Ascorbic Acid Overcomes Drug Resistance in Myeloma and Significantly Increases the Anti-Myeloma Effects of both Arsenic Trioxide and Melphalan in Vitro and in Vivo.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2470-2470 ◽  
Author(s):  
Richard A. Campbell ◽  
Haiming Chen ◽  
Daocheng Zhu ◽  
Janice C. Santos ◽  
Benjamin Bonavida ◽  
...  

Abstract Glutathione levels have previously been shown to be associated with the development of resistance to a variety of anti-myeloma therapies. Ascorbic acid (AA) depletes intracellular glutathione levels which, in turn, should increase the sensitivity of tumor cells to anti-myeloma agents such as arsenic trioxide (ATO) and melphalan. To determine the synergistic effects of combining AA, with ATO and/or melphalan, we evaluated the effects of these combinations with MTT assays on myeloma cell lines in vitro and using our severe combined immunodeficient (SCID)-hu murine myeloma models. We determined the synergistic effects of combining AA with ATO and/or melphalan on the myeloma cell lines RPMI8226, 8226/dox, U266, and U266/dox in vitro. MTT assays demonstrated marked synergistic anti-proliferative effects of AA at 10 mM when added to these cell lines in the presence of ATO concentrations ranging from 5x10−5 M – 5x10−9 M, and melphalan concentrations ranging from 3x10−5 M – 3x10−9 M. In order to provide further evidence for the clinical relevance of these synergistic effects of AA, we investigated the potential of AA to increase the efficacy of current anti-myeloma therapies in our SCID-hu murine model of human myeloma LAGλ–1 (Yang H et al. Blood 2002). Each SCID mouse was implanted with a 0.5 cm3 LAGλ–1 tumor fragment into the left hind limb muscle. Twenty-eight days following implantation, mice then received treatment intraperitoneally (IP) with either AA (300 mg/kg) daily x5/week, ATO (1.25 mg/kg) daily x5/week, or melphalan (3.0 mg/kg) x1/week, or the combination of these agents. AA, ATO, and melphalan alone have no anti-myeloma effects at these doses, whereas AA+melphalan results in significantly decreased tumor burden and paraprotein levels. The most profound anti-myeloma effects were observed in animals treated with all three drugs together. These data show not only the additional synergistic anti-myeloma effects of AA on both ATO and melphalan in vitro but for the first time suggest that these effects are also present in vivo. This provides the rationale for combining AA with these agents in myeloma patients with resistant disease. In support of this, early results of clinical trials using the combination of AA, ATO and low doses of oral melphalan are promising.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2467-2467
Author(s):  
Richard A. Campbell ◽  
Haiming Chen ◽  
Daocheng Zhu ◽  
Janice C. Santos ◽  
Benjamin Bonavida ◽  
...  

Abstract Arsenic trioxide (ATO) induces apoptosis of plasma cells through a number of mechanisms including inhibiting DNA binding by NF-κB. These results suggest that this agent may be synergistic when combined with other active anti-myeloma drugs. To evaluate this we examined the effect of ATO alone and in combination with anti-myeloma treatments evaluated in vitro with MTT assays and using our severe combined immunodeficient (SCID)-hu murine myeloma models. First, we determined the effects of combining ATO with bortezomib or melphalan on the myeloma cell lines RPMI8226 and U266. Cell proliferation assays demonstrated marked synergistic anti-proliferative effects of ATO at concentrations ranging from 5x10−5M – 5x10−9M and melphalan concentrations ranging from 3x10−5M – 3x10−9M. Similar effects were observed when these cell lines were treated with bortezomib and varying concentrations of ATO (5x10−5 M – 5x10−10 M). We also investigated the potential of ATO to increase the efficacy of anti-myeloma therapies in our SCID-hu murine model LAGλ–1 (Yang H et al. Blood 2002). Each SCID mouse was implanted with a 0.5 cm3 LAGλ–1 tumor fragment into the left hind limb muscle. Mice were treated with ATO alone at 6.0 mg/kg, 1.25 mg/kg, 0.25 mg/kg, and 0.05 mg/kg intraperitoneally (IP) daily x5/week starting 19 days post-implantation. Mice receiving the highest dose of ATO (6.0 mg/kg) showed marked inhibition of tumor growth and reduction of paraprotein levels while there was no effect observed in all other treatment groups. Next, 27 days following implantation of our LAGλ–1 intramuscular (IM) tumor, LAGλ–1 mice were treated with ATO (1.25 mg/kg) IP, bortezomib (0.25 mg/kg), or the combination of both drugs at these doses in the schedules outlined above. ATO or bortezomib treatment alone had no anti-myeloma effects at these low doses consistent with our previous results whereas there was a marked decrease in both tumor volume (57%) and paraprotein levels (53%) in mice receiving the combined therapy. The combination of melphalan and ATO was also evaluated in this model. LAGλ–1 bearing mice received therapy with melphalan IP x1/weekly at 12.0 mg/kg, 6.0 mg/kg, 0.6 mg/kg, and 0.06 mg/kg starting 22 days post-implantation and showed no anti-myeloma effects. Twenty-eight days following implantation of LAGλ–1 tumor, mice received ATO (1.25 mg/kg) or melphalan (0.6 mg/kg) alone at doses without anti-myeloma effects, or the combination of these agents at these doses. The animals treated with these drugs alone showed a similar growth and increase in paraprotein levels to control mice whereas the combination of ATO and melphalan at these low doses markedly suppressed the growth of the tumor by >50% and significantly reduced serum paraprotein levels. These in vitro and in vivo studies suggest that the addition of ATO to other anti-myeloma agents is likely to result in improved outcomes for patients with drug resistant myeloma. Based on these results, these combinations are now in clinical trials with promising early results for patients with drug resistant myeloma.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing Zheng ◽  
Yingyu Chen ◽  
Zhihong Zheng ◽  
Yanxin Chen ◽  
Yujuan Chai ◽  
...  

Background. Bortezomib is used for treating multiple myeloma (MM); however, it has considerable adverse effects. Emodin has been reported to exhibit inhibitory effects on MM cell lines. We investigated the efficacy of emodin 35 (E35), an emodin derivative, using U266 and MM1s cell lines in treating MM and the efficacy of combining bortezomib and E35. Methods. MTT assays were used to observe the effects of E35 on MM cell growth. The effects on cellular apoptosis were then observed using Annexin V/propidium iodide (PI) staining assay. The expression of apoptosis-related genes, including the caspase family, was examined. The efficacy of combining bortezomib and E35 was investigated by examining the expression of the Akt/mTOR/4EBP1 signaling pathway-related proteins. Results. We report that E35 inhibited the growth of U266 and MM1s cells by inducing cellular apoptosis. Moreover, E35 downregulated the expression of apoptosis-related genes and suppressed the phosphorylation of Akt/mTOR/4EBP1 signaling pathway-related genes, thus exhibiting synergistic effects with bortezomib. All observed effects were dose-dependent. Conclusion. The results showed that E35 exhibited cytotoxic effects in MM cell lines in protein levels. Thus, E35, particularly in combination with bortezomib, may be considered as a promising treatment for MM; however, this requires further investigation in vivo.


2020 ◽  
Author(s):  
Jing Zheng ◽  
Yingyu Chen ◽  
Zhihong Zheng ◽  
Yanxin Chen ◽  
Yujuan Chai ◽  
...  

Abstract Background: Bortezomib is used for the treatment of multiple myeloma (MM); however, it has significant adverse effects. Emodin has been reported to exhibit inhibitory effects on MM cell lines. Here, we investigated the efficacy of E35, an emodin derivative, using U266 and MM1s cell lines in the treatment of MM and the efficacy of the combination of bortezomib and E35. Methods: MTT assays were used to observe the effects of E35 on MM cell growth. The effects on cellular apoptosis were observed using the Annexin V/propidium iodide (PI) staining assay. The expression of apoptosis-related genes, including the caspase family, was also examined. The efficacy of the combination of bortezomib and E35 was investigated by examining the expression of the Akt/mTOR/4EBP1 signaling pathway-related proteins. Results: We found that E35 inhibited the growth of the U266 and MM1s cells by inducing cellular apoptosis. E35 also downregulated the expression of the apoptosis-related genes and suppressed the phosphorylation of the Akt/mTOR/4EBP1 signaling pathway-related genes, exhibiting synergistic effects with bortezomib. All the observed effects were dose-dependent. Conclusion: The results of this study showed that E35 exhibited cytotoxic effects in MM cell lines. Thus, E35, especially in combination with bortezomib, may be considered as a promising treatment for MM. However, this requires further investigation in vivo.


Gut ◽  
2019 ◽  
Vol 69 (4) ◽  
pp. 727-736 ◽  
Author(s):  
Cun Wang ◽  
Hui Wang ◽  
Cor Lieftink ◽  
Aimee du Chatinier ◽  
Dongmei Gao ◽  
...  

ObjectivesHepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC.DesignA non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib.ResultsWe identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment.ConclusionOur data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3583-3583 ◽  
Author(s):  
Daniel Sullivan ◽  
Seema Singhal ◽  
Michael Schuster ◽  
James Berenson ◽  
Peter Gimsing ◽  
...  

Abstract Background: PXD101 is a small molecule HDAC inhibitor of the hydroxamate class, which demonstrates broad anti-neoplastic activity in vitro and in vivo. PXD101 has antiproliferative activity on multiple myeloma cell lines, and shows additive/synergistic effects with standard agents used in myeloma, against these cell lines. PXD101 is being tested as monotherapy and in combination with standard agents for treatment of multiple myeloma. Methods: The primary objective of this study was to assess the activity of PXD101 alone or with dexamethasone, in multiple myeloma patients (pts) who have failed at least 2 prior therapies. Response was measured using the Blade criteria. PXD101 was administered as a 30-min IV infusion on Days 1–5 of a 3-wk cycle, at a dose of 1000 mg/m2/d (900 mg/m2/d in earlier patients). Patients are initially treated with PXD101 alone for two cycles. At the end of cycle two and every cycle thereafter, pts are evaluated for tumor response and continue on the study as follows: pts with objective response or stable disease continue on PXD101 monotherapy, while pts who have progressive disease (PD) are treated with a combination of PXD101 + dexamethasone (Dex). Dex was given orally 40 mg daily on Days 2–5 and 10–13 of the treatment cycle. Results: To date, 24 pts have been enrolled, 19 for which data are currently available. These pts have received a median of 5 (range 2–10) prior therapies. Seventeen pts are evaluable, 12 of whom are evaluable for ≥ 2 cycles, and 5 evaluable for 1 cycle only; 2 pts are unevaluable due to inconsistent baseline that prevented response assessment. Of the 5 pts evaluable for 1 cycle only, 4 discontinued due to PD and one withdrew from study. The 12 pts evaluable for ≥ 2 cycles received a median of 4 treatment cycles (range 2–12); 6 of these patients went on to receive PXD101+Dex. In these 12 pts, duration of PXD101 monotherapy was for 2–4 cycles, with almost all pts (10) receiving only 2 cycles. PXD101+Dex treatment in 6 pts was for 1–10 cycles (10, 6, 4, 4, 3, and 1). In 12 pts on monotherapy for ≥ 2 cycles, there were 6 SD (duration 6–12 wks) and 6 PD. The short duration of SD in PXD101 monotherapy was attributed to patient withdrawal or moving to Dex addition in spite of disease stabilization. All 6 pts receiving PXD101+Dex had previously received at least 2 Dex-containing regimens. One pt had MR (duration 6 wks), and 5 pts had SD. One pt has had SD for 35 wks, with 90% decrease in serum M-component sustained in the last 12 wks; another pt has had SD for 15 wks. In 69 cycles of treatment there were 7 Grade 3/4 adverse events assessed by the investigator as potentially related to study drug. These include anemia (2), infection, respiratory distress, hyperglycemia, thrombocytopenia, and fatigue. Conclusions: PXD101 treatment has resulted in stabilization of advanced and progressive disease, providing clinical benefit to patients. PXD101 combination with dexamethasone led to an MR as well as long duration of stable disease in patients who have previously received multiple Dex regimens. These observations support the continued exploration of PXD101 in combination with other agents for treatment of multiple myeloma.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3493-3493
Author(s):  
Ahmad-Samer Samer Al-Homsi ◽  
Zhongbin Lai ◽  
Tara Sabrina Roy ◽  
Niholas Kouttab

Abstract Introduction Constitutive and immunoproteasome inhibitors (C&IPI) were thought to suppress nuclear factor-κB (NF-κB) pathway by preventing IκB degradation, which prevents NF-κB translocation into the nucleus. This mechanism of action has since been questioned by a number of studies. First, bortezomib promoted constitutive NF-κB activity in endothelial cell carcinoma. Second, NF-κB constitutive activity was resistant to bortezomib in multiple myeloma cell lines. Third, bortezomib increased IκB mRNA but post-transcriptionally downregulated IκB in normal cells and in multiple myeloma cell lines resulting in induced canonical NF-κB activation. Lastly, bortezomib increased nuclear levels of IκB as opposed to lowering cytoplasmic levels in cutaneous T cell lymphoma cell line suggesting that nuclear translocation of IκB was possibly responsible for NF-κB inhibition. The inhibitory activity of C&IPI on dendritic cells (DC) is of interest in the prevention of graft versus host disease (GvHD). It has been shown that different C&IPI impede DC maturation and T cell priming both in vitro and in vivo. Herein we sought to understand the mechanism of action of proteasome and immunoproteasome inhibitors on DC and to test their effect on IκB and NF-IκB expression. Materials and Methods We first performed RT PCR on lysates of DC obtained from the peripheral blood of 7 patients who received post-transplant cyclophosphamide and bortezomib as prevention of GvHD on a phase I clinical trial. Patients received allogeneic transplantation from matched-related or unrelated donors. Patients received no other immunosuppressive therapy except for rabbit anti-thymocyte globulin for those receiving graft from unrelated donor. Steroids were not allowed on the study. Samples were obtained on days +1, +4, and +7. The results were analyzed in comparison to samples obtained on day 0 before stem cell infusion. We then performed the same experiment on lysates of DC obtained from the peripheral blood of healthy volunteer donors. DC were untreated or incubated with bortezomib (10 nM for 4 h), carfilzomib (30 nM for 1 h), oprozomib (100 nM and 300 nM for 4 h), ONX 0914 (200 nM for 1 h), PR-825 (125 nM for 1 h), or PR-924 (1000 nM for 1 h). The drug concentration and duration of exposure were chosen based on the IC50 on proteasome activity and to reproduce in vivo conditions. We also performed IκB western blot on DC isolated from peripheral blood of healthy volunteers, untreated or incubated with bortezomib (10 nM for 4 h) or oprozomib (300 nM for 4 h). Each experiment was performed at least in triplicate. Results We found that the combination of cyclophosphamide and bortezomib significantly and progressively increased IκB mRNA while decreasing NF-κB mRNA in DC studied ex vivo. We also found that all studied C&IPI increased IκB mRNA to a variable degree while only oprozomib (300 nM) decreased NF-κB mRNA in DC in vitro. Finally, both bortezomib and oprozomib increased IκB protein level in DC in vitro (figure). Conclusion Our data suggest that C&IPI increase IκB expression in DC. As opposed to the previously reported data in other cell types, the effect is not associated with post-transcriptional downregulation. Cyclophosphamide and bortezomib also decrease NF-κB expression in DC in vivo while only oprozomib had the same effect in vitro. The effect of C&IPI on IκB and NF-κB expression may represent a new mechanism of action and suggests their effect may be cell-type dependent. Disclosures: Al-Homsi: Millennium Pharmaceuticals: Research Funding. Off Label Use: The use of cyclophosphamide and bortezomib for GvHD prevention. Lai:Millennium Pharmaceuticals: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5722-5722
Author(s):  
Xun Ma ◽  
Ping Zhou ◽  
Monika Pilichowska ◽  
Chakra P Chaulagain ◽  
Sandy Wong ◽  
...  

Abstract Background Ig light chain (LC) diseases such as AL amyloidosis and monoclonal light-chain deposition disease are caused by pathologic free LC. Treatment is aimed at eliminating LC production but success is limited. RNA interference (RNAi) can stop LC production but the diversity of LC variable region sequences poses a challenge that targeting consensus sequences in the constant region (CR) of LC mRNA may overcome (Blood 2014;123:3440). We have developed siRNA pools designed to target the κ or λ LC CR mRNA in human plasma cells and impair LC production and secretion, and have shown that the pool targeting the λ LC CR can do so, and can also trigger a terminal unfolded protein response in clones producing intact Ig due to intracellular accumulation of unpaired heavy chains (ibid). Here we report the results of continued in vitro and in vivo testing of these pools in patient specimens and in a murine xenograft model. Methods Pools of siRNA for the κ or λ LC CR (si[IGLCκCR], si[IGLCλCR]) were custom produced with a non-target control (si[-]). They were introduced in vitro into human plasma cells by an optimized streptolysin O-based method (SLO) and in a NOD.SCID xenograft flank plasmacytoma model by in vivo electroporation as per Gene Therapy 2011;18:1150. In vitro we evaluated LC gene expression, production and secretion at 24 hours in human myeloma cell lines and CD138-selected specimens from patients with plasma cell neoplasms, using real-time PCR (qPCR) for LC mRNA, flow cytometry for intracellular LC mean fluorescence intensity (MFI) and ELISA (Bethyl Laboratories) for LC secretion in 24-hour suspension cultures (106 cells/ml). In vivo we inoculated each of the flanks of NOD.SCID mice with 107 human myeloma cells (ALMC-1 or ALMC-2). When plasmacytomas were 0.5cm3 we injected si[IGLCλCR] or si[-] one time to each flank plasmacytoma respectively, allowing each mouse to serve as its own control. Two days later, the mice were sacrificed and the plasmacytomas excised for qPCR for λ LC mRNA and serum was obtained to measure human λ LC levels by ELISA. Results We have previously described results with siRNA targeting the λ LC CR in human cell lines that make λ LC (ALMC-1, ALMC-2, EJM, OPM2, MM.1S, and MM.1R) and in 16 AL λ patient specimens. We demonstrated significant decreases in LC mRNA, intracellular LC MFI, and λ LC secretion by cell lines (Blood 2014;123:3220); moreover, transcriptional profiling indicated minimal off-target effects (ibid; Supplement). We now report that in vitro secretion of λ LC by CD138-selected plasma cells from AL patients (n=3, newly diagnosed λ) treated with si[IGLCλCR] was reduced by 65% from a mean of 3.1 to 1.0µg/ml and that the residual λ LC mRNA was 49% of control. Similarly we treated κ LC secreting human myeloma cell lines with si[IGLCκCR] and si[-] (IM9, H929, JJN-3, and ARH77). By qPCR the residual κ LC mRNA was 13%, by flow cytometry the MFI was reduced by a median of 67.3% (22.5-90.8), and by ELISA mean κ LC secretion was reduced from 3.7 to 0.8µg/ml (P = 0.055, paired t test). We treated CD138-selected κ patient samples (AL 3, LCDD 1, MM 6) in the same way. By qPCR the residual κ LC mRNA was 57% control, by flow cytometry the MFI was reduced by a median of 37.5% (14-69.8), and by ELISA secretion was reduced from 9.4 to 6.5µg/ml (P = 0.02, paired t test). In the murine dual-flank xenograft model employing λ secreting cells, by qPCR there was a reduction in λ LC mRNA with si[IGLCλCR] treatment in 13 of 16 mice (ALMC-1 11/114, ALMC-2 2/2). In these 14, the median λ LC expression was 66% of control (range, 17-97). In 6/13 the average reduction in λ LC expression was 59%. Of note, measurable levels of human λ LC were found in the blood of all mice at sacrifice. Conclusion With one pool of siRNA targeting the constant region of the κ or λ LC we can significantly reduce production and secretion of LC by clonal human plasma cells, including patient cells, and also reduce the expression of LC in xenograft plasmacytomas in vivo. Two methods of siRNA delivery have been employed in this work thus far, SLO and in vivo electroporation, neither of which require endosomal escape. The specificity of the siRNA pools for plasma cell LC genes and the possible receptivity of plasma cells to RNAi are important positive aspects of this work. Further pre-clinical development of Ig LC CR RNAi employing lipid-based nanoparticle platforms is warranted in order to optimize cell-specific delivery, delivery efficiency and siRNA targeting. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 8582-8582
Author(s):  
Dharminder Chauhan ◽  
Arghya Ray ◽  
Christopher Brooks ◽  
Eric K. Rowinsky ◽  
Kenneth Carl Anderson

8582 Background: Multiple myeloma (MM) remains incurable despite novel therapies, highlighting the need for further identification of factors mediating disease progression and drug resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Our recent study utilized in vitro and in vivo MM xenograft models to show that plasmacytoid dendritic cells (pDCs) were significantly increased in MM BM and promote MM growth (Chauhan et al., Cancer Cell 2009, 16:309). Importantly, we found increased IL-3 levels upon pDC-MM interaction, which in turn, trigger MM cell growth and pDCs survival. IL-3R is highly expressed on pDCs. We utilized SL-401, a novel biologic conjugate that targets IL-3R, to examine whether abrogation of IL-3–IL-3R signaling axis affects pDC-MM interaction and its tumor promoting sequelae. Methods: MM cell lines, patient MM cells, and pDCs from healthy donors or MM patients were utilized to study the anti-MM activity of SL-401. MM cells and pDCs were cultured alone or together in the presence or absence of SL-401, followed by analysis of cell growth or viability. Results: SL-401 significantly decreased the viability of pDCs at low concentrations (IC50: 0.83 ng/ml; P < 0.005, n = 3). SL-401 also decreased the viability of MM cells at clinically achievable doses. Co-culture of pDCs with MM cells induced growth of MM cell lines; and importantly, low doses (0.8 ng/ml) of SL-401 blocked MM cell growth-promoting activity of pDCs. MM patient-derived pDCs induced growth of MM cell lines and primary MM cells as well; conversely, SL-401 inhibited pDC-triggered MM cell growth (P < 0.005, n= 5). Tumor cells from 3 of the 5 patients were from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. In agreement with these results, SL-401 blocked pDC-induced growth of dexamethasone-resistant MM cell lines. Conclusions: Our study therefore provides the basis for directly targeting pDCs or blocking the pDC-MM interaction, as well as targeting MM, in novel therapeutic strategies with SL-401 to enhance MM cytotoxicity, overcome drug-resistance, and improve patient outcome.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e18108-e18108
Author(s):  
Michael Driscoll Toboni ◽  
Barbara Blachut ◽  
Mary M Mullen ◽  
Jo'an Tankou ◽  
Hollie M Noia ◽  
...  

e18108 Background: Evidence suggests DNA repair is a therapeutic target in endometrial cancer (EC). Given this, we determined whether combination therapy with AVB500, an AXL inhibitor, could improve response in a uterine serous cancer (USC) model. Methods: Two USC cell lines (ARK1 & ARK4) were treated with AVB500 (Aravive Biologics, Houston, TX) in combination with the poly ADP ribose polymerase (PARP) inhibitor, olaparib. Colony forming assays were assessed after 4 days of treatment with either AVB500 alone, olaparib alone or combination treatment (olaparib + AVB500); colonies were stained and absorbance was obtained to calculate relative cell viability using Graph Pad Prism. Baseline homologous recombination (HR) status was determined after radiating cells with 10Gy and identifying RAD51 foci by immunofluorescence (IF). Cell lines were considered to be HR proficient if over 30% of the cells expressed RAD51 ( > 5 foci per cell). IF was conducted using a Leica confocal microscope and foci were quantified using FociCounter. In vivo studies were performed using NOD-SCID mice injected with 1 x 107 ARK1 cells intraperitoneally followed by treatment q3 days for a 14 and 21 day treatment period. Treatment groups were vehicle control, AVB500 alone, olaparib alone and olaparib with AVB500. Results: The absorbance for olaparib + AVB500 was significantly less than the olaparib only group in two assays involving ARK1s (0.417nm vs 0.756nm, p = 0.001; 0.320nm vs 0.620nm, p = 0.008) as well as in ARK4s (0.186nm vs 0.641nm, p = 0.003). The HR assay indicated both cell lines were HR proficient. After baseline HR proficiency was established, the cell lines were pretreated with AVB500 prior to radiation. When compared to cells without treatment with AVB500, IF showed a decrease in RAD51 foci per cell in ARK1 (2.7 vs 7.3, p = 0.0003) and ARK4 (6.3 vs 13.0, p = 0.0054). The proportion of ARK1 cells expressing RAD51 decreased to 21%, indicating HR deficiency. Lastly, NOD-SCID mice receiving olaparib + AVB500 had less tumor weight than those treated with olaparib alone (0.008g vs 0.138g, p = 0.002) and AVB500 alone (0.008g vs 0.145g, p = 0.0006) in a 14 day and a 21 day treatment period (0.212g vs 0.586g, p = 0.027 and 0.212 vs 0.494g, p = 0.005, respectively). Conclusions: HR proficient USC cell lines treated in vitro and in vivo with the combination of AVB500 and olaparib demonstrate an improved response to olaparib or AVB500 alone with a greater decrease in tumor burden. AVB500 appears to induce HR deficiency. Additional therapeutic and mechanistic experiments are ongoing.


2004 ◽  
Vol 15 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Peter Hovstadius ◽  
Elin Lindhagen ◽  
Sadia Hassan ◽  
Kenneth Nilsson ◽  
Helena Jernberg-Wiklund ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document