The BCL6 Proto-Oncogene Suppresses p53 Expression in Germinal-Center B Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 212-212 ◽  
Author(s):  
Ryan T. Phan ◽  
Huifeng Niu ◽  
Masumichi Saito ◽  
Katia Basso ◽  
Giorgio Cattoretti ◽  
...  

Abstract The proto-oncogene BCL6 encodes a BTB/POZ-zinc finger transcriptional repressor that is necessary for germinal center (GC) formation and is implicated in the pathogenesis of B-cell lymphoma. In ~50% diffuse large cell lymphoma and 10% follicular lymphoma, BCL6 gene expression is deregulated by chromosomal translocations or mutations that affect its 5′ regulatory region. The precise function of BCL6 in GC development and lymphomagenesis is unclear since very few BCL6 direct target genes have been identified. We report that BCL6 suppresses p53-dependent and p53-indepenent growth arrest and apoptosis responses in GC B cells. BCL6 directly suppresses the transcription of the p53 gene, as demonstrated by (1) chromatin immunoprecipitation (ChIP) assays showing that BCL6 binds the p53 promoter region in vivo; and (2) transient transfection/reporter assays identifying within the p53 promoter region two BCL6-binding sites that mediate BCL6-mediated suppression of p53 transcription. Accordingly, suppression of BCL6 expression via specific siRNA leads to increased expression of p53 both under basal condition and in response to DNA damage. Consistent with a physiological role for BCL6-mediated p53 suppression, immunohistochemical analysis shows that p53 expression is absent in GC B cells where BCL6 is highly expressed. In addition, our data reveal that BCL6 inhibits the p53-independent activation of the p21/WAF1 cell cycle arrest gene by binding to Miz-1, a transcription factor involved in p21 activation. Consistent with a role of BCL6 in inhibiting p53-related cell cycle arrest and apoptotic responses, constitutive expression of BCL6 suppresses p53 expression and p53-target genes (P21 and PUMA) and protects B cell lines from apoptosis induced by DNA damage. These results indicate that one function of BCL6 is to allow GC B cells (centroblasts) to constitutively proliferate and to sustain the physiologic DNA breaks required for immunoglobulin switch recombination and somatic hypermutation without inducing p53-related responses. These findings also imply that B cell lymphoma with deregulated BCL6 expression are functionally p53-negative and impaired in apoptotic responses.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1141-1141
Author(s):  
Arief Suryono Gunawan ◽  
Amparo Toboso-Navasa ◽  
Probir Chakravarty ◽  
Andrew James Clear ◽  
Maria Calaminici ◽  
...  

Abstract We previously showed that the formation of protein complexes between MYC and its partner MIZ1 (MYC-interacting zinc finger 1) is critically required for germinal center (GC) B cell expansion (Toboso-Navasa et. al., JEM 2020). MYC and MIZ1 are transcriptional activators; however, they can form a transcriptional repressor complex that represses MIZ1 target genes. High expression of MYC is commonly found in aggressive B cell lymphoma, most notably in Burkitt Lymphoma (BL) and in a fraction of Diffuse B cell lymphomas (DLBCLs). In DLBCL, MYC positivity is associated with poorer prognosis, especially when co-expressed with BCL2, and increased proliferative capacity. However, it remains unclear whether the requirement for MYC-MIZ1 complexes for cell expansion is retained in lymphoma, similar to what we observed in GC B cells. We first investigated MIZ1 expression in primary samples of B cell lymphoma sub-types and found it to be ubiquitous in BL (100% of cases; 14/14), whereas virtually absent in low-grade Follicular Lymphoma (7% of cases, 4/58). Roughly 42% of DLBCL cases (36/85; ) co-expressed MYC and MIZ1 and that was associated with increased cell proliferation assessed by Ki67. To investigate the role of MYC-MIZ1 complexes in lymphomagenesis, we generated compound mutant mice overexpressing in GC B cells wild-type MYC or a MYC mutant that cannot interact with MIZ1 (MYC VD) in combination with PI3K. MYC VD cannot repress MIZ1 target genes but displays normal interaction with MAX and transcriptional activation. As shown previously (Sander et. al., Cancer Cell 2012) MYC synergised with PI3K for BL development; however, overexpression of MYC VD plus PI3K had significantly delayed disease development and developed instead plasma cell hyperplasia. Analysis of pre-tumoral cells by single cell RNAseq revealed massive expansion of a unique GC B cell cluster only in mice carrying MYC and PI3K and this cluster had the highest suppression of MYC-MIZ1 target genes among all GC B cell clusters. Taken together, this data indicates that the fraction of cells in which MYC and MIZ1 are co-expressed represents a "sweet spot" for B cell lymphomagenesis; and that the transcriptional repressive complex formed by MYC and MIZ1 is crucial for GC B lymphomagenesis. Disclosures Toboso-Navasa: Benevolent AI: Current Employment. Calado: Myricx Pharma: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company, Patents & Royalties: Cancer Treatments. WO patent WO 2020/128475 A1 (2020).


2005 ◽  
Vol 203 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Chang Hoon Lee ◽  
Mark Melchers ◽  
Hongsheng Wang ◽  
Ted A. Torrey ◽  
Rebecca Slota ◽  
...  

Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein–tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5′ sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2121-2127 ◽  
Author(s):  
Hai-Jun Zhou ◽  
Lan V. Pham ◽  
Archito T. Tamayo ◽  
Yen-Chiu Lin-Lee ◽  
Lingchen Fu ◽  
...  

Abstract CD40 is an integral plasma membrane–associated member of the TNF receptor family that has recently been shown to also reside in the nucleus of both normal B cells and large B-cell lymphoma (LBCL) cells. However, the physiological function of CD40 in the B-cell nucleus has not been examined. In this study, we demonstrate that nuclear CD40 interacts with the NF-κB protein c-Rel, but not p65, in LBCL cells. Nuclear CD40 forms complexes with c-Rel on the promoters of NF-κB target genes, CD154, BLyS/BAFF, and Bfl-1/A1, in various LBCL cell lines. Wild-type CD40, but not NLS-mutated CD40, further enhances c-Rel–mediated Blys promoter activation as well as proliferation in LBCL cells. Studies in normal B cells and LBCL patient cells further support a nuclear transcriptional function for CD40 and c-Rel. Cooperation between nuclear CD40 and c-Rel appears to be important in regulating cell growth and survival genes involved in lymphoma cell proliferation and survival mechanisms. Modulating the nuclear function of CD40 and c-Rel could reveal new mechanisms in LBCL pathophysiology and provide potential new targets for lymphoma therapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2008-2008
Author(s):  
Ryan T Phan ◽  
Khang Nguyen ◽  
Sonia Romero ◽  
Alice Nicolson ◽  
Phillipp Nham ◽  
...  

Abstract Abstract 2008 Most human B-cell lymphomas represent mature phenotypes of germinal center (GC) or post-GC origin and are frequently associated with chromosomal translocations, often involving the rearrangement of immunoglobulin (Ig) loci to various cellular oncogenes, leading to oncogenic activation. The mechanisms underlying these processes, however, are not well understood. Several studies suggest that these genetic lesions arise from errors of physiologic DNA rearrangements in GC B cells, namely class switch recombination (CSR) and somatic hypermutation (SHM). Here we report the generation of a mouse model in which DNA breaks are physiologically instituted in mature B cells, yet inefficiently repaired via specific deletion of DNA repair gene XRCC4 in GC B cells, thus effectively creating an in vivo environment for errors in DNA rearrangements. These activated B cells exhibit significant increased chromosomal IgH locus breaks and reduced CSR. In p53-deficient background, these mice develop B-cell lymphoma from 5.5 to 16 months. These clonally developed tumors characteristically harbor chromosomal translocations and phenotypically resemble mature phenotypes. Many of these tumors bear mutated V genes, suggesting that those cells have transited through GC. Thus, this mouse model mimics human B-cell lymphoma and might be useful for the development of therapeutic interventions in B-cell lymphoma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1589-1589 ◽  
Author(s):  
Miguel Alcoceba ◽  
Elena Sebastián ◽  
Ana Balanzategui ◽  
Luis Marín ◽  
Santiago Montes-Moreno ◽  
...  

Abstract Abstract 1589 Introduction: Acquired potentially N-glycosylation sites are produced by somatic hypermutation (SHM) in the immunoglobulin (Ig) variable region. This phenomenon is produced in ∼9% of normal B-cells and seems to be related to certain B-cell lymphoproliferative disorders (B-LPDs) such as follicular lymphoma (FL, 79%), endemic Burkitt lymphoma (BL, 82%) and diffuse large B-cell lymphoma (DLBCL, 41%). These data suggest that new potential N-glycosylation sites could be related to germinal center B (GCB)-LPDs. By contrast, in other B-LPDs, such as chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), MALT lymphoma, Waldenström macroglobulinemia (WM) or multiple myeloma (MM), these modifications have not been analyzed in deep. Aims: To evaluate the acquisition of potential N-glycosylation sites in B-LPDs, including immunohystochemical DLBCL subtypes (GCB and non-GCB) and specific non-GCB-LPDs, such as hairy cell leukemia (HCL), splenic marginal-zone lymphoma (SMZL), CLL, MCL, ocular extranodal marginal zone lymphoma (OAEMZL), MM and WM. Patients: A total of 953 sequences (203 from our group and 750 previously published sequences) of B-LPDs were included. Diagnosis distribution was as follows: DLBCL (n=235), MCL (n=235), CLL (n=166), MM (n=96), OAEMZL (n=82), SMZL (n=68), WM (n=38) and HCL (n=33). Methods: Acquired N-glycosylation sites were counted according to the sequence Asn-X-Ser/Thr, where X could be any amino acid except Pro. Natural motifs in germline sequences of IGHV1–08, IGHV4–34 e IGHV-5a were not considered. Fisher test was used to perform comparisons between groups. To distinguish DLBCL biological subtypes (GCB and non-GCB DLBCL), Hans' algorithm was used. Results: A total of 83 out of the 235 DLBCL cases acquired at least a new N-glycosylation site, a higher value than in normal B-cells (35% vs. 9%, p<0.0001). Higher incidence of these motifs in the group of GCB as compared to non-GCB DLBCL were observed (52% vs. 20%, p<0.0001). Those cases diagnosed of HCL, CLL, MCL, MM, WM, OAEMZL and SMZL presented a reduced number of new N-glycosylation sites, showing similar values than normal B-cells (range 3–18%, p=ns). Conclusions: We described for the first time the pattern of N-glycosylation in HCL, SMZL, OAEMZL and in the immunohystochemical DLBCL subtypes, where the GCB-DLBCL showed a higher number of new N-glycosylation sites with respect to non-GCB DLBCL and other non-GCB-LPDs. The presence of novel N-glycosylation sites in FL, BL and in GCB-DLBCL strongly suggests that these motifs are characteristic of the germinal center B-LPDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4308-4308
Author(s):  
Shin-ichiro Fujiwara ◽  
Raine Tatara ◽  
Kiyoshi Okazuka ◽  
Iekuni Oh ◽  
Ken Ohmine ◽  
...  

Abstract Background Interleukin 2 (IL-2) is an important cytokine that controls the proliferation and differentiation of not only T- but also B-lymphocytes. Recently, we reported that CD25 (IL-2 receptor alpha chain, IL-2R) is expressed in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), and high expression of CD25 in the two types of lymphoma is correlated with a poor prognosis following chemotherapy regimens containing rituximab (ASH annual meeting, 2011 118:2666, 2012 120:1543). We evaluated the clinical significance of CD25 expression in a larger series of different mature B-cell lymphomas (BCL). Patients and Methods Four hundred and thirty-seven newly diagnosed patients who were admitted to our hospital between 2002 and 2013 were retrospectively evaluated. Lymph node or related tissue biopsy samples of BCL were analyzed using flow cytometry, as follows: 182 patients, DLBCL; 92, FL; 48, chronic lymphocytic leukemia (CLL); 21, mantle cell lymphoma (MCL); 23, marginal zone lymphoma (MZL); 8, Burkitt lymphoma (BL); 18, B-cell lymphoma unclassifiable with features intermediate between BL and DLBCL (BL/DLBCL); 5, lymphoplasmacytic lymphoma (LPL); and 39, reactive lymphadenopathy with sufficient B-cells. CD25-positivity was defined as >20% of clonal B-cells in a gated region. Results CD25 expression in patients with MCL, CLL, MZL, and DLBCL was significantly higher than that in patients with reactive lymphadenopathy (P<0.001,<0.001, =0.019, and <0.001, respectively). BL and FL, which were derived from germinal center B-cells, did not express CD25. These results indicate that pre- or post- germinal center-derived B-cells, activated by IL-2/IL-2R signaling, may give rise to CD25+ BCL such as CD25+ MCL, CLL, MZL, and DLBCL. The highest median CD25 expression (41.5%) was observed in MCL. CD25 expression was higher in MCL than CD5+ BCL (CLL and CD5+ DLBCL) (median, 41.5 vs. 16.9%, respectively; P<0.001). With a cut-off value of 60% CD25-positivity, patients with CD25-high (>60%) MCL (n=9) were not treated with aggressive chemotherapy regimens such as Hyper-CVAD due to their age and characteristics, compared with those with CD25-low (<60%) MCL (n=12) (11.1 vs. 72.7%, respectively, P=0.021). In patients with CLL, the range of CD25 expression was wide (0.4-90.7%), and 29 patients (60%) showed CD25-positivity (CD25+ CLL). CD25+ CLL showed higher soluble IL-2R (sIL-2R) levels and an inferior overall survival (OS) than CD25- CLL (median sIL-2R, 2,195 vs. 706 U/ml P=0.047; 5-year OS, 62.7 vs. 100%; P=0.037). There was a significant correlation between levels of CD25 and sIL-2R (r=0.53, P=0.0053). It is clinically important to distinguish between DLBCL and BCL involving MYC oncogene rearrangement (BL and BL/DLBCL, MYC+ BCL). The former showed higher CD25 expression than the latter (median, 10.2 vs. 2.1%, respectively, P=0.04). The progression-free survival rate (PFS) after rituximab containing chemotherapy was inferior in patients with CD25+ DLBCL (n=72) than those with CD25- DLBCL (n=110) and MYC+ BCL (5-year PFS, 49 vs. 70.4, 66.3%, respectively). In patients with DLBCL, central nerve system (CNS) involvement was observed in 15 patients (7 at diagnosis and 8 at relapse). CD25+ DLBCL showed a higher frequency of CNS involvement than CD25– DLBCL (13.8 vs. 4.5%, respectively, P=0.049). Regarding MZL, CD25 was highly expressed in nodal MZL, but it showed a low expression in splenic MZL. Regarding the sites of extranodal MZL, CD25 expression was lower in the thyroid than at other sites (median, 5.1 vs. 21.2%, respectively, P=0.37). There were some differences between CD25+ (n=9) and CD25- (n=14) MZL concerning the presence of B symptoms (33.3 vs. 0%, respectively) and advanced stage (66.6 vs. 35.7%, respectively). Conclusion CD25 expression using flow cytometry can potentially provide diagnostic and prognostic implications on BCL patient. The high expression of CD25 in MCL and CLL suggests the possibility of targeted anti-CD25 immunotherapy. These findings may shed light on the role of CD25 expression in B-cell lymphomagenesis. Disclosures: No relevant conflicts of interest to declare.


Cancer Cell ◽  
2007 ◽  
Vol 12 (3) ◽  
pp. 280-292 ◽  
Author(s):  
Masumichi Saito ◽  
Jie Gao ◽  
Katia Basso ◽  
Yukiko Kitagawa ◽  
Paula M. Smith ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2386-2391
Author(s):  
Haopeng Yang ◽  
Michael R. Green

Abstract Affinity maturation and terminal differentiation of B cells via the germinal center reaction is a complex multistep process controlled by transcription factors that induce or suppress large dynamic transcriptional programs. This occurs via the recruitment of coactivator or corepressor complexes that epigenetically regulate gene expression by post-translationally modifying histones and/or remodeling chromatin structure. B-cell–intrinsic developmental programs both regulate and respond to interactions with other cells in the germinal center that provide survival and differentiation signals, such as T-follicular helper cells and follicular dendritic cells. Epigenetic and transcriptional programs that naturally occur during B-cell development are hijacked in B-cell lymphoma by genetic alterations that directly or indirectly change the function of transcription factors and/or chromatin-modifying genes. These in turn skew differentiation toward the tumor cell of origin and alter interactions between lymphoma B cells and other cells within the microenvironment. Understanding the mechanisms by which genetic alterations perturb epigenetic and transcriptional programs regulating B-cell development and immune interactions may identify opportunities to target these programs using epigenetic-modifying agents. Here, we discuss recently published studies centered on follicular lymphoma and diffuse large B-cell lymphoma within the context of prior knowledge, and we highlight how these insights have informed potential avenues for rational therapeutic interventions.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 351-358 ◽  
Author(s):  
Santiago Montes-Moreno ◽  
Giovanna Roncador ◽  
Lorena Maestre ◽  
Nerea Martínez ◽  
Lydia Sanchez-Verde ◽  
...  

GCET1 (germinal center B cell–expressed transcript-1) gene codes for a serpin expressed in germinal center (GC) B cells. Following the observation that follicular lymphoma cases exhibit an increased level of Gcet1 expression, compared with follicular hyperplasia, we have characterized Gcet1 protein expression in human tissues, cell lines, and a large series of lymphomas. To this end, we have performed immunohistochemical and Western blot analyses using a newly generated monoclonal antibody that is reactive in paraffin-embedded tissues. Our results demonstrate that Gcet1 is expressed exclusively by neoplasms hypothetically to be arrested at the GC stage of differentiation, including follicular lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, and a subset of diffuse large B-cell lymphoma, T-cell/histiocyte rich B-cell lymphoma, and Burkitt lymphoma. Within these tumors, Gcet-1 protein expression is restricted to a subset of GC B cells, establishing the existence of a distinct heterogeneity among normal and neoplastic GC B cells. None of the other B-cell lymphomas, that is, chronic lymphocytic leukemia, splenic marginal zone lymphoma, and mantle cell lymphoma, was Gcet1+, which underlines the potential utility of Gcet1 expression in lymphoma diagnosis. The results of RNA and protein expression should prompt further investigation into the role of Gcet1 in regulating B-cell survival.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2375-2375
Author(s):  
Nicolas Blin ◽  
Celine Bossard ◽  
Jean-Luc Harousseau ◽  
Catherine Charbonnel ◽  
Wilfried Gouraud ◽  
...  

Abstract Gene expression profiling has provided new insights into the understanding of mature B cell neoplasms by relating each one to its normal counterpart, so that they can be to some extent classified according to the corresponding normal B-cell stage. Thus, diffuse large B cell (DLBCL) and follicular lymphoma (FL) have been related to a germinal center precursor whereas mantle cell lymphoma (MCL) or marginal zone lymphoma (MZL) are more likely to derive from naïve and memory B cell, respectively. However, little is still known about the physiopathology of B-cell lymphomas and particularly the deregulated pathways involved in their oncogenesis. To further investigate that point, we performed laser capture microdissection (LCM) of the three anatomic lymphoid compartments (i.e germinal center, mantle zone and marginal zone) taken from nine normal spleens and lymph nodes and magnetic cell separation of the four normal B cell subpopulations (i.e naïve B cells, centroblasts, centrocytes and memory B cells) purified from twelve normal tonsils for gene expression profiling by cDNA microarray. These molecular profiles have been compared to those of the four most frequent mature B cell neoplasms in adult (i.e DLBCL, FL, MZL and MCL), each one isolated from five previously untreated patients. Unsupervised analysis by hierarchical clustering of the normal anatomic and cellular populations could discriminate the germinal from the extra-germinal populations by genes involved in cell proliferation (e.g. E2F5, CCNB2, BUB1B and AURKB), DNA repair (e.g. PCNA and EXO1), cytokine secretion (e.g. IL8, IL10RB, IL4R and TGFBI) and apoptosis (e.g. CASP8, CASP10, BCL2 and FAS). Supervised analysis of the comparison between each B-cell lymphoma and its anatomic and cellular physiologic equivalent identified molecular deregulations concerning several genes’families characterizing the different histologic subtypes. Genes associated with cellular adhesion and ubiquitin cycle were significantly up-regulated in MCL (FCGBP, ITGAE, USP7, VCAM1) and MZL (CTGF, CDH1, ITGAE) whereas germinal center derived lymphomas (i.e. DLBCL and FL) mainly showed up-regulation of genes involved in cell proliferation (TNFRSF17, SEPT8) and immune response (FCER1G, XBP1, IL1RN). Few deregulated genes were common to the four subtypes, principally associated with cell proliferation (CYR61, GPNMB), cytosqueleton organization (EPB41L3) and carbohydrates metabolism (GNPDA1), suggesting potential similar oncogenic pathways. Those preliminary results are compatible with both subtype-specific and overall mechanisms of lympomagenesis and should be verified in a wider range of samples to confirm the oncogenic events involved in this heterogeneous disease.


Sign in / Sign up

Export Citation Format

Share Document