indeed, treatment with CX-5461 led to increased pull-down of RPL5 when immunoprecipitated with the RISC subunit TAR (HIV-1) RNA Binding Protein 2 (TARBP2) compared to vehicle-treated controls, and RNA immunoprecipitation assays with the catalytic RISC subunit, Argonaute 2 (AGO2), demonstrated enrichment of MYC mRNA with CX-5461 treatment. These results suggest that CX-5461 may induce degradation of MYC through the cooperative binding of ribosomal proteins, RISC subunits, and MYC mRNA. Finally, to evaluate the role of MYC expression and ribosomal biogenesis in relation to CX-5461 sensitivity, MYC was overexpressed in the H1112 myeloma cell line, which at baseline does not harbor a MYC translocation. MYC overexpression in H1112pCDH-myc cells led to increased basal pre-rRNA transcript levels compared to H1112pCDH cells, and furthermore, led to enhanced sensitivity to CX-5461. Conclusion: RNA pol I inhibition by CX-5461 is a promising target in myeloma therapy, with downregulation of MYC representing one mechanism of action. Moreover, increased MYC expression enhances sensitivity to CX-5461, providing rationale for the clinical translation of CX-5461 for the treatment of myeloma and other MYC-driven cancers. Disclosures O'Brien: Senhwa Biosciences, Inc.: Employment. Keats:Translational Genomic Research Institute: Employment. Orlowski:Bristol-Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Spectrum Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Forma Therapeutics: Consultancy; Genentech: Consultancy; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Array BioPharma: Consultancy, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3499-3499 ◽  
Author(s):  
Richard Julian Jones ◽  
Shannon C. Kenney ◽  
Christopher Dawson ◽  
Robert Z. Orlowski

Abstract Introduction Thalidomide (THAL), and the IMiDs® immunomodulatory agents lenalidomide (LEN), and pomalidomide (POM) are all approved for use in multiple myeloma (MM) either as single agents, or in combination with dexamethasone (DEX). Despite the enhanced efficacy of these novel agents, concern has arisen as to the increased incidence of secondary primary malignancies (SPM). For example, the IFM 2005-002 trial reported cases of lymphoblastic leukemia and Hodgkin’s disease (HD) following LEN use (Attal, Lauwers-Cances et al. 2012) in MM patients on maintenance therapy. Also, a recent case report described a MM patient who developed HD who had been treated with salvage therapy containing THAL(Chim, Choi et al. 2013), and two publications reported EBV reactivation in MM patients treated with LEN (Kneppers, van der Holt et al. 2011; Kroger, Zabelina et al. 2013). As HD is causally linked to EBV, this raises the question as to whether the IMiDs reactivate latent EBV infection in normal memory B-cells, and thereby increase the risk of EBV-related malignancies. To this end, we have investigated the ability of the IMiD’s to induce reactivation of latently infected B-cell lines. Methods A panel of latently infected EBV-positive B-cell lines including Burkitt’s lymphoma (BL) cells and lymphoblastoid cell lines (LCL) were treated with either LEN, THAL or POM, and the status of the EBV lytic cycle was evaluated using in vitro and in vivo models. Results Treatment of BL and LCL cell lines with physiological concentrations of IMiDs (1-5 μM) induced the immediate early gene BZLF1 and the early gene BMRF1. Interestingly, the ability to induce EBV reactivation was in their potency order (i.e. POM>LEN>THAL). The IMiD’s also induced lytic cell death, as an LCL carrying a BZLF1-deleted EBV, which is incapable of undergoing a lytic cycle, showed no change in cell viability, compared to wild-type cells which had increased cell death. The addition of the nucleoside analogue ganciclovir (GCV) enhanced the cytotoxic effect of LEN and POM alone in BL cells lines. An in vivo xenograft model of BL demonstrated that the combination of LEN and GCV was highly efficacious at suppressing tumor cell growth, thus confirming the ability of LEN to stimulate the EBV-lytic life cycle. The ability to induce EBV reactivation was directly related to the stimulation of phosphatidylinositol-3 kinase (PI3K) signaling, which was completely blockaded by the PI3K-δ inhibitor, CAL101. The combination of LEN with either, DEX or rituximab, induced increased BMRF1 compared to the LEN alone. Conclusions The IMiD class of drugs has a potent ability to reactivate the lytic cycle in B-cells latently infected with EBV. We hypothesize that the IMiD’s reactivate latently infected resting memory B cells through enhancing PI3K signaling. This reactivation may be further potentiated when the IMiDs are used in combination with rituximab or DEX, which may simultaneously enhance the EBV lytic cycle and suppress the host immune response. These findings suggest the possibility that immunocompromised patients who receive IMiDs should be monitored for evidence of EBV reactivation. Also, this may suggest a mechanism by which patients may develop EBV-associated SPM, an effect which is similar to the methotrexate induced EBV-positive lymphomas seen in rheumatoid arthritis patients (Feng, Cohen et al. 2004). References Attal, M., V. Lauwers-Cances, et al. (2012). “Lenalidomide maintenance after stem-cell transplantation for multiple myeloma.” The New England journal of medicine 366(19): 1782-1791. Chim, C. S., P. T. Choi, et al. (2013). “Hodgkin's lymphoma as a second cancer in multiple myeloma never exposed to lenalidomide.” Annals of hematology 92(6): 855-857. Feng, W. H., J. I. Cohen, et al. (2004). “Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas.” Journal of the National Cancer Institute 96(22): 1691-1702. Kneppers, E., B. van der Holt, et al. (2011). “Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial.” Blood 118(9): 2413-2419. Kroger, N., T. Zabelina, et al. (2013). “Toxicity-reduced, myeloablative allograft followed by lenalidomide maintenance as salvage therapy for refractory/relapsed myeloma patients.” Bone marrow transplantation 48(3): 403-407. Disclosures: Orlowski: Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array Biopharma: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 874-874
Author(s):  
Jonathan C Poe ◽  
Dadong Zhang ◽  
Jichun Xie ◽  
Rachel A. DiCioccio ◽  
Xiaodi Qin ◽  
...  

While B cells are known to contribute to the pathogenesis of chronic graft-versus-host disease (cGVHD) in mice, it has been challenging to elucidate intrinsic mechanisms of tolerance loss in patients. To identify distinct and potentially targetable B-cell subsets in cGVHD, we employed single-cell RNA-Seq along with an unsupervised hierarchical clustering analysis, targeting 10,000 single B cells from each of eight patients who were >12 months post-allogeneic hematopoietic stem cell transplantation (HCT) and either had active cGVHD manifestations (n=4) or never developed cGVHD (n=4). Bioinformatics analysis of pooled cell data (using R with Seurat extension package) identified 6 major B cell clusters common to all patients (Figure 1A). "Intra-cluster" gene comparison (using R package DESeq2, false-discovery rate 0.05) revealed numerous differentially expressed genes between patient groups. The greatest number of differentially-expressed genes occurred in a cluster referred to herein as 'Cluster 6' (Figure 1A, in yellow with asterisk). Within Cluster 6, B cells from active cGVHD patients expressed significantly increased ITGAX (CD11c, Padj =0.007), TNFRSF13B (TACI, a receptor for BAFF, Padj =0.003), IGHG1 (IgG1, Padj =9.3e-06) and IGHG3 (IgG3, Padj =1.7e-12), along with 44 additional genes (to be discussed). Thus, Cluster 6 in cGVHD patients may represent a CD11cpos, BAFF-responsive B cell subset primed to undergo isotype switching in response to alloantigen. Flow cytometry analysis on PBMCs from an independent HCT patient cohort (n=10) confirmed that CD11cpos B cells were indeed significantly expanded in cGVHD (P < 0.01, Figure 1B), and revealed these B cells were also TACIpos, CD19high, forward scatter high (FSChigh) blast-like cells (Figure 1C). We found that these CD11cpos B cells had mixed expression of CD21, CD27, IgD and CD24 (Figure 1C). Remarkably, other recent studies on bulk patient B cells have suggested that similar CD11cposCD21negCD19highT-BETpos cells are critical drivers of humoral autoimmunity in diseases including systemic lupus erythematosus (SLE; Scharer et al. 2019; Rubtsova et al. 2017; Rubtsov et al. 2011). This subset now identified by single-cell RNA-Seq is consistent with a population of TACIhigh B cells that produced IgG in response to BAFF treatment ex vivo (Sarantopoulos 2009). Data suggest we have identified functionally distinct and potentially targetable B cell subpopulations. We are employing functional assays to determine whether the additional molecular pathways now elucidated account for our previous work showing greater ex vivo B cell survival rates and hyper-responsiveness to surrogate antigen (Allen et al. 2012, 2014), certain TLR agonists (Suthers et al. 2017), and NOTCH ligand (Poe et al. 2017). In addition to more deeply characterizing B-cell subsets in cGVHD, our single-cell RNA-Seq analyses identified several genes significantly altered across multiple B cell clusters in the cGVHD group, implicating more broad alterations of some genes in this disease. Among these is CKS2, a critical cell cycle regulator, which was significantly increased in cGVHD B cells (Padj 1.0e-10 to 0.018, depending on the cluster evaluated). Increased CKS2 expression was validated by qPCR analysis on B cells from a separate HCT patient cohort with or without cGVHD (P < 0.001, Figure 1D), suggesting that the majority of cGVHD B cells are primed to enter the cell cycle at multiple stages of differentiation when exposed to the proper stimuli. In summary, we used an unbiased approach to identify and further characterize an extrafollicular CD11cposTACIposCD19high B cell population in cGVHD patients that appears to be activated and undergoing active IgG isotype switching. This plasmablast-like B cell population is potentially amenable to therapeutic intervention to prevent pathogenic antibody production. Importantly, we also identify gene alterations across the cGVHD peripheral B cell compartment that potentially underpin promotion of hyperactivated B cells in this disease. Therapeutic strategies to target these pathways will also be discussed. This work was supported by a National Institutes of Health grant, R01HL129061. Disclosures Ho: Omeros Corporation: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Research Funding; Jazz Pharmaceuticals: Consultancy. Horwitz:Abbvie Inc: Membership on an entity's Board of Directors or advisory committees. Rizzieri:Celgene, Gilead, Seattle Genetics, Stemline: Other: Speaker; AbbVie, Agios, AROG, Bayer, Celgene, Gilead, Jazz, Novartis, Pfizer, Sanofi, Seattle Genetics, Stemline, Teva: Other: Advisory Board; AROG, Bayer, Celgene, Celltron, Mustang, Pfizer, Seattle Genetics, Stemline: Consultancy; Stemline: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2767-2767
Author(s):  
Deborah M Stephens ◽  
Kyle A. Beckwith ◽  
Priscilla Do ◽  
Carolyn Cheney ◽  
Xiaokui Mo ◽  
...  

Abstract Background Targeting new antigens in chronic lymphocytic leukemia (CLL) and lymphoma may increase flexibility in the clinic and help circumvent resistance. The tetraspanin CD37 domain mediates transduction of survival and apoptotic signals (Lapalombella et al.,Cancer Cell, 2014), and has been clinically validated by recent trials of otlertuzumab (TRU-016) in CLL and Non-Hodgkin Lymphoma . Ligation of CD37 by this reagent simultaneously induced pro-apoptotic signaling and inhibited pro-survival signaling of phosphoinositide 3-kinase δ (PI3Kδ), which introduces a unique opportunity to use combination strategies employing activation of CD37 and inhibition of PI3Kδ. A new agent BI 836826 is an Fc-engineered anti-CD37 IgG1 that displays improved effector activities as well as crosslinker-independent direct cytotoxicity. We have evaluated the efficacy of BI 836826 combined with the PI3Kδ-selective inhibitor idelalisib in diffuse large B-cell lymphoma (DLBCL) cell lines and primary human CLL B-cells in the University and then by industry to validate the synergistic finding initially reported. Methods Cell viability assays usedCellTiterGlo to measure inhibition of antibody, isotype control, idelalisib or a combination of antibody and compound over 72h in culture. The cell viability of vehicle is measured at the time of dosing (T0) and after seventy-two hours (T72). A GI reading of 0% represents no growth inhibition, GI 100% represents complete growth inhibition, and a GI 200% represents complete death of all cells in the culture well. Annexin V-FITC and propidium iodide measure by flow cytometry was used to assess enhanced killing of primary CLL cells, with incubation of BI 836826 (0.1 µg/mL) and/or idelalisib (1 µM) at 37°C for 24 hours. Trastuzumab included as a non-specific IgG1 control. Data was reported as percentage of viable cells (Annexin V negative, PI negative) normalized to untreated control. Results DLBCL cell lines were variably sensitive to single agent BI 836826. In most of the cell lines tested, the cell viability was inhibited by 40%-50% with BI 836826 in the concentration range of 1-1000 ng/mL (Figure 1A). A synergistic effect was noted in several DLBCL cell lines when BI 836826 was combined with idelalisib. When the maximal effect of BI 836826 was greater than isotype control (GI% > 12, dotted line) and the effect of idelalisib showed a GI50 < 1uM, 3/5 cell lines showed synergy in combination (red dot, Figure 1B). A shift in the EC50of idelalisib can be seen with the addition of increasing amounts of BI 836826 (Figure 1C). In primary CLL B-cell cultures, 1 µM idelalisib displayed weak single agent activity following 24-hour incubation. The cytotoxicity of BI 836826 at 0.1 µg/mL was more variable, although treatment of samples from most CLL patients resulted in 20-50% B-cell death. The combination of these 2 agents resulted in enhanced cytotoxic activity (Figure 2A), and this effect was not attenuated by the presence of del(17)(p13.1), as there was no significant difference in cytotoxicity against these cells compared to those with lower risk cytogenetics (Figure 2B,C). Additionally, the combination was beneficial in CLL B-cells isolated from patients who were refractory to ibrutinib (Figure 2D). Conclusions This collaborative industry and academic endeavor with cross validation of initial mechanistic studies of synergy between CD37 and idelalisib demonstrates that addition of idelalisib to BI 836826 augments cytotoxicity against DLBCL cell lines and primary human CLL B-cells in an additive-to-synergistic manner. In addition, it maintains efficacy against CLL B-cells with del(17)(p13.1) and those from ibrutinib-refractory patients. Further exploration of this therapeutic strategy in clinical trials is strongly warranted. Disclosures Jones: AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics, LLC, an AbbVie Company: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Awan:Innate Pharma: Research Funding; Pharmacyclics: Consultancy; Novartis Oncology: Consultancy. Grosmaire:Gilead: Employment. Jones:Gilead: Employment. DiPaolo:Gilead: Employment. Tannheimer:Gilead Sciences: Employment. Heider:4Boehringer Ingelheim RCV: Employment.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12
Author(s):  
Jennifer Kimberly Lue ◽  
John S Manavalan ◽  
Christine Klaus ◽  
Rahul Kanik ◽  
Andre M. Grilo ◽  
...  

Introduction: MYD88 mutations are found in 25% of DLBCL and are associated with an inferior survival. MYD88 is an adapter molecule, forming the core of the Myddosome complex. MYD88 mutations constitutively activate pathways such as NFқB, leading to lymphomagenesis. Essential to the Myddosome-dependent signaling pathway is the recruitment of IRAK4 which complexes with MYD88 to activate downstream effects. Targeting IRAK4 is therefore a rational therapeutic approach in MYD88-mutant lymphomas. First-in-class IRAKIMiDs, novel heterobifunctional degraders that target IRAK4 as well as the IMiD substrates Ikaros and Aiolos to enable the inhibition of both the NFkB and IRF4 pathways activated by MYD88 mutations, demonstrate potent efficacy in MYD88-mutant lymphomas (KTX-475, KTX-582, Walker D et al. AACR 2020). Herein, we compare the activity of IRAKIMiDs to IRAK4 kinase inhibitors and IMiDs alone in MYD88-mutant DLBCL, and evaluate rational combinations of IRAKIMiDs and other active agents in DLBCL for synergy. Methods: MYD88-mutant (n=4) and wild type (n=4) DLBCL cell lines were exposed to a panel of single agents (KTX-475, KTX-582, BAY1830839, CA-4948, CC-220, lenalidomide, pomalidomide, ibrutinib, umbralisib, venetoclax) in order to establish the drug concentration:cytotoxicity effect relationship. Cell viability was assessed using Celltiter-Glo assay at 24-hour intervals. IC50 values were computed. MYD88-mutant DLBCL cells were co-exposed to combinations of KTX-475 with venetoclax, ibrutinib, or umbralisib at concentrations representing their respective IC10-40 in order to determine synergy using the excess over bliss (EOB) method. Venetoclax, ibrutinib, and umbralisib were selected for combinational studies in order to target adverse pathways known to be associated in DLBCL biology. To confirm IRAK4 degradation, western blot and flow cytometry was performed. Apoptosis was evaluated with flow cytometry. Pre-treatment RNA-seq libraries were developed for the purpose of identifying GSEA and mutational analysis to predict response to IRAKIMiDs. Results: Exposure to IRAKIMiDs led to potent activity in MYD88-mutated DLBCL with IC50s in the low nanomolar range. IRAK4 degradation occured in a dose- and time-dependent manner and was observed as early as four hours after exposure. IRAKIMiDs induced superior cytotoxicity compared to two IRAK4 kinase inhibitors, including CA-4948 (Curis), which is currently under clinical investigation for relapsed/refractory NHL, as determined by lower IC50s in all cell lines. IRAKIMiD IC50s were also lower compared to pomalidomide, lenalidomide, and CC-220. KTX-475 was selected for synergy assessments based on IC50 values. Synergy was observed after exposure to KTX-475 in conjunction with venetoclax, ibrutinib, or umbralisib as determined by EOB &gt;0 in the MYD88-mutant OCI-LY10 model, with maximum values peaking at 72-96 hours. After dual drug exposure, IRAK4 degradation was validated by flow cytometry demonstrating that the addition of venetoclax, ibrutinib or umbralisib to KTX-475 did not impair IRAK4 degradation capabilities. RNA-seq interpretation is currently underway. Conclusions: Collectively, our results demonstrate that dual-function degraders targeting both IRAK4 and the IMiD substrates Ikaros and Aiolos can serve as a potential therapeutic option for poor prognosis MYD88-mutant DLBCL. Our data thus far demonstrate improved efficacy of IRAKIMiDs compared to IRAK4 kinase inhibitors or IMiDs alone in vitro, as well as synergy with other active agents in combination regimens. A promising lead IRAKIMiD candidate has been identified, with initiation of a first-in-human clinical trial in B-cell lymphomas planned for 2021. Disclosures Lue: Daiichi Sankyo: Honoraria; AstraZeneca: Speakers Bureau; Astex Pharmaceuticals: Honoraria; Kymera Therapeutics: Honoraria, Research Funding; Kura Oncology: Honoraria. Klaus:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Kanik:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. McDonald:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gollob:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Walker:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. O'Connor:Kymera Therapeutics: Current equity holder in private company, Honoraria, Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Current Employment, Current equity holder in publicly-traded company; Servier: Consultancy; Mundipharma: Other: Consulting; Astex Pharmaceuticals: Honoraria, Research Funding; Merck: Research Funding; Nomocan: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Other: Data Safety Monitoring Committee, Research Funding. Mainolfi:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 18-19
Author(s):  
Ricardo De Matos Simoes ◽  
Ryosuke Shirasaki ◽  
Huihui Tang ◽  
Shizuka Yamano ◽  
Benjamin G Barwick ◽  
...  

Background: Functional genomics studies based on CRISPR and shRNA have documented that multiple myeloma (MM) cells are preferentially dependent (compared to other neoplasias) on a series of TFs, including IKZF1 and IKZF3 (which are targeted by thalidomide derivatives) and others that are not amenable to degradation or small molecule inhibition. Transcriptional co-factors have been therapeutically targeted, for example, inhibitors of BRD4, a co-factor for pTEFB, can be used to down-regulate c-myc. Aim: To identify new transcriptional vulnerabilities in MM with an emphasis on transcriptional co-factors Methods: We integrated results from genome-scale studies using the AVANA library for loss-of-function by gene editing (in 19 MM lines) and the Calabrese library for CRISPR-mediated gene activation (in 5 MM lines) to identify critical transcriptional co-factors (co-TFs). RNA-Seq analysis was used to identify critical pathways affected by POU2AF1 activation and existing ChIP-Seq tracks in MM cells were reanalyzed. Results: POU2AF1 (OCA-B) was the most preferentially essential TF co-factor in MM cell lines vs. non-MM and one of top genes which, upon CRISPR activation in genome-scale studies, increased MM cell fitness in vitro. We further confirmed the role of this gene using focused libraries of sgRNAs against POU2AF1 in vitro and in an in vivo model of MM cell growth in bone marrow-like scaffolds "functionalized" with humanized mesenchymal bone marrow stromal cells to simulate the human BM. CRISPR activation of POU2AF1 is associated with increased MM cell growth. RNA-Seq of POU2AF1 activation in LP1 cells a transcriptional program characterized by upregulation of other genes that are preferentially essential for MM including PRDM1, SUPT7L, UBE2G2 and TSC1; broad-spectrum oncogenic dependencies (e.g KRAS) and genes known or proposed to be involved in the pathophysiology of MM or other neoplasias (e.g. RUNX2, FGFR3, SMO, CREB5, TNFRSF13B, MEF2D, PCGF2). POU2AF1 overexpression was also associated with down-regulation of CDKN1C; of MHC class II molecules and their transcriptional activator CIITA, suggesting that POU2AF1 activation could also contribute to increased MM growth in vivo by allowing escape from immune surveillance. ATAC-Seq data and genome-wide ChIPseq for H3K27Ac in MM cell lines indicate that chromatin surrounding the POU2AF1 locus was highly accessible, concordant with the consistent expression of this TF in MM cell lines and patient-derived cells. CoMMpass data showed that POU2AF1 expression was enhanced in a subset of MM patients at relapse compared to diagnosis. Motif analysis of ChIP-seq data for POU2AF1 identified significant overlap with motifs for TFs relevant to the POU family (e.g. Oct11, Oct2, Oct4); members of the ETS family (e.g. ELF1, Elf4, GABPA); and other TFs with roles in MM including c-myc; IRF4; NF-kappaB, PRDM1, RUNX2 and the POU2AF1 target CREB5. These data suggest a functional interaction between POU2AF1 and other MM-relevant TFs. The transcriptional signature of POU2AF1 activation is enriched for genes downregulated by suppression/inhibition of MM-preferential TFs or epigenetic regulators including IRF4, PRDM1, IKZF1/3 and DOT1L. POU2AF1 binding motifs are also enriched in the promoter regions of MM-preferential dependencies including several MM-preferential TFs. Conclusions: POU2AF1 is essential for MM cells in vitro and in vivo; has a significantly more pronounced and recurrent role as a dependency in MM compared to most other neoplasias; and can further drive MM cell growth, through its ability to interact with several TFs critical for MM, forming multi-protein functional complexes. These results establish POU2AF1 as a central component in the regulatory network of oncogenic TFs in MM and highlight the value of further exploring POU2AF1 as a therapeutic target in MM. Disclosures Downey-Kopyscinski: Rancho BioSciences, LLC: Current Employment. Tsherniak:Cedilla Therapeutics: Consultancy; Tango Therapeutics: Consultancy. Boise:AstraZeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genetech: Membership on an entity's Board of Directors or advisory committees. Mitsiades:FIMECS: Consultancy, Honoraria; Ionis Pharmaceuticals, Inc.: Consultancy, Honoraria; Arch Oncology: Research Funding; Janssen/Johnson & Johnson: Research Funding; Karyopharm: Research Funding; TEVA: Research Funding; Takeda: Other: employment of a relative; Fate Therapeutics: Consultancy, Honoraria; Sanofi: Research Funding; Abbvie: Research Funding; EMD Serono: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3935-3935
Author(s):  
Sophie M. Stief ◽  
Anna-Li Hanneforth ◽  
Raphael Mattes ◽  
Sabrina Weser ◽  
Binje Vick ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive hematologic cancer resulting from the malignant transformation of myeloid progenitors. Despite intensive chemotherapy, relapse caused by intrinsic or acquired drug resistance remains a major hurdle in the treatment of AML. Recently, we found KDM6A as a novel relapse-associated gene in a cohorte of 50 cytogenetically normal AML patients. KDM6A (or UTX) is a histone 3 lysine 27 (H3K27)-specific demethylase and a member of the COMPASS (complex of proteins associated with Set1)-like complex, which is important for chromatin enhancer activation. KDM6A is targeted by inactivating mutations in a variety of cancer types with frequency of occurrence ranging from 0.7 to 4% in AML. In this study, we used matched diagnosis and relapse samples from AML patients, patient-derived xenografts (PDX), and myeloid leukemia cell lines to investigate the status of KDM6A during disease progression and the implications of KDM6A loss regarding chemotherapy resistance. We found three AML patients with enrichment of KDM6A mutations at relapse and mutation-independent, relapse-specific loss of KDM6A expression in three additional AML patients. KDM6A mutations comprise deletions and point mutations and appear to be mainly loss-of-function mutations. In addition, we examined the mutation profile and KDM6A expression in patient-derived xenograft (PDX) samples from 8 relapsed AML patients. In 4/8 samples, KDM6A protein levels were low or completely lost. Due to the fact that all patients had received induction therapy including single or combination treatment with agents such as cytarabine (AraC), daunorubicin (DNR), and 6-thioguanine (6-TG), we hypothesized that loss of KDM6A confers resistance to chemotherapy. To exclude gender-specific effects (KDM6A escapes X inactivation leading to higher levels in females), we compared male KDM6A knockout (KO) with WT leukemia cell lines and found increased AraC resistance in the KDM6A KO cells (unpaired, two-tailed Student's t-test; P=0.0441). In addition, we treated two relapsed PDX AML cells of the same gender, AML 491 (KDM6A WT and strong expression) and AML 393 (KDM6A mutation and weak expression) with AraC for 72h in vitro and found significantly increased AraC resistance in the KDM6A-mutant PDX AML 393 cells (P=0.016). To further investigate whether reduced expression or loss of KDM6A leads to increased resistance towards multiple drugs, we silenced KDM6A expression by shRNA or CRISPR/Cas9 in K562 and MM-1 cells. Compared to control, KDM6A knockdown (KD) and KO K562 cells showed a strong proliferative advantage after AraC and DNR but not 6-TG treatment. A similar drug resistance phenotype was observed in KDM6A KO MM-1 cells. To unravel the mechanism of drug resistance, we performed RNA-Seq analysis in K562 cells treated with siRNA or shRNA against KDM6A under native conditions and after AraC (150nM) treatment for 72h. We compared these differentially expressed genes with known key candidate genes in AraC, DNR, and 6-TG metabolic pathway and found that ENT1 was consistently downregulated in KDM6A KD cells in both siRNA- and shRNA-mediated RNA-Seq screenings. Decreased ENT1 levels were also detected in KDM6A KO K562 single cell clones. ENT1 (also known as SLC29A1) is a membrane transporter relevant for the cellular uptake of nucleosides and its analogues. Competitive inhibition of ENT1 by the small molecule antagonist NBMPR lead to decreased sensitivity towards AraC but not DNR and 6-TG suggesting that increased AraC resistance in KDM6A KO cells is caused, at least partially, by downregulation of ENT1. To elucidate the mechanism of ENT1 regulation by KDM6A, we performed ChIP-seq analysis for H3K27me3 and H3K27ac in the sister cell lines MM-1 (KDM6A WT) and MM-6 (KDM6A KO). ChIP-seq for H3K27me3 showed no enrichment on the ENT1 locus, but we detected differential H3K27ac peaks in the promoter and a putative enhancer region of ENT1 in MM-1 compared to MM-6. These data suggest that increased ENT1 expression may function through direct or indirect effects of KDM6A on enhancer regions, independent of its H3K27 demethylase activity. In conclusion, our results show that mutations in KDM6A are associated with the outgrowth of drug-resistant clones and highlight KDM6A as a novel biomarker of drug resistance in AML. Disclosures Hiddemann: Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; F. Hoffman-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Consultancy, Research Funding. Metzeler:Novartis: Consultancy; Celgene: Consultancy, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 252-252
Author(s):  
Prajish Iyer ◽  
Bo Zhang ◽  
Tingting Liu ◽  
Meiling Jin ◽  
Kevyn Hart ◽  
...  

Abstract Although large-scale sequencing studies have elucidated key mutations in chronic lymphocytic leukemia (CLL), the molecular pathways underlying CLL transition to aggressive lymphoma (Richter's transformation, RT) are not completely understood. Co-expression of the two most common human CLL genomic alterations, 13q deletion, and SF3B1 mutation, in murine B cells results in indolent CLL. Seventy percent of RT cases involve MYC network aberrations, and MGA (Max-gene-associated), a functional MYC suppressor, is recurrently mutated/deleted in ~10% of RT cases. Given the function of MGA in MYC dysregulation, we sought to determine if loss-of-function MGA mutations accelerate CLL transformation. To determine the function of Mga deletion in CLL-RT, we in-vitro edited the genome of LSK (Lin - Sca-1 + Kit +) cells derived from the conditional CD19Cre/Cas9(GFP)/Mdr/Sf3b1-expressing mice (donor mice:CD45.2) to introduce Mga deletion in B cells with Mdr and the Sf3b1K700E mutations. Mga and control sgRNAs were lentivirally transduced in LSK cells and then transplanted into sub-lethally irradiated recipient mice (N=15, per group; C57BL/6: CD45.1). CLL onset (B220 +CD5 + CLL-like cells) was monitored bimonthly by flow-cytometry of peripheral blood, between ages 6 and 24 months. Three of 15 mice with Mga deletion had a clonal expansion of B220 +CD5 + cells with leukemic cells infiltration in the spleen and bone marrow by 21-months of age. However, no RT signs were observed in these mice. Transplantation of the CLL-like splenic cells into immunocompromised NSG or immunocompetent sub-lethally irradiated CD45.1 mice, led to rapid expansion of B220 + cells along with CD5 loss at 3 weeks post-engraftment and leukemic cells infiltrated various lymphoid tissues. H&E staining of splenic sections revealed the presence of CLL-like cells with a morphology resembling leukemia in the primary engrafted mice; however, these cells were larger and resembled aggressive lymphoma (RT) upon secondary engraftment. CLL and RT features were further confirmed by IHC staining of PAX5, CD5, Ki67, and MYC, suggesting the establishment of a murine CLL-to-RT transition murine model. MYC was reported to contribute to cell growth by promoting mitochondrial dysfunction. To characterize mitochondrial changes in our RT model, oxidative phosphorylation (OXPHOS) was measured by Seahorse, and electron microscopy was performed on RT and no disease splenic B cells. Murine RT cells exhibited increased basal respiration and mitochondrial mass coupled with elevated mitochondria number and structural changes. To pinpoint the underlying transcriptional program, we performed RNA seq using splenic B cells derived from control, CLL, and RT mice. Through differential gene expression analysis, we identified &gt;200 genes (mainly hallmark MYC targets and OXPHOS associated pathways) associated with CLL and RT. Of the 75 upregulated genes shared between CLL and RT cells, we focused on Nme1 (Nucleoside diphosphate kinase), an MGA transcriptional target reported in human lung adenocarcinoma. We confirmed Nme1 upregulation at both RNA and protein levels in murine and human RT samples by RT-PCR, immunoblot, and IHC, implicating a role of NME1 during CLL to RT transition. To determine if the MGA/MYC/NME1 axis can be recapitulated in human cells, we generated combined genetic lesions in two human B-cell lines (harboring SF3B1K700E Nalm6E [E] or control Nalm6K [K]) by Crispr-Cas9 mediated deletion of MGA and MDR. In both MGA and MDR-MGA KO(Knockout) cells, NME1 RNA and protein were upregulated. MGA KO E cells displayed a mixture of large and small-sized cells with increased cell growth whereas K cells had no morphology change. Moreover, large E cells displayed increased mitochondria mass, basal and maximal OXPHOS, broken cristae, fully recapitulating the mitochondrial dysfunction observed in murine RT cells. Harnessing these cell lines, we discovered that NME1 KO diminished cell growth and OXPHOS in E/K cells, which can be rescued by NME1 overexpression, highlighting an essential but unrecognized role of NME1 in driving the CLL-RT transition. With our established murine CLL-to-RT model, we demonstrated an RT-associated mitochondrial phenotype and revealed a novel role of the MGA/MYC/NME1 axis in driving the CLL-to-RT transition through mitochondrial regulation. This study opens a new therapeutic avenue for RT patients by targeting the MGA/MYC/NME1 axis. Figure 1 Figure 1. Disclosures Siddiqi: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; AstraZeneca: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pharmacyclics LLC, an AbbVie Company: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Kite Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Speakers Bureau; Oncternal: Research Funding; TG Therapeutics: Research Funding. Danilov: Abbvie: Consultancy, Honoraria; Takeda Oncology: Research Funding; Genentech: Consultancy, Honoraria, Research Funding; TG Therapeutics: Consultancy, Research Funding; Beigene: Consultancy, Honoraria; Pharmacyclics: Consultancy, Honoraria; Gilead Sciences: Research Funding; Bristol-Meyers-Squibb: Honoraria, Research Funding; Rigel Pharm: Honoraria; Bayer Oncology: Consultancy, Honoraria, Research Funding; SecuraBio: Research Funding; Astra Zeneca: Consultancy, Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Prajish Iyer ◽  
Lu Yang ◽  
Zhi-Zhang Yang ◽  
Charla R. Secreto ◽  
Sutapa Sinha ◽  
...  

Despite recent developments in the therapy of chronic lymphocytic leukemia (CLL), Richter's transformation (RT), an aggressive lymphoma, remains a clinical challenge. Immune checkpoint inhibitor (ICI) therapy has shown promise in selective lymphoma types, however, only 30-40% RT patients respond to anti-PD1 pembrolizumab; while the underlying CLL failed to respond and 10% CLL patients progress rapidly within 2 months of treatment. Studies indicate pre-existing T cells in tumor biopsies are associated with a greater anti-PD1 response, hence we hypothesized that pre-existing T cell subset characteristics and regulation in anti-PD1 responders differed from those who progressed in CLL. We used mass cytometry (CyTOF) to analyze T cell subsets isolated from peripheral blood mononuclear cells (PBMCs) from 19 patients with who received pembrolizumab as a single agent. PBMCs were obtained baseline(pre-therapy) and within 3 months of therapy initiation. Among this cohort, 3 patients had complete or partial response (responders), 2 patients had rapid disease progression (progressors) (Fig. A), and 14 had stable disease (non-responders) within the first 3 months of therapy. CyTOF analysis revealed that Treg subsets in responders as compared with progressors or non-responders (MFI -55 vs.30, p=0.001) at both baseline and post-therapy were increased (Fig. B). This quantitative analysis indicated an existing difference in Tregs and distinct molecular dynamic changes in response to pembrolizumab between responders and progressors. To delineate the T cell characteristics in progressors and responders, we performed single-cell RNA-seq (SC-RNA-seq; 10X Genomics platform) using T (CD3+) cells enriched from PBMCs derived from three patients (1 responder: RS2; 2 progressors: CLL14, CLL17) before and after treatment. A total of ~10000 cells were captured and an average of 1215 genes was detected per cell. Using a clustering approach (Seurat V3.1.5), we identified 7 T cell clusters based on transcriptional signature (Fig.C). Responders had a larger fraction of Tregs (Cluster 5) as compared with progressors (p=0.03, Fig. D), and these Tregs showed an IFN-related gene signature (Fig. E). To determine any changes in the cellular circuitry in Tregs between responders and progressors, we used FOXP3, CD25, and CD127 as markers for Tregs in our SC-RNA-seq data. We saw a greater expression of FOXP3, CD25, CD127, in RS2 in comparison to CLL17 and CLL14. Gene set enrichment analysis (GSEA) revealed the upregulation of genes involved in lymphocyte activation and FOXP3-regulated Treg development-related pathways in the responder's Tregs (Fig.F). Together, the greater expression of genes involved in Treg activation may reduce the suppressive functions of Tregs, which led to the response to anti-PD1 treatment seen in RS2 consistent with Tregs in melanoma. To delineate any state changes in T cells between progressors and responder, we performed trajectory analysis using Monocle (R package tool) and identified enrichment of MYC/TNF/IFNG gene signature in state 1 and an effector T signature in state 3 For RS2 after treatment (p=0.003), indicating pembrolizumab induced proliferative and functional T cell signatures in the responder only. Further, our single-cell results were supported by the T cell receptor (TCR beta) repertoire analysis (Adaptive Biotechnology). As an inverse measure of TCR diversity, productive TCR clonality in CLL14 and CLL17 samples was 0.638 and 0.408 at baseline, respectively. Fifty percent of all peripheral blood T cells were represented by one large TCR clone in CLL14(progressor) suggesting tumor related T-cell clone expansion. In contrast, RS2(responder) contained a profile of diverse T cell clones with a clonality of 0.027 (Fig. H). Pembrolizumab therapy did not change the clonality of the three patients during the treatment course (data not shown). In summary, we identified enriched Treg signatures delineating responders from progressors on pembrolizumab treatment, paradoxical to the current understanding of T cell subsets in solid tumors. However, these data are consistent with the recent observation that the presence of Tregs suggests a better prognosis in Hodgkin lymphoma, Follicular lymphoma, and other hematological malignancies. Figure 1 Disclosures Kay: Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Research Funding; Sunesis: Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding; MEI Pharma: Research Funding. Ansell:AI Therapeutics: Research Funding; Takeda: Research Funding; Trillium: Research Funding; Affimed: Research Funding; Bristol Myers Squibb: Research Funding; Regeneron: Research Funding; Seattle Genetics: Research Funding; ADC Therapeutics: Research Funding. Ding:Astra Zeneca: Research Funding; Abbvie: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; DTRM: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: pembrolizumab


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3077-3077
Author(s):  
Tobias Dittrich ◽  
Martin Schorb ◽  
Isabella Haberbosch ◽  
Elena Bausch ◽  
Mandy Börmel ◽  
...  

Introduction Genomic instability is the basic prerequisite for a Darwinian-type evolution of neoplasia and as such represents a fundamental hallmark of cancer. Centrosomal aberrations have been identified as potent drivers of genomic instability (Cosenza et al., Cell Reports 2017; Krämer et al., Leukemia 2003). The current standard to investigate centrosomal aberrations in cancer patients is immunofluorescence (IF) staining. Although this method is fast and easily scalable, its diagnostic significance is controversially discussed. Moreover, ultrastructural analysis of centrosomes in cancer patients is required to gain a mechanistical understanding of the relationship between genomic instability and centrosomal aberrations. To address this, we combined semi-automated analysis of immunofluorescence (IF) images with high-throughput electron tomography (ET) of different cell lines and subentities of primary plasma cell neoplasia, which serve as surrogate for clonal evolution. Methods CD138+ plasma cells were isolated from bone marrow aspirates of consenting patients with plasma cell neoplasia. Each sample was split to be subsequently processed for IF and ET. The IF workflow included (1) chemical fixation, (2) staining for nuclei, cells, centrin and pericentrin, (3) semi-automated acquisition of >1000 cells, (4) semi-automated analysis of IF data using the software Konstanz Information Miner (KNIME) (Berthold et al., GfKL 2007). The ET workflow included (1) chemical fixation (2) agarose embedding, (3) dehydration and epoxy resin embedding, (4) serial sectioning at 200 nm, (5) semi-automated screening for centrioles with transmission electron microscopy (TEM) (Schorb et al., Nature Methods 2019), (6) semi-automated acquisition of previously identified centriole regions with serial section ET. Results So far, four patients with relapsed refractory myeloma as well as two cell lines (U2OS-PLK4, RPMI.8226) have been screened with TEM. No centrosomal amplification was apparent by IF in any of these patients. Within 5598 cells, 205 centrosomes have been detected. A total of 659 electron tomograms were performed on 141 regions of interest that were distributed on average over five sections. One patient with highly refractory multiple myeloma (resistance to eight prior therapies) showed over-elongated and partially fragmented centrioles (Figure), similar to recently reported findings in tumor cell lines (Marteil et al., Nature Communications 2018). Six out of 10 mother centrioles in this patient were longer than 500 nm, which is supposed to be the physiological length. The dimensions (mean [range]) of mother (decorated with appendages) and daughter centrioles in this patient were: length 919 nm [406 nm - 2620 nm] and 422 nm [367 nm - 476 nm]; diameter 221 nm [99 nm - 470 nm] and 236 nm [178 nm - 450 nm]. Moreover, the mother centrioles showed multiple sets of appendages (mean [range]: 5.9 [2 - 13]), while one set of appendages would be physiological. This is an ongoing study and additional results are expected by the date of presentation. Conclusions We present a semi-automated methodological setup that combines high-throughput IF and cutting-edge ET to study centrosomal aberrations. To our knowledge, this is the first study that systematically analyzes the centrosomal phenotype of cancer patients at the ultrastructural level. Our preliminary IF results suggest that supernumerary centrosomes in plasma cell neoplasia might be less common than previously reported. Moreover, we for the first time describe and characterize over-elongated centrioles in myeloma patients, reminiscent of previous findings in tumor cell lines. With increasing numbers of patients, we will be also able to correlate results from IF and ET to address the current uncertainty with respect to IF screens for centrosomal aberrations. Better insight into centrosomal aberrations will likely increase our understanding on karyotype evolution in plasma cell neoplasia and possibly facilitate the development of novel targeted therapies. Figure Disclosures Goldschmidt: John-Hopkins University: Research Funding; John-Hopkins University: Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Molecular Partners: Research Funding; Janssen: Consultancy, Research Funding; Mundipharma: Research Funding; Chugai: Honoraria, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Müller-Tidow:MSD: Membership on an entity's Board of Directors or advisory committees. Schönland:Medac: Other: Travel Grant; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Krämer:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Daiichi-Sankyo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bayer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document