scholarly journals FLT3 OR CD33 NOT EMCN Logic Gated CAR-NK Cell Therapy (SENTI-202) for Precise Targeting of AML

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2799-2799
Author(s):  
Brian S. Garrison ◽  
Han Deng ◽  
Gozde Yucel ◽  
Nicholas W. Frankel ◽  
Marcela Guzman-Ayala ◽  
...  

Abstract Background: While chimeric antigen receptor (CAR) cell therapies have provided extraordinary clinical responses in some hematological malignancies, developing effective CAR cell therapies for acute myeloid leukemia (AML) has been challenging due to: (a) the lack of a single target antigen robustly expressed across both AML leukemic stem cell (LSC) and immature leukemic blast cell subpopulations, and (b) the lack of truly AML-specific target antigens, since current targets are also expressed on healthy tissues and may result in off-tumor toxicity. Using logic gated gene circuits, we are engineering our SENTI-202 CAR-NK cell therapy to overcome these long-standing challenges to treating AML patients. Methods: To maximize clearance of AML tumor subpopulations and minimize off-tissue toxicities, we used a proprietary bioinformatics paired antigen discovery platform to identify the optimal combinations of AML tumor-associated and healthy tissue antigens to target using an OR and NOT logic gated CAR gene circuit approach. The SENTI-202 therapeutic candidate is a FLT3 OR CD33 NOT Endomucin (EMCN) gene circuit-enabled allogeneic CAR-NK cell, designed to broadly target FLT3 and/or CD33-expressing AML tumor cells (including both LSCs and blasts) but not healthy hematopoietic stem cells (HSCs). Results: First, for the OR GATE portion of the logic circuit we demonstrated that engineered primary human NK cells expressing activating CARs (aCARs) that recognize both FLT3 and CD33 outperformed more traditional single target CAR approaches with FLT3 (p<0.05) or CD33 (p<0.01), and exhibited >80% cytotoxicity and significant cytokine secretion (GrB, IFN-g, and TNF-a) against multiple leukemia cell lines in vitro, including MOLM13, THP1, and SEM. We successfully engineered FLT3 OR CD33 CAR-NK cells using both bicistronic and bivalent CAR configurations, where bicistronic CARs possess separate FLT3 and CD33 CARs linked via a 2A peptide, and bivalent CARs use a loop structure to connect FLT3 and CD33 scFvs within the same CAR. While both approaches demonstrated robust efficacy against AML cells, the bivalent approach enabled greater CAR expression and cytotoxicity (p<0.05). Importantly, our FLT3 OR CD33 CAR-NK cells demonstrated significant cytotoxicity against primary AML patient samples (p<0.01-0.001) and significantly reduced tumor burden and improved mouse survival in MOLM13 (p<0.05) and MV4-11 (p<0.01) xenograft AML models. We believe that our strategy of concurrently targeting FLT3 and CD33 will result in a more robust synergistic anti-tumor effect, leading to a more durable remission with decreased risk of relapse due to single antigen escape. Second, for the NOT GATE portion of the logic circuit to protect healthy HSCs, we developed NK and T cell inhibitory CARs (iCARs) consisting of an scFv against a healthy cell antigen, hinge and transmembrane domains, and functional intracellular domains derived from inhibitory co-receptors containing immunoreceptor tyrosine-based inhibitory motifs. In the case of SENTI-202, the iCAR scFv recognizes EMCN, a surface antigen expressed on up to 76% of healthy HSCs but not on AML cells. Using two different iCAR configurations, we demonstrated that FLT3 (CD28z) aCAR-NK cells engineered with an EMCN-specific iCAR protected up to 67% (iCAR#1, p<0.01) or 50% (iCAR#2, p<0.01) of FLT3+ EMCN+ cells from FLT3 aCAR-mediated cytotoxicity. Next, to replicate a clinical context more closely, we mixed FLT3+ EMCN- (AML-like) and FLT3+ EMCN+ (HSC-like) target cells and demonstrated that FLT3 NOT EMCN CAR-NK cells exhibit preferential killing of FLT3+ EMCN- target cells (p<0.0001), demonstrating that our NOT GATED gene circuit controls NK-mediated responses on a cell-by-cell basis. Conclusion: SENTI-202 is a novel NK cell product candidate to be engineered with both OR and NOT logic gated CAR gene circuits, wherein the OR gate is designed to increase AML LSC/blast tumor clearance (to prevent relapse), and the NOT gate is designed to protect healthy HSCs from off-tumor toxicity, enabling regeneration of a healthy hematopoietic system and mitigating the need for a bone marrow transplant. Beyond AML, OR and NOT logic gated CAR-NK cell therapy has applicability to other cancer-associated antigen targets that are potentially limited by antigen escape and/or off-tumor toxicity, increasing the potential for enhanced efficacy and reduced risk of undesirable side effects. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3666-3666
Author(s):  
Tarun K. Garg ◽  
Susann Szmania ◽  
Jumei Shi ◽  
Katie Stone ◽  
Amberly Moreno-Bost ◽  
...  

Abstract Immune-based therapies may improve outcome for multiple myeloma (MM) by eradicating chemo-resistant disease. Our recent trial utilizing IL2 activated, killer immunoglobulin-like receptor-ligand mismatched NK cell transfusions from haplo-identical donors yielded (n) CR in 50% of patients. Unfortunately, after NK cell therapy, 2/10 patients had progressive disease, and the median duration of response for the other 8/10 patients was only 105 days (range 58–593). This may have been due to an insufficient dose of alloreactive NK cells and early rejection. Furthermore, appropriate donors were identified for only 30% of otherwise eligible patients. We therefore investigated whether NK cells from MM patients could be expanded and activated to kill autologous MM. We then examined whether pre-treatment of MM cell targets with elotuzumab, a humanized antibody to the MM tumor antigen CS1, could further enhance NK cell-mediated lysis. PBMC from 5 MM patients were co-cultured for 14 days with irradiated K562 cells transfected with 4-1BBL and membrane bound IL15 in the presence of IL2 (300U/ml) as previously described (Imai et al, Blood2005;106:376–383). The degree of NK cell expansion, NK immunophenotype, and ability to kill MM (4 hour 51Cr release assays) were assessed. To determine the ability of ex vivo expanded NK cells to traffic to bone marrow, activated NK cells were injected into the tail vein of NK cell depleted NOD-SCID mice, which were then sacrificed after 48 hours. Flow cytometry for human CD45, CD3, and CD56 was performed on cells from blood, marrow and spleen. There was an average 64-fold expansion of NK cells (range: 8–200) after 2 weeks of co-culture with K562 transfectants. Expansion of T cells was not observed. The NK cell activating receptor NKG2D, and natural cytotoxicity receptors NKp30, NKp44, and NKp46 were up-regulated following the expansion. Expanded NK cells were able to kill autologous MM (E:T ratio 10:1, average 31%, range 22–41%), whereas resting NK cells did not. Pretreatment of autologous MM cells with elotuzumab increased the activated NK cell-mediated killing by 1.7-fold over target cells pretreated with an isotype control antibody. This level of killing was similar to that of the highly NK kill-sensitive cell line K562 (Figure). Autologous PHA blasts and CD34+ stem cells were not killed. Activated human NK cells were detectable in the bone marrow of NOD-SCID mice 48 hours after injection. Ex vivo activation of NK cells from MM patients with K562 transfectants can induce killing of autologous MM and produce large numbers of NK cells for potential therapy. The addition of elotuzumab to activated NK cell therapy enhances anti-MM effects by ADCC thus invoking an additional NK cell-mediated mechanism of MM killing. Importantly, ex vivo activated NK cells traffic to the bone marrow in mice. Autologous NK cell therapy eliminates the issues related to allo-donor availability and early NK cell rejection, and could provide an option for patients refractory to chemotherapy agents. Figure Figure


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3836-3836 ◽  
Author(s):  
Reshmi Parameswaran ◽  
David N. Wald ◽  
Marcos De Lima ◽  
Dean A. Lee ◽  
Stephen Moreton

Abstract Novel therapeutic approaches are urgently needed for many malignancies such as Acute Myeloid Leukemia (AML). We have developed a new therapeutic strategy based upon NK cell immunotherapy that exhibits high clinical potential based upon cell and animal studies. While the harnessing of NK cells for cellular therapy against malignancies has been a topic of interest for several decades, our approach overcomes a major hurdle of insufficient NK cell cytotoxic activity. We have identified that targeting the kinase GSK3 through pharmacologic and genetic approaches leads to the hyperactivation of human blood derived NK cells and a significant improvement in efficacy as compared to traditionally used activated NK cells or chemotherapy in our mouse AML model systems. Importantly this GSK3 inhibition can be achieved through a short ex-vivo incubation of NK cells with a GSK3 inhibitor paving the way for a rapid implementation into a clinical trial. Utilizing both in vitro studies with AML cell lines (ex. OCI-AML3 and HL-60)) and primary human AML cells we observe approximately a 50% increase in efficacy with GSK3 inhibited NK cells as compared to untreated NK cells. Further, we demonstrate significant efficacy of GSK3 inhibited NK cells in a mouse model of circulating human AML. After 4 weekly injections of human NK cells, there is a 50% greater reduction in human AML cells present in the mouse bone marrow with GSK3 inhibited NK cells as compared to vehicle treated NK cells. Besides efficacy studies, our work has led a model of how GSK3-inhibition enhances NK cell activity as depicted in figure 1. GSK3 inhibition leads to a dramatic increase in adhesion of NK cells to target cells as demonstrated by a flow cytometric adhesion assay (49% vs 83% after 20 min incubation) as well as live cell imaging. Consistent with the increased adhesion, GSK3 inhibited NK cells as well as target cells (after co-incubation) exhibit increased expression of essential NK cell-target adhesion molecules including L-selectin (on NK cells) and ICAM (on target cells). The induction of ICAM on target cells is due to a marked induction in TNFa production from the NK cells upon incubation with target cells (>7 fold increase in TNFa production). TNFa neutralization impairs the NK activity of the GSK3 inhibited NK cells (~30%) but not vehicle treated cells. Finally, GSK3 inhibition also leads to changes in the NK cells that enhance activity such as increased expression of granzyme and perforin and secretion of IFNg. Overall, our work has a revealed a novel strategy for NK cell therapy that holds high clinical potential. Figure 1. Model of how GSK3 inhibition leads to hyperactive NK cells. GSK3I - GSK3 inhibitor Figure 1. Model of how GSK3 inhibition leads to hyperactive NK cells. GSK3I - GSK3 inhibitor Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Christoph Mark ◽  
Tina Czerwinski ◽  
Susanne Roessner ◽  
Astrid Mainka ◽  
Franziska Hörsch ◽  
...  

AbstractNatural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation for clinical use, the cells are cryopreserved to bridge the necessary evaluation time. While a degranulation assay confirms the ability of cryopreserved NK cells to kill target cells, we find a significant decrease of cytotoxicity after cryopreservation in a chromium release assay. We complement these standard assays with measurements of NK cell motility and cytotoxicity in 3-dimensional (3-D) collagen gels that serve as a substitute for connective tissue. We find a 5.6 fold decrease of cytotoxicity after cryopreservation and establish that this is mainly caused by a 6-fold decrease in the fraction of motile NK cells. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function.SynopsisCryopreservation of natural killer (NK) cells dramatically impairs their motility and cytotoxicity in tissue. This finding may explain the persistent failure of clinical trials in which NK cell therapy is used for treating solid tumors.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A834-A834
Author(s):  
Xue Yao ◽  
Sandro Matosevic

BackgroundThe effectiveness of natural killer (NK) cell-based immunotherapy against solid tumors is limited by the lack of specific antigens and the immunosuppressive tumor microenvironment (TME). Glioblastoma multiforme (GBM) is one such heavily immunosuppressive tumor that has been particularly hard to target and remains without a viable treatment. The development of novel approaches to enhance the efficacy of NK cells against GBM is urgently needed. NK cell engagers (NKCE) have been developed to enhance the efficacy of NK cell therapy.MethodsTo improve the clinical efficacy of NK cell therapy, we are developing a new generation of multi-specific killer engagers, which consists of a neoantigen-targeting moiety, together with cytokine and chemokine-producing domains. Neoantigens are new antigens formed specifically in tumor cells due to genome mutations, making them highly specific tools to target tumor cells. Our engager has been designed to target Wilms' tumor-1 (WT-1), a highly specific antigen overexpressed in GBM among other solid tumors. This is done through the generation of an scFv specific targeting the complex of WT-1126-134/HLA-A*02:01 on the surface of GBM. On the NK cell side, the engager is designed to target the activating receptor NKp46. Incorporation of the cytokine IL-15 within the engager supports the maturation, persistence, and expansion of NK cells in vivo while favoring their proliferation and survival in the tumor microenvironment. Additionally, our data indicated that the chemokine CXCL10 plays an important role in the infiltration of NK cells into GBM, however, GBM tumors produce low levels of this chemokine. Incorporation of a CXCL10-producing function into our engager supports intratumoral NK cell trafficking by promoting, through their synthetic production, increased levels of CXCL10 locally in the tumor microenvironment.ResultsCollectively, this has resulted in a novel multifunctional NK cell engager, combining neoantigen-cytokine-chemokine elements fused to an activating domain-specific to NK cells, and we have investigated its ability to support and enhance NK cell-mediated cytotoxicity against solid tumors in vitro and in vivo against patient-derived GBM models. The multi-specific engager shows both high tumor specificity, as well as the ability to overcome NK cell dysfunction encountered in the GBM TME.ConclusionsWe hypothesize that taking advantage of our multi-functional engager, NK cells will exhibit superior ex vivo expansion, infiltration, and antitumor activity in the treatment of GBM and other solid tumors.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A159-A159
Author(s):  
Michael Whang ◽  
Ming-Hong Xie ◽  
Kate Jamboretz ◽  
Hadia Lemar ◽  
Chao Guo ◽  
...  

BackgroundPeripheral blood natural killer (NK) cells are mature cytotoxic innate lymphocytes possessing an inherent capacity for tumor cell killing, thus making them attractive candidates for adoptive cell therapy. These NK cells are also amenable to CRISPR and chimeric antigen receptor (CAR) genomic engineering for enhanced functions. Moreover, NK cells possess an inherent capacity for off-the-shelf therapy since they are not known to cause graft-versus-host disease, unlike T cells. Presently, approved CAR cell therapy is custom-made from each patient‘s own T cells, a process that can limit patient pool, narrow therapeutic window, and contribute to product variability. In this study, we investigate whether peripheral blood NK cells from a selected donor can be edited, engineered, and expanded sufficiently for off-the-shelf use in a wide patient population.MethodsUsing the CRISPR/Cas9 system, we knocked out CISH expression in isolated peripheral blood NK cells from 3 healthy donors. Subsequently, we expanded edited NK cells by using IL-2 and sequential stimulations using NKSTIM, a modified K562 stimulatory cell line expressing membrane-bound form of IL-15 (mbIL-15) and 4-1BBL. IL-12 and IL-18 were added twice during expansion to drive memory-like NK cell differentiation. We transduced the expanded NK cells to express engineered CD19-targeted CAR and mbIL-15 during an interval between the first and second NKSTIM pulses. We assessed NK cell cytotoxicity against Nalm6 target cells by IncuCyte.ResultsIsolated peripheral blood NK cells from 3 healthy donors were successfully edited using CRISPR/Cas9, engineered to express high levels of CAR, extensively expanded using a series of NKSTIM pulses in the presence of IL-2, and differentiated into memory-like NK cells using IL-12 and IL-18. Interestingly, NK cells from the 3 donors exhibited distinct outcomes. NK cells from one donor reached a peak expansion limit of approximately 7-million-fold before undergoing contraction whereas NK cells from two donors continued to expand over the length of the study surpassing 100-million-fold expansion, without appearing to have reached a terminal expansion limit. At the end of the study, NK cells from one donor exceeded 1-billion-fold expansion and maintained 88% cytolytic activity compared to Nkarta’s standard process control in a 72-hour IncuCyte assay.ConclusionsIn this study, we demonstrate that healthy donor-derived peripheral blood NK cells are capable of expanding over billion-fold while maintaining potency. These results provide a rationale for the development of off-the-shelf CAR NK cell therapies using NK cells from donors selected to provide optimal product characteristics.Ethics ApprovalHuman samples were collected with written informed consent by an approved vendor.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3607-3607
Author(s):  
Grace Lee ◽  
Sheela Karunanithi ◽  
Zachary Jackson ◽  
David Wald

NK cells are a subset of lymphocytes that directly recognize and lyse tumor cells without the limitation of antigen specific receptor recognition. In addition to behaving as cytotoxic effector cells, NK cells unlike T cells are not thought to elicit graft versus host disease. The combination of these characteristics makes NK cells a powerful tool for adoptive cell therapy. Despite the promise of NK cell therapy, key hurdles in achieving significant clinical efficacy include both generating sufficient numbers of highly tumoricidal NK cells and maintaining the cytotoxic activity of these cells in vivo despite the immunosuppressive tumor microenvironment. Our lab and others have developed several feeder cell line-based expansion modules that robustly stimulate the ex vivo proliferation of NK cells. However, strategies to enhance and sustain the activity of NK cells once administered in vivo are still limited. In order to identify strategies to enhance the cytotoxic activity of NK cells, we developed a high-throughput small molecule screen (Figure 1A) that involved a calcein-based cytotoxicity assay of ex vivo expanded and treated NK cells against ovarian cancer cells (OVCAR-3). 20,000 compounds were screened and the screen was found to be highly robust (Z'>0.59). We identified 29 hits that led to at least a 25% increase in cytotoxicity as compared to DMSO control-treated NK cells. One of the most promising hits was the pan-ROCK inhibitor, Y-27632 that led to an 30% increase in NK killing of the OVCAR-3 cells. We validated that ROCK inhibition leads to enhanced NK cell cytotoxic activity using Y-27632 (Figure 1B) as well as other well-established ROCK inhibitors such as Fasudil using a flow cytometry based killing assay. Y-27632 increased NK cell cytotoxicity in a dose- and time- dependent manner. ROCK inhibition consistently led to ~10-25% increase in NK cell cytotoxic activity directed against a variety of ovarian (Figure 1C) and other solid tumor cell lines (Figure 1D). Interestingly, we found that the NK hyperactivation persists for up to 48hrs after washing off the drug that may enable ex vivo stimulation before NK cell infusion. Our preliminary results showed that ROCK inhibition activates PI3K-dependent Akt activation (Figure 1E). We hypothesize that ROCK inhibition restores Akt activation which may be critical for NK cell activating receptor pathways and our current investigations will test these hypotheses. ROCK inhibitors, such as Y-27632 and Fasudil have been utilized in both preclinical and clinical studies for a variety of diseases such as atherosclerosis, neurodegenerative disorders, and ocular diseases. However, the consequences of ROCK inhibition in NK cells has not been thoroughly investigated. Our work shows a promising novel strategy to significantly enhance NK cell therapy against cancer that has high translational potential. Disclosures No relevant conflicts of interest to declare.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chihab Klose ◽  
Susanne Berchtold ◽  
Marina Schmidt ◽  
Julia Beil ◽  
Irina Smirnow ◽  
...  

Abstract Background In pediatric sarcomas, outcomes of established therapies still remain poor, especially due to high-grade resistances to chemotherapeutic compounds. Taking novel biological approaches into account, virotherapy was found to be efficient in many pediatric sarcoma types. Also NK cell therapy was denoted to represent a promising upcoming strategy for pediatric sarcoma patients. We here investigated a combinatorial approach employing oncolytic measles vaccine virotherapeutics (MeV) together with activated human NK cells (or PBMCs). Methods The human sarcoma cell lines A673 and HT1080 were used to evaluate the efficacy of this combinatorial treatment modality. Oncolysis was determined by measuring real-time cell proliferation using the xCELLigence RTCA SP system. Furthermore, expression of receptors on NK cells and the respective ligands on A673 cells was analyzed by flow cytometry. To measure the protein release of activated NK cells a LEGENDplex™ assay was performed. Results Monotherapy with MeV led to a time- and dose-dependent oncolytic reduction of A673 and HT1080 sarcoma tumor cell masses. Concurrently, such MeV infections did not change the expression of NK cell ligands MICA/B, ULBP1, 2, and 3, CD112, and CD155. As shown by real-time proliferation assays, infections of A673 and HT1080 sarcoma cells with MeV followed by co-culture with activated NK cells or PBMCs led to enhanced sarcoma cell destruction when compared to the respective monotherapies. In parallel, this dual therapy resulted in an increased release of granzymes, perforin, and granulysin from NK cells. In contrast, expression of activation and ontogenesis receptors on NK cells was not found to be altered after co-culture with MeV-infected A673 sarcoma cells. Conclusions Taken together, the combined treatment strategy comprising oncolytic MeV and activated NK cells resulted in enhanced oncolysis of A673 and HT1080 cells when compared to the respective monotherapies. In parallel, we observed an increased release of NK cell activation markers upon co-culture with MeV-infected A673 human sarcoma cells. These results support the onset of clinical trials combining oncolytic virotherapy with NK cell based immunotherapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shahrokh Abdolahi ◽  
Zeinab Ghazvinian ◽  
Samad Muhammadnejad ◽  
Mohammad Ahmadvand ◽  
Hamid Asadzadeh Aghdaei ◽  
...  

Recently, adaptive NK cell therapy has become a promising treatment but has limited efficacy as a monotherapy. The identification of immune checkpoint inhibitor (ICI) molecules has opened a new horizon of immunotherapy. Herein, we aimed to demonstrate the cytotoxic effects of a polytherapy consisting of ex vivo expanded IL-2-activated NK cells combined with human anti-PD-1 antibody as an important checkpoint molecule in a xenograft gastric cancer mouse model. EBV-LCL cell is used as a feeder to promote NK cell proliferation with a purity of 93.4%. Mice (NOG, female, 6–8 weeks old) with xenograft gastric tumors were treated with PBS, ex vivo IL-2-activated NK cells, IL-2-activated NK cell along with human anti-PD-1 (Nivolumab), and IL-2-activated pretreated NK cells with anti-PD-1 antibody. The cytotoxicity of ex vivo expanded NK cells against MKN-45 cells was assessed by a lactate dehydrogenase (LDH) assay. Tumor volume was evaluated for morphometric properties, and tumor-infiltrating NK cells were assessed by immunohistochemistry (IHC) and quantified by flow cytometry. Pathologic responses were considered by H and E staining. Ex vivo LDH evaluation showed the cytotoxic potential of treated NK cells against gastric cancer cell line. We indicated that the adoptive transfer of ex vivo IL-2-activated NK cells combined with anti-PD-1 resulted in tumor growth inhibition in a xenograft gastric cancer model. Mitotic count was significantly decreased (*p < 0.05), and the tumor was associated with improved infiltration of NK cells in the NK-anti-PD-1 pretreated group (*p < 0.05). In conclusion, the combination approach of activated NK cells and anti-PD-1 therapy results in tumor growth inhibition, accompanied by tumor immune cell infiltration in the gastric tumor model.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4722
Author(s):  
Amanda A. van Vliet ◽  
Anna-Maria Georgoudaki ◽  
Monica Raimo ◽  
Tanja D. de Gruijl ◽  
Jan Spanholtz

Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15038-e15038 ◽  
Author(s):  
Lingyu Li ◽  
Jiuwei Cui ◽  
Chang Wang ◽  
Yizhuo Wang ◽  
Chao Niu ◽  
...  

e15038 Background: The prognosis of advanced colon cancer (CC) patients remains disappointing, partly due to their greater proportion of CC-initiating cells (CICs), which is responsible for cancer drug-resistance and immune escape. Immunotherapies by harnessing the immune system to eliminate tumors have attracted broad attention. This study was to detect whether chemotherapy could enhance cytotoxicity of natural killer (NK) cells to CC cells (CCs), especially for CICs in vitro, and further evaluate the efficacy and safety of NK-cell therapy combined with chemotherapy in patients with local advanced CC. Methods: We observed that cytotoxicity of NK cells to CCs and CICs pretreated with 5-Fu or oxaliplatin. Then, an open-label pilot cohort study was conducted with local advanced CC patients who had received surgical excision. 60 patients elected to receive either NK-cell therapy combined with chemotherapy (NK-cell group, 27 patients) or pure chemotherapy (control group, 33 patients). Progression-free survival (PFS), overall survival (OS) and adverse effects were investigated. Results: Chemotherapy sensitized CCs and CICs to NK cell lysis through upregulation of their NK cell activating ligands and reducing inhibitory ligands. Poorly differentiated CCs were more susceptible to NK-cell than well-differentiated CCs, and CICs were more easily to be killed by NK cell than their differentiated CCs. In the cohort study, the 5-year PFS and OS rates in the NK-cell group were significantly higher than those in the control group (51.1% vs. 34.9%, p= 0.043; 73% vs. 51.3%, p= 0.038, respectively).Among patients with poorly differentiated carcinomas or low expression of HLA-1, median PFS in the NK-cell group vs. the control group was 23.5 vs. 11.5 months ( p= 0.047), and median OS was 30 vs. 15 months ( p= 0.043), respectively. No significant adverse reaction was found during NK-cell therapy. Conclusions: NK-cell therapy in combination with chemotherapy in locally advanced CC prevented recurrence and prolonged survival with acceptable adverse effects, especially for poorly differentiated carcinomas.


Sign in / Sign up

Export Citation Format

Share Document