Inclusion of HOXA Genes in Genetic and Biological Networks Defining Human Acute T-Cell Leukemia.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1110-1110
Author(s):  
Jean Soulier ◽  
Emmanuelle Clappier ◽  
Jean-Michel Cayuela ◽  
Armelle Regnault ◽  
Marina Garcia-Peydro ◽  
...  

Abstract We have identified a new recurrent chromosomal translocation, targeting the major homeobox gene cluster HOXA in human T-cell acute lymphoblastic leukemia (T-ALL). Four cases were characterized using a combination of FISH, Southern blot, breakpoint region sequencing, and a large scale expression analysis of a series of T-ALL. Specific RQ-PCR analysis of the HOXA1 to HOXA13 transcripts showed that the whole HOXA gene cluster expression was dramatically deregulated in the HOXA-rearranged cases, and also in the MLL and CALM-AF10-related T-ALL, strongly suggesting that HOXA genes are oncogenic in these types of leukemia. The HOXA-rearranged cases were included in a general portrait of T-ALL based on large scale expression analysis, showing that a new homogeneous T-ALL subgroup is defined by this chromosomal rearrangement. Moreover, patterns of gene expression associated to the distinct T-ALL oncogenic subgroups were compared with gene expression in normal human thymic sub-populations (11 purified sub-populations). Inappropriate use or perturbation of some specific molecular networks involved in thymic differentiation could be detected in the T-ALL cells. Also, we found that abnormal, frequently ectopic, expression of at least one developmental gene, including HOXA, TLX1/HOX11, TLX3/HOX11L2 and a few more, could be identified in most of the T-ALL cases. Our data strongly support the view that the abnormal expression of developmental genes, including the prototypical major homeobox genes HOXA in some cases, is critical in T-ALL oncogenesis.

Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 274-286 ◽  
Author(s):  
Jean Soulier ◽  
Emmanuelle Clappier ◽  
Jean-Michel Cayuela ◽  
Armelle Regnault ◽  
Marina García-Peydró ◽  
...  

Using a combination of molecular cytogenetic and large-scale expression analysis in human T-cell acute lymphoblastic leukemias (T-ALLs), we identified and characterized a new recurrent chromosomal translocation, targeting the major homeobox gene cluster HOXA and the TCRB locus. Real-time quantitative polymerase chain reaction (RQ-PCR) analysis showed that the expression of the whole HOXA gene cluster was dramatically dysregulated in the HOXA-rearranged cases, and also in MLL and CALM-AF10-related T-ALL cases, strongly suggesting that HOXA genes are oncogenic in these leukemias. Inclusion of HOXA-translocated cases in a general molecular portrait of 92 T-ALLs based on large-scale expression analysis shows that this rearrangement defines a new homogeneous subgroup, which shares common biologic networks with the TLX1- and TLX3-related cases. Because T-ALLs derive from T-cell progenitors, expression profiles of the distinct T-ALL subgroups were analyzed with respect to those of normal human thymic subpopulations. Inappropriate use or perturbation of specific molecular networks involved in thymic differentiation was detected. Moreover, we found a significant association between T-ALL oncogenic subgroups and ectopic expression of a limited set of genes, including several developmental genes, namely HOXA, TLX1, TLX3, NKX3-1, SIX6, and TFAP2C. These data strongly support the view that the abnormal expression of developmental genes, including the prototypical homeobox genes HOXA, is critical in T-ALL oncogenesis.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Agata Cieslak ◽  
Guillaume Charbonnier ◽  
Melania Tesio ◽  
Eve-Lyne Mathieu ◽  
Mohamed Belhocine ◽  
...  

Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXA5-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αβ T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.


Blood ◽  
2011 ◽  
Vol 118 (17) ◽  
pp. 4646-4656 ◽  
Author(s):  
Katherine E. Berquam-Vrieze ◽  
Kishore Nannapaneni ◽  
Benjamin T. Brett ◽  
Linda Holmfeldt ◽  
Jing Ma ◽  
...  

Abstract Identifying the normal cell from which a tumor originates is crucial to understanding the etiology of that cancer. However, retrospective identification of the cell of origin in cancer is challenging because of the accumulation of genetic and epigenetic changes in tumor cells. The biologic state of the cell of origin likely influences the genetic events that drive transformation. We directly tested this hypothesis by performing a Sleeping Beauty transposon mutagenesis screen in which common insertion sites were identified in tumors that were produced by mutagenesis of cells at varying time points throughout the T lineage. Mutation and gene expression data derived from these tumors were then compared with data obtained from a panel of 84 human T-cell acute lymphoblastic leukemia samples, including copy number alterations and gene expression profiles. This revealed that altering the cell of origin produces tumors that model distinct subtypes of human T-cell acute lymphoblastic leukemia, suggesting that even subtle changes in the cell of origin dramatically affect genetic selection in tumors. These findings have broad implications for the genetic analysis of human cancers as well as the production of mouse models of cancer.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5236-5236
Author(s):  
Jon C Aster ◽  
Hongfang Wang ◽  
James Zou ◽  
Yumi Yashiro-Ohtani ◽  
Bo Zhao ◽  
...  

Abstract Abstract 5236 Activated Notch1 regulates gene expression by associating with the DNA-binding factor RBPJ and is an important oncoprotein in murine and human T cell acute lymphoblastic leukemia/lymphoma (T-ALL), yet the interplay between Notch1 and other factors that regulate the transcriptional output of T-ALL cells is poorly understood. Using ChIP-Seq and starting with Notch1-dependent human and murine T-ALL cell lines, we find that Notch1 binds preferentially to promoters, to RBPJ binding sites, and near sites for ZNF143, as well as Ets and Runx factors. By ChIP-Seq, ZNF143 binds to ∼40% of Notch1 sites, whereas Ets1 binding is observed within 100 basepairs of ∼70% of genomic Notch1 binding sites. Notch1/ZNF143 “co-sites” have high Notch1 and ZNF143 signals, frequent co-binding of RBPJ to sites embedded within ZNF143 motifs, strong promoter bias, and low mean levels of “activated” chromatin marks. RBPJ and ZNF143 binding to DNA is mutually exclusive in vitro, suggesting RBPJ/Notch1 and ZNF143 complexes exchange on these sites in T-ALL cell lines. In contrast, Ets1 binding sites flank RBPJ/Notch1 binding sites and are associated with high levels of activated chromatin marks, whereas Runx sites are predominantly intergenic. Although Notch1 predominantly binds promoters, ∼75% of direct Notch1 target genes lack promoter binding and appear to be regulated by enhancers, which were identified near MYC, DTX1, IGF1R, IL7R and the GIMAP gene cluster. Both Ets1 and Notch1 binding to an intronic enhancer located in DTX1 were required for expression of this well characterized Notch1 target gene, suggesting that these two factors coordinately regulate DTX1 expression. Although the association of Notch1 binding with ZNF143, Ets, and Runx sites was highly conserved, binding near certain important genes showed substantial divergence. For example, in human T-ALL lines Notch1/RBPJ bind a 3' enhancer near the IL7R gene, whereas in murine T-ALL lines no binding was observed near Il7r. Similarly, in human T-ALL lines Notch1/RBPJ bound an enhancer located ∼565 kb 5' of MYC, whereas in murine T-ALL cells Notch1/RBPJ bound an enhancer located ∼1 Mb 3' of Myc. Human and murine T-ALL genomes also have many sites that bind only RBPJ. Murine RBPJ “only” sites are highly enriched for imputed sites for the corepressor REST, whereas human RPBJ “only” sites lack REST motifs and are more highly enriched for imputed CREB binding sites. Thus, there is a conserved network of cis-regulatory factors that interacts with Notch1 to regulate gene expression in T-ALL cell lines, as well as novel classes of divergent RBPJ “only” sites that also likely regulate transcription. To extend these findings to normal and pathophysiologic tissues, ChIP-Seq was used to identify RBPJ/Notch1 binding sites in primary murine thymocytes and primary murine T-ALL associated with Notch1 gain-of-function mutations. Early findings appear to indicate that primary T-ALLs closely resemble normal DN3a thymocytes in terms of the distribution of Notch1 binding sites and associated chromatin marks. These data suggest that Notch1-driven T-ALLs epigenetically resemble the DN3a stage of T cell development, during which Notch1 signaling is high and cells are rapidly proliferating. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2380-2380
Author(s):  
Margaret Decker ◽  
Choi Li ◽  
Lesley A Rakowski ◽  
Tomasz Cierpicki ◽  
Mark Y. Chiang

Abstract Abstract 2380 Activating NOTCH1 mutations are found in 50–60% of human T-cell acute lymphoblastic leukemia (T-ALL) samples. In mouse models, these mutations generally fail to induce leukemia. Cooperating oncogenes must be recruited by NOTCH1 to fully induce leukemia. Murine insertional mutagenesis screens previously implicated ZMIZ1 as a possible NOTCH1 collaborator in leukemia (Uren et al., Cell, 2008; Dupuy et al., Nature, 2005; Berquam-Vrieze et al., Blood, 2011). ZMIZ1 is a transcriptional co-activator of the Protein Inhibitor of Activated STAT (PIAS)-like family. It shares a zinc finger domain, the MIZ domain, with PIAS proteins. The MIZ domain mediates interactions with DNA-binding transcription factors and sumoylation. Previously, we showed that ZMIZ1 promotes T-ALL in collaboration with leukemia-associated NOTCH1 alleles in mouse models. ZMIZ1 and activated NOTCH1 were co-expressed in a subset of human patients. Genetic ZMIZ1 inhibition slowed leukemic cell growth and overcame resistance of some T-ALL cell lines to NOTCH inhibitors. ZMIZ1 may be a new clinically relevant oncogene. Here we sought to determine the downstream target genes of ZMIZ1 in leukemia. Validation of gene expression profiling data identified C-MYC and IL7RA as downstream targets of ZMIZ1. Targeting the C-MYC or IL-7 pathways using genetic and pharmacological inhibitors partly phenocopied the growth inhibitory effects we previously saw with ZMIZ1 inhibition. In order to determine whether these genes are direct or indirect targets of ZMIZ1, we generated an estrogen fusion protein, ZMIZ1-ER. ZMIZ1-ER induced C-MYC and IL7RA expression in the presence of tamoxifen, but failed to induce these genes with the addition of cycloheximide. These data suggest that C-MYC and IL-7RA are indirect targets. Like the PIAS proteins, ZMIZ1 appeared to have a broad effect on transcription to exert its functions. We next sought to elucidate the biochemical mechanism of ZMIZ1. Ectopic expression of ZMIZ1 or NOTCH1 had weak effects on endogenous c-Myc expression and failed to rescue a C-MYC-dependent T-ALL cell line after withdrawal of ectopic C-MYC. In contrast, ZMIZ1 in combination with NOTCH1 dramatically induced C-MYC expression by several fold and rescued the C-MYC dependent cell line. ZMIZ1 enhanced the ability of even weak NOTCH1 mutants to induce C-MYC, suggesting a mechanism by which ZMIZ1 may increase resistance to NOTCH inhibitors. ZMIZ1 did not influence C-MYC expression post-transcriptionally. It functioned primarily as a transcriptional activator. Although both C-MYC and IL7RA are both NOTCH1 target genes, ZMIZ1 did not directly interact with NOTCH1 or influence the expression of several other NOTCH1 target genes such Ptcra, Hes1, Dtx1, and Cd25. Thus, ZMIZ1 did not pan-activate NOTCH signaling. Based on bioinformatic analysis, we generated mutants that deleted individual domains of ZMIZ1. All mutants expressed at high levels by Western blot. Deletion of the transcriptional activation domain or the N-terminal domain (NTD) abolished the ability of ZMIZ1 to induce c-Myc and drive proliferation. Surprisingly, deletion of the PAT-like, Proline-rich, and MIZ domains or all three domains simultaneously had no effect on ZMIZ1 function. The 120-amino acid NTD has a predicted helical structure without significant sequence homology to any known domain. It is not found in ZMIZ2 or PIAS proteins. In summary, the mechanism of ZMIZ1 appears to be novel, indirect, transcriptional, and independent of canonical NOTCH and PIAS functions. Our study demonstrates the importance of characterizing genetic collaborations between parallel leukemic pathways that may be therapeutically targeted. They also raise new inquiries into potential NOTCH-ZMIZ1 collaboration in a variety of C-MYC-driven cancers. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Harshi Weerakoon ◽  
Jeremy Potriquet ◽  
Alok K. Shah ◽  
Sarah Reed ◽  
Buddhika Jayakody ◽  
...  

AbstractData independent analysis (DIA) exemplified by sequential window acquisition of all theoretical mass spectra (SWATH-MS) provides robust quantitative proteomics data, but the lack of a public primary human T-cell spectral library is a current resource gap. Here, we report the generation of a high-quality spectral library containing data for 4,833 distinct proteins from human T-cells across genetically unrelated donors, covering ~24% proteins of the UniProt/SwissProt reviewed human proteome. SWATH-MS analysis of 18 primary T-cell samples using the new human T-cell spectral library reliably identified and quantified 2,850 proteins at 1% false discovery rate (FDR). In comparison, the larger Pan-human spectral library identified and quantified 2,794 T-cell proteins in the same dataset. As the libraries identified an overlapping set of proteins, combining the two libraries resulted in quantification of 4,078 human T-cell proteins. Collectively, this large data archive will be a useful public resource for human T-cell proteomic studies. The human T-cell library is available at SWATHAtlas and the data are available via ProteomeXchange (PXD019446 and PXD019542) and PeptideAtlas (PASS01587).


Blood ◽  
2014 ◽  
Vol 124 (4) ◽  
pp. 567-578 ◽  
Author(s):  
Rui D. Mendes ◽  
Leonor M. Sarmento ◽  
Kirsten Canté-Barrett ◽  
Linda Zuurbier ◽  
Jessica G. C. A. M. Buijs-Gladdines ◽  
...  

Key Points Microdeletions represent an additional inactivation mechanism for PTEN in human T-cell acute lymphoblastic leukemia. PTEN microdeletions are RAG-mediated aberrations.


Author(s):  
Neda Yaghoubi ◽  
Masoud Youssefi ◽  
Seyed Isaac Hashemy ◽  
Houshang Rafat Panah ◽  
Barat Ali Mashkani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document