CALM-AF10 Positive T-ALLs Show a Pattern of Expression Similar to MLL-Translocated Acute Leukemias.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1108-1108
Author(s):  
Eric Delabesse ◽  
Wim A. Dik ◽  
Wajih Brahim ◽  
Charlene Braun ◽  
Vahid Asnafi ◽  
...  

Abstract The t(10;11) translocation is recurrent in T-ALL and AML. The AF10 gene on chromosome 10 is rearranged either with MLL or CALM located on chromosome 11. CALM-AF10 fusion gene is found in T-ALLs in immature (IM) and TCRγδ-expressing (TCRGD+) T-ALLs. We compared 6 CALM-AF10+ T-ALLs cases (4 IM, 2 TCRGD+) to 17 CALM-AF10 negative T-ALLs cases (14 IM, 3 TCRGD+) using Affymetrix U133A microarrays. 44 genes were significantly overexpressed in CALM-AF10+ T-ALLs, the most significant being HOXA9, a homeobox gene overexpressed in MLL-translocated acute leukemias (MLL-t AL), BMI1, a polycomb family member whose function in regulation of HOX genes expression is opposite to Trithorax genes (whose MLL belongs), SOX4, a frequent insertion site in retroviral-induced leukemogenesis, SFRS6 and COMMD3 (p≤0.001). Only two other HOX genes, HOXA5 and HOXA10, were significantly increased. 89 genes were significantly underexpressed in CALM-AF10+ T-ALLs, the most significant being GGH, ARL6IP4, NBS1, OGFR and TUBB (p≤0.001). An independent analysis of the expression of HOXA5, HOXA9, HOXA10 and BMI1 genes was done by quantitative RT-PCR in 10 CALM-AF10+ T-ALLs and 27 CALM-AF10 negative T-ALLs. These were compared to 19 MLL-translocated acute leukemias (2 MLL-AF10, 5 MLL-AF4, 3 MLL-AF6, 5 MLL-AF9, 3 MLL-ELL and 1 MLL-ENL), since HOXA9 overexpression had been previously associated with MLL-t AL. HOXA5, HOXA9 and HOXA10 expression were higher in CALM-AF10+ T-ALLs than in CALM-AF10 negative T-ALLs (p<0.001), confirming the microarray results. HOXA5 and HOXA9 expressions in CALM-AF10+ T-ALLs were similar to those detected in MLL-t AL and lower for HOXA10 in CALM-AF10+ T-ALLs as compared to the values of MLL-t AL (p=0.008). BMI1 expression in CALM-AF10+ T-ALLs was significantly higher than in CALM-AF10 negative T-ALLs and MLL-t AL (p<0.001). Additionally, MEIS1 expression was determined as this gene was associated in MLL-t AL with the overexpression of HOXA9. As for BMI1, MEIS1 expression was significantly higher in CALM-AF10+ T-ALLs compared to CALM-AF10 negative T-ALLs and MLL-t AL (p<0.001 and p=0.019, respectively). In summary, we demonstrated here the association between CALM-AF10 in T-ALLs and overexpression of HOXA5, HOXA9, HOXA10, BMI1 and MEIS1 genes. Overexpression of BMI1 is restricted to CALM-AF10+ T-ALLs. Although no obvious similarities are apparent between MLL and CALM proteins, the activation of HOXA and MEIS1 genes represent a highly recurrent pattern of expression in CALM-AF10+ T-ALLs and MLL-t AL. Consequently, the leukemias resulting in the activation of HOXA9 (MLL-t AL, CALM-AF10+ AL, NUP98-HOXA9 AML) should be seen as an independent group of acute leukemias and may benefit from common therapeutic protocols.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1288-1288
Author(s):  
Julia Starkova ◽  
Blanka Vicenova ◽  
Roman Krejci ◽  
Harry A. Drabkin ◽  
Jan Trka

Abstract Abstract 1288 Poster Board I-310 Homeodomain (HOX) genes encode transcription factors important for embryonic development. They are involved in normal hemopoiesis regulation and likely also in leukemogenesis as a result of translocations and other aberrations present in leukemias. In previous work Drabkin et al. demonstrated that HOX gene expression patterns differentiate major cytogenetic groups in acute myeloid leukemias. In this study we focused on HOX gene expression in pediatric acute lymphoblastic leukemias (ALL). We were interested if certain HOX genes or expression pattern could distinguish subpopulations of ALL. We analyzed the expression pattern of 21 HOX genes from HOXA and HOXB clusters and non-cluster HOX genes, CDX1 and CDX2 using qRT-PCR approach. We looked at 54 patients chosen according to phenotypic (T-ALL, BCP-ALL), prognostic (PGR – prednisone good responders, PPR – prednisone poor responders) and genotypic (BCR/ABL, MLL/AF4, TEL/AML1, hyperdiploid) characteristics. Overall analysis comparing all studied groups showed that HOXA7 (Kruskal-Wallis test p=0.000045), HOXA3 (p=0.000098), HOXB3 (p=0.00015), HOXA4 (p=0.000619) and HOXB4 (p=0.001925) genes were differently expressed among groups. Wilcoxon signed-rank test, a non-parametric statistical analysis comparing two groups against each other, showed that HOXA3, A4 and B3 distinguish BCP-ALL (w/o fusion gene) and T-ALL. Interestingly, particular HOX genes expression showed significant difference among the groups: HOXA7 gene is significantly downregulated in hyperdiploid ALL (p=0.03) compared to all other subgroups. Furthermore, HOXB7 gene is specifically upregulated in TEL/AML-positive patients (p=0.0048 vs BCP-ALL w/o fusion gene) and CDX2 is downregulated in BCR/ABL-positive patients (p=0.001 vs hyperdiploid; p=0.006 vs TEL/AML1; p=0.03 vs MLL/AF4). Suprisingly, TEL/AML1-positive patients have similar expression of HOXA1-A4 as T-ALL patients. HOX genes expression pattern seemed to differ in MLL/AF4-positive patients according to the age at diagnosis. Three patients younger than 2 months at presentation clustered together in clear contrast to the MLL/AF4-positive patient diagnosed at the age of 13 years with secALL who presented with very low overall expression of all HOX genes. Next, we looked for diversity and similarity between groups. We determined how many HOX genes were expressed differently (p<0.05) and similarly (p=1.0) between particular ALL subtypes. The most outlying couples were T-ALL vs PPR (11 genes differently expressed), T-ALL vs PGR (9 genes) and T-ALL vs TEL/AML1 (6 genes). In contrast, the closest groups were BCR/ABL vs PPR, MLL/AF4 vs T-ALL and MLL/AF4 vs PPR. Our data demonstrate that BCP-ALL (w/o known fusion gene) can be distinguished from T-ALL by the HOX gene expression (in particular HOXA3, HOXB3, HOXA4). Like in AML, expression pattern differs also among the major cytogenetical subgroups of ALL. On the other hand, within the BCP-ALL subgroup, no expression difference was found between patients with good (PGR) and poor (PPR) response to the initial steroid therapy which is known to be an excellent predictor of outcome. HOX genes of interest emerged from our analysis: low expression of HOXA7 in hyperdiploid ALL, highly expressed HOXB7 in TEL/AML1-positive ALL and specifically downregulated CDX2 in BCR/ABL-positive ALL. Age-related differences in expression in MLL/AF4-positive ALL seem to link the expression pattern rather with the relative maturity of the cell undergoing (pre)malignant transformation than with the specific changes caused by the leukemogenesis itself. This hypothesis must be tested in comparison to the HOX genes expression in sorted subtypes of normal T and B precursors. This work was supported by MSM0021620813, IGA NR/9526 and GACR 301/08/P532. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3775-3775
Author(s):  
Jolanta Grembecka ◽  
Amalia Marie Belcher ◽  
Tomasz Cierpicki

Abstract Abstract 3775 Poster Board III-711 Chromosomal translocations that affect the proto-oncogene MLL (Mixed Lineage Leukemia) occur in aggressive human acute leukemias, both AML and ALL, affecting children and adults. The normal MLL protein plays a key role in regulation of HOX genes expression, which are required for proper hematopoiesis. This function is frequently impaired by a fusion of MLL with one of 60 alternative partner genes to form a chimeric oncogene encoding MLL fusion proteins. MLL fusions upregulate HOX genes expression resulting in a blockage of blood cell differentiation that ultimately leads to acute leukemia. Patients with MLL rearrangement poorly respond to available treatments, emphasizing the urgent need to develop novel therapies to treat these leukemias. The leukemogenic activity of MLL fusions is dependent on association with menin, a protein encoded by the MEN1 (Multiple Endocrine Neoplasia I) gene. The menin binding motif is localized at the N-terminus of MLL and therefore it is retained in all MLL fusion proteins. The removal of this motif from MLL oncoproteins abrogates the ability to develop leukemia in mice. Menin functions as an essential oncogenic cofactor in MLL related leukemias and selective targeting of the menin-MLL interaction might represent a novel valuable therapeutic approach for the treatment of the MLL-related leukemias. To understand the molecular basis of how MLL-fusion proteins interact with menin, we carried out detailed in vitro characterization of menin binding to N-terminus of MLL using a collection of biochemical, biophysical and structural biology approaches. We demonstrated that 46 long N-terminal amino acid fragment of MLL very strongly associates with menin with low-nanomolar binding affinity. Employing the NMR spectroscopy, we identified the presence of two separate menin binding motifs within this MLL fragment, MBM1 (menin binding motif 1) and MBM2 (menin binding motif 2), which are separated by a poly-glycine linker. Peptides corresponding to both motifs are capable to independently interact with menin indicating the presence of two separate MLL binding sites on menin. Furthermore, the MBM1 binds to menin with 20-fold higher affinity compared to MBM2. Interestingly, we demonstrated that binding of one of the MBM peptides to menin negatively regulates binding of the second peptide most likely through the mechanism of an allosteric regulation. To aid in rational design of small molecule inhibitors of the menin-MLL interaction we characterized the conformation of the high affinity motif (MBM1) of MLL in a menin bound conformation using NMR spectroscopy. Furthermore, by applying both mutational studies and binding affinity measurements we identified that the most critical amino acids of MBM1 involved in interaction with menin comprise the RFPARP fragment of MLL. Overall, for the first time, we are providing detailed characterization and molecular basis of the MLL interaction with menin, which will be invaluable for development of therapeutically useful inhibitors selectively targeting this interaction. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1409-1409
Author(s):  
Christopher Slape ◽  
Helge Hartung ◽  
Yingwei Lin ◽  
Juraj Bies ◽  
Linda Wolff ◽  
...  

Abstract The NUP98-HOXD13 (NHD13) fusion gene is formed by the t(2;11)(q31;p15) in patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This fusion gene encodes a protein that fuses the N-terminal portion of NUP98, a nucleoporin involved in mediating RNA and protein transport in and out of the nucleus, with the C-terminal portion of HOXD13, a homeodomain protein not expressed during normal haematopoietic development. We have previously demonstrated that expression of the NHD13 fusion gene in a transgenic mouse model results in an invariably fatal MDS. These mice either die of complications of severe pancytopenia or progress to a fatal acute leukemia; greater than 90% of mice die by 14 months of age. The prolonged latency suggests that additional genetic events are required for leukemic transformation. We used a MOL4070LTR retroviral mutagenesis screen to identify candidate genes that might collaborate with the NHD13 transgene. All transgenic mice infected with the MOL4070LTR virus developed an acute leukemia, and the median survival of these mice was only four months, with none surviving beyond seven months of age. These survival figures are significantly decreased compared to either the wild type infected group or the transgenic uninfected group, suggesting a true synergistic effect between the NUP98-HOXD13 transgene and the genes affected by retroviral insertion events. Cloning of the insertion sites allowed identification of candidate collaborating genes. The most frequently identified gene was Meis1, a gene known to collaborate with HOX genes during leukemic transformation. This result supports the contention that the retroviral infection screen identifies specific collaboration between retrovirus and transgene. The second most common insertion site was near Mn1. These insertions clustered in two regions: four occurred within the final intron of Mn1, and four occurred between 80 kb and 160 kb 3′ of the 3′ end of the gene. Of note, MN1 is involved in human leukemia by fusion to the TEL oncogene via the t(12;22)(p13;q11) in myeloid leukemia. This translocation occurs within the intron of the human MN1 gene equivalent to that in which the four retroviral insertions occur in the mouse Mn1 gene. Moreover, this fusion transcript has recently been shown to collaborate with HOXA9 overexpression in leukemogenesis (Kawagoe and Grosveld, Blood 106(13):4269–77). We identified a fusion transcript formed in these four mice by RNA splicing between the 5′ part of Mn1 and the retroviral env gene. In addition, all eight of the mice with Mn1 insertions (both intronic and 3′) showed elevated wild-type Mn1 expression, suggesting that overexpression of wild-type Mn1 as well as a retroviral Mn1-env fusion can collaborate with the NHD13 transgene during leukemic transformation. Further studies are underway to investigate the oncogenic potential of an Mn1-env fusion as well as overexpression of the wild-type Mn1.


Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 349-359 ◽  
Author(s):  
M. Fibi ◽  
B. Zink ◽  
M. Kessel ◽  
A.M. Colberg-Poley ◽  
S. Labeit ◽  
...  

We have characterized Hox 1.3 (previously described as m2), a murine homeobox-containing gene, which is a member of the Hox 1 cluster located on chromosome 6. A cloned cDNA was isolated from an Okayama-Berg library generated from the chemically transformed cell line MB66 MCA ACL6. The protein sequence of 270 amino acids was deduced from the nucleotide sequence of an open reading frame containing the homeobox. The open reading frame is interrupted at the genomic level by a 960 bp intron and is organized in two exons. The Hox 1.3 protein was found to contain extensive sequence homology with the murine homeodomain protein Hox 2.1, which is encoded on chromosome 11. There are two homology with the regions in the first exon, i.e. a hexapeptide conserved in many homeobox-containing genes and the N-terminal domain, which was found to be homologous only to Hox 2.1. Furthermore, in exon 2 the homologies of the homeodomain regions are extended up to the carboxy terminus of Hox 1.3 and Hox 2.1. During prenatal murine development, maximal expression of Hox 1.3 is observed in 12-day embryonic tissue. The two transcripts carrying the Hox 1.3 homeobox are 1.9 kb and about 4 kb in length. An abundant Hox 1.3-specific 1.9 kb RNA is also found in F9 cells which were induced for parietal endoderm differentiation, whereas F9 teratocarcinoma stem cells do not stably express this specific RNA. Induction of the transcript occurs immediately after retinoic acid/cAMP treatment and the RNA level remains high for 5 days. Thus, the kinetics are different from the previously described homeobox transcripts Hox 1.1 and Hox 3.1. Interestingly, by analogy to the F9 cell system a negative correlation between transformation and Hox 1.3 expression is observed in 3T3 fibroblasts also. Untransformed 3T3 cells carry abundant 1.9 kb Hox 1.3 RNA, whereas the methylcholanthrene-transformed MB66 and LTK- cells or 3T3 cells transformed by the oncogenes src, fos or SV40 T antigen express only low levels.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 333-346 ◽  
Author(s):  
A.C. Burke ◽  
C.E. Nelson ◽  
B.A. Morgan ◽  
C. Tabin

A common form of evolutionary variation between vertebrate taxa is the different numbers of segments that contribute to various regions of the anterior-posterior axis; cervical vertebrae, thoracic vertebrae, etc. The term ‘transposition’ is used to describe this phenomenon. Genetic experiments with homeotic genes in mice have demonstrated that Hox genes are in part responsible for the specification of segmental identity along the anterior-posterior axis, and it has been proposed that an axial Hox code determines the morphology of individual vertebrae (Kessel, M. and Gruss, P. (1990) Science 249, 347–379). This paper presents a comparative study of the developmental patterns of homeobox gene expression and developmental morphology between animals that have homologous regulatory genes but different morphologies. The axial expression boundaries of 23 Hox genes were examined in the paraxial mesoderm of chick, and 16 in mouse embryos by in situ hybridization and immunolocalization techniques. Hox gene anterior expression boundaries were found to be transposed in concert with morphological boundaries. This data contributes a mechanistic level to the assumed homology of these regions in vertebrates. The recognition of mechanistic homology supports the historical homology of basic patterning mechanisms between all organisms that share these genes.


Author(s):  
C. Nolte ◽  
Y. Ahn ◽  
R. Krumlauf
Keyword(s):  

2022 ◽  
Vol 23 (2) ◽  
pp. 689
Author(s):  
Saya Nagasawa ◽  
Kazuhiro Ikeda ◽  
Daisuke Shintani ◽  
Chiujung Yang ◽  
Satoru Takeda ◽  
...  

Gene structure alterations, such as chromosomal rearrangements that develop fusion genes, often contribute to tumorigenesis. It has been shown that the fusion genes identified in public RNA-sequencing datasets are mainly derived from intrachromosomal rearrangements. In this study, we explored fusion transcripts in clinical ovarian cancer specimens based on our RNA-sequencing data. We successfully identified an in-frame fusion transcript SPON1-TRIM29 in chromosome 11 from a recurrent tumor specimen of high-grade serous carcinoma (HGSC), which was not detected in the corresponding primary carcinoma, and validated the expression of the identical fusion transcript in another tumor from a distinct HGSC patient. Ovarian cancer A2780 cells stably expressing SPON1-TRIM29 exhibited an increase in cell growth, whereas a decrease in apoptosis was observed, even in the presence of anticancer drugs. The siRNA-mediated silencing of SPON1-TRIM29 fusion transcript substantially impaired the enhanced growth of A2780 cells expressing the chimeric gene treated with anticancer drugs. Moreover, a subcutaneous xenograft model using athymic mice indicated that SPON1-TRIM29-expressing A2780 cells rapidly generated tumors in vivo compared to control cells, whose growth was significantly repressed by the fusion-specific siRNA administration. Overall, the SPON1-TRIM29 fusion gene could be involved in carcinogenesis and chemotherapy resistance in ovarian cancer, and offers potential use as a diagnostic and therapeutic target for the disease with the fusion transcript.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 61-77 ◽  
Author(s):  
J. Robert Manak ◽  
Matthew P. Scott

Dramatic successes in identifying vertebrate homeobox genes closely related to their insect relatives have led to the recognition of classes within the homeodomain superfamily. To what extent are the homeodomain protein classes dedicated to specific functions during development? Although information on vertebrate gene functions is limited, existing evidence from mice and nematodes clearly supports conservation of function for the Hox genes. Less compelling, but still remarkable, is the conservation of other homeobox gene classes and of regulators of homeotic gene expression and function. It is too soon to say whether the cases of conservation are unique and exceptional, or the beginning of a profoundly unified view of gene regulation in animal development. In any case, new questions are raised by the data: how can the differences between mammals and insects be compatible with conservation of homeobox gene function? Did the evolution of animal form involve a proliferation of new homeodomain proteins, new modes of regulation of existing gene types, or new relationships with target genes, or is evolutionary change largely the province of other classes of genes? In this review, we summarize what is known about conservation of homeobox gene function.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 383-393 ◽  
Author(s):  
David J. Izon ◽  
Sofia Rozenfeld ◽  
Stephen T. Fong ◽  
László Kömüves ◽  
Corey Largman ◽  
...  

Abstract Hox homeobox genes play a crucial role in specifying the embryonic body pattern. However, a role for Hox genes in T-cell development has not been explored. The Hoxa-9 gene is expressed in normal adult and fetal thymuses. Fetal thymuses of mice homozygous for an interruption of the Hoxa-9 gene are one eighth normal size and have a 25-fold decrease in the number of primitive thymocytes expressing the interleukin-2 receptor (IL-2R, CD25). Progression to the double positive (CD4+CD8+) stage is dramatically retarded in fetal thymic organ cultures. This aberrant development is associated with decreased amounts of intracellular CD3 and T-cell receptor β (TCRβ) and reduced surface expression of IL-7R and E-cadherin. Mutant thymocytes show a significant increase in apoptotic cell death and premature downregulation of bcl-2 expression. A similar phenotype is seen in primitive thymocytes from adult Hoxa-9−/− mice and from mice transplanted with Hoxa-9−/−marrow. Hoxa-9 appears to play a previously unsuspected role in T-cell ontogeny by modulating cell survival of early thymocytes and by regulating their subsequent differentiation.


Sign in / Sign up

Export Citation Format

Share Document