Platelets and PMN as Well as RBC of Patients with Sickle Cell Anemia Exhibit Oxidative Stress Which Can Be Corrected by Antioxidants.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3575-3575
Author(s):  
Johnny Amer ◽  
Hussam Ghoti ◽  
Eliezer Rachmilewitz ◽  
Koren Ariel ◽  
Eitan Fibach

Abstract Sickle cell disease (SCD) is caused by an abnormal hemoglobin (HbS), which results mainly in sickling and hemolysis of RBC. However, the platelets and the polymorphonuclear neutrophils (PMN) are also involved in the pathophysiology of the disease. Similar to the findings in thalassemia, some patients develop thromboembolic phenomena with hypercoagulable state, which is due in part to platelet activation. In addition, a growing body of evidence suggests that WBC, particularly PMN, are abnormal; their number is elevated during painful crises and the severity of the disease increases with their number. Several aspects of the changes in the three blood lineages are thought to result from oxidative stress, which represents the imbalance between enhanced generation of reactive oxygen species (ROS) and a low cellular content of antioxidants such as reduced glutathione (GSH), the major intracellular scavenger of ROS. In SCD, oxidative stress results primarily from the premature precipitation of the unstable HbS and the accumulation of excess iron, a catalyst in the formation of ROS. Accumulation of ROS may result in hemolysis of RBC, activation of platelets and a respiratory burst of PMN. We developed flow cytometry techniques for measuring oxidative-state markers, ROS generation and GSH content, simultaneously in RBC, platelets and PMN. Peripheral blood samples obtained from 15 normal donors, 10 patients with SCD and 5 SCD/beta-thalassemia patients (two with the IVS2-1 mutation and 3 with the IVS1-6 mutation) were studied. Out of the 15 SCD patients, 5 were splenectomized, and all were treated with folic acid, except one who was treated with hydroxyurea. The blood was mixed with 3% gelatin, and following 30 min. incubation the upper layer, containing RBC, platelets and WBC, was collected. ROS and GSH were measured by FACS analysis following staining with 2′, 7′-dichlorofuoresceine (DCF) and mercury orange, respectively. Cells were gated on the basis of size and granularity to include platelets, RBC or PMN, exclusively. The cells in each gate were analyzed for green (DCF) or orange (mercury orange) fluorescence and the Mean Fluorescence Channel (MFC) was calculated. The results showed that ROS production increased by 10 to 30-fold in RBC, platelets and PMN from SCD patients compared with that of their normal counterparts. Concomitantly, the GSH content decreased by 20–50% in the SCD cells. It was possible to modulate the oxidative status of cells from both normal donors and SCD patients: Exposure of the cells to oxidants such as hydrogen peroxide (2 mM), hemin (0.1 mM) or iron (ferric ammonium citrate - 0.1 mM) increased the oxidative status in all cell types, while antioxidants such as N-acetyl cysteine, vitamin C (both at 1 mM) and vitamin E (0.2 mM) significantly decreased the oxidative stress. Our results indicate that similar to the findings in thalassemia, in SCD, RBC and platelets, as well as PMN, are in a state of oxidative stress, which could in part account for the clinical manifestations. Addition of antioxidants, which reduced the ROS and enhanced the GSH content of the cells, could protect against oxidative damage. The flow cytometry techniques we developed may prove useful for studying the effects of various antioxidants and for monitoring the patient’s oxidative status during therapy thereby providing an objective, quantitative evaluation of their efficacy.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3643-3643
Author(s):  
Eitan Fibach ◽  
Johnny Amer ◽  
Eliezer Rachmilewitz ◽  
Ella Guy ◽  
Stefano Rivella

Abstract Oxidative stress is a prominent contributor to the premature destruction of RBC as well as anemia in thalassemia and sickle cell anemia. The oxidative status within RBC is maintained by the balance between oxidative systems, such as Reactive Oxygen Species (ROS), and antioxidative systems, such as reduced glutathione (GSH). Using flow cytometric methods, we previously showed that RBC obtained from patients with thalassemia (Amer et al. Eur J Haematol70:84,2003; Cytometry60:73,2004) or sickle cell anemia (Amer et al. Blood, 104:972a,2004) exhibit oxidative stress. In the present study, we assessed the extent of RBC oxidative stress and the effects of antioxidant administration, using the thalassemic mouse model Th3/+. This model closely mimics the phenotype observed in patients affected by beta-thalassemia intermedia, such as low hemoglobin levels (7 to 9 gr/dL), splenomegaly and iron overload. In addition, the mature RBC have a shorter life-span and are characterized by anisocytosis, poikilocytosis and hypochromatism. RBC were derived from normal and thalassemic mice before and 4 hours after i.p. injection of the antioxidants N-acetyl cysteine (NAC), vitamin C (Vit. C) or tocotrinol - a mixture of vitamin E derivatives, at a dose of 150 mg/kg. Intracellular ROS was determined in dichlorofluorescin diacetate-stained RBC following stimulation with 2 mM H2O2; GSH content was assessed in RBC stained with mercury orange. Cells were analyzed by flow cytometry: RBC were gated according to size (forward light scatter) and granularity (side light scatter), their fluorescence was measured and the Mean Fluorescence Channel (MFC) was calculated. Fig. 1 shows the average MFC of ROS and GSH of normal and thalassemic mice treated or not treated with anti-oxidants (N=6 in each group). The results show a significantly higher (2.6-fold) production of ROS and lower (three-fold) levels of GSH in RBC from the thalassemic mice versus those in RBC from normal mice. Administration of antioxidants decreased the ROS of normal and thalassemic RBC by 1.4-fold and 2.6-fold, respectively, whereas GSH levels were significantly increased both in the normal (2.7 fold) and in the thalassemic (9.4-fold) RBC. The results show that the RBC of thalassemic mice are under oxidative stress that could be ameliorated by a short antioxidant treatment. Hence, this mouse model recapitulates the oxidative stress found in thalassemic patients and can serve as a model for studying the effects of antioxidant therapy. The flow cytometry methodology used is helpful in following up the results of the treatment and in evaluating its efficacy in reducing oxidative stress. Figure Figure


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3191-3191
Author(s):  
Johnny Amer ◽  
Zipora Etzion ◽  
Robert M. Bookchin ◽  
Eitan Fibach

Abstract Normal high-K+, low-Na+ RBCs, suspended in low-K+ media and permeabilized to K+ with valinomycin, become dehydrated from net loss of KCl and water. A very small fraction of light, normal RBC and larger fractions of light, sickle cell anemia (SCA) and beta-thalassemia RBC were found to be “valinomycin-resistant” (val-res) due to their Na+/K+ gradient dissipation (PNAS2000;97: 8050; BLOOD2000;96:24b). In thalassemia and SCA, although the primary lesions involve the globin genes, the major damage to the RBC membranes is mediated by oxidative stress. We previously showed (Cytometry2004;60:73) that thalassemic RBC have higher reactive oxygen species (ROS) and lower reduced glutathione (GSH) levels than normal RBC before or after in vitro oxidant stress (treatment with hydrogen peroxide). Here, we examined the oxidative status of val-res RBC from normal and beta-thalassemia major blood. RBC suspended in a plasma-like buffer containing 15 mM KCl and 10 mM valinomycin for 45 min were then layered on arabinogalactone (Larex) with density δ=1.091, and spun at 15,000 g for 30 min. Val-res cells were identified as the low density (δ<1.091 g/ml) RBCs recovered from the interphase layer. The percent val-res RBC in beta-thalassemic samples (n = 10), was 84-fold higher (4.2 ± 0.4% (mean ± SD), range 2.5 to 6.0%) than in normal samples (0.05 ± 0.06%, range 0.02 to 0.1%) (n =10). To determine the oxidative status of the RBC, the cells were washed with PBS and stained for intracellular contents of ROS and GSH, using 2′-7′-dichlorofluoresein and Mercury Orange, respectively. RBC were analyzed by flow cytometry, using gating based on size and granularity. The Mean Fluorescence Channel (MFC) for each fluorochrome was computed. The results showed that valinomycin treatment, per se, did not affect ROS and GSH contents: MFC of the stained un-fractionated RBC was similar before and after treatment with valinomycin, indicating that large changes in MCHC had little or no effect on these measurements. In addition, the unfractionated RBC had ROS and GSH values comparable to those of the high density (val-sensitive) RBC which were recovered from the pellet of valinomycin-treated RBC following Larex fractionation. Measurements on six normal and six beta-thalassemic blood samples indicated that in each case val-res RBC had higher ROS (3.5-10 fold) and lower GSH (2.5-8 fold) levels than the unfractionated RBC or the val-sensitive RBC of the same sample. Compared with val-res cells from normal blood, thalassemic val-res RBC had higher capacity to produce ROS (1.7-fold) and had a lower GSH level (1.5-fold) compared with normal val-res RBC. These results confirm that, as with SCA, beta-thalassemia blood contains a higher percent of val-res RBC than normal blood. They show, further, that (i) both normal and thalassemic val-res RBC have higher oxidative status than other cells (val-sensitive) in the same sample; and that (ii) thalassemic val-res RBC have higher oxidative status than val-res RBC in normal blood. The present results are consistent with the possibility that oxidative stress may contribute to the generation of val-res RBCs, but do not establish a cause-effect relationship. Further studies will be needed to elucidate the origin and significance of these cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1766-1766
Author(s):  
Eitan Fibach ◽  
Johnny Amer ◽  
Ada Goldfarb ◽  
Eliezer Rachmilewitz

Abstract In sickle cell anemia (SCD) and thalassemia, although the basic lesions are mutations in the globin genes, the pathophysiology involves oxidative stress-mediated cell damage in the bone marrow (ineffective erythropoiesis due to apoptosis of early erythroid precursors) and in the peripheral blood (chronic hemolysis of mature RBC). In addition, some patients develop thromboembolic complications and recurrent bacterial infections, the etiology of which is related at least in part, to documented oxidative stress in platelets and neutrophils (PMN), respectively. To study the presence and the role of oxidative stress in thalassemia and SCD, we adapted flow cytometry techniques for measuring the generation of Reactive Oxygen Species (ROS), the content of reduced glutathione (GSH), membrane lipid peroxidation and externalization of phosphatidylserine (PS) moieties in RBC, platelets and PMN. Cells derived from the peripheral blood of patients with beta-thalassemia major, intermedia or SCD showed increased oxidative status (increased ROS, lipid peroxidation and PS externalization, and decreased GSH) compared with their normal counterparts. Incubating fresh blood samples from patients with thalassemia major and thalassemia intermedia with 10 mg/ml FPP for 16 hours at 37oC reduced the oxidative status of RBC as well as platelets and PMN. Experiments carried out in normal and thalassemic mice (Th3/+, a mouse model of human beta-thalassemia intermedia demonstrated that mice treated for one week with 10 mg/ml FPP (dissolved in the drinking water) had reduced oxidative stress compared to control mice. The in-vivo effect of FPP was tested on 9 patients with beta-thalassemia (6 - major and 3 - intermedia) treated with 3 gr FPP per os three times a day for 12–15 weeks. Following the treatment, the ROS in RBC, platelets and PMN decreased and the GSH increased in all patients (see table). Six of these patients responded by a modest increase in RBC, reticulocytes and hemoglobin levels. These results suggest that FPP may have an important clinical efficacy as an antioxidant in thalassemia and sickle cell anemia. The in vivo effect of FPP treatment of beta-thalassemia patients Baseline After treatment n Mean ± SE Mean ± SE P-value* * Paired samples t-test RBC 9 324.07 ± 29.19 209.55 ± 23.65 0.001 ROS Platelets 9 223.73 ± 26.49 109.11 ± 8.71 0.001 PMN 9 222.72 ± 46.42 117.61 ± 8.98 0.045 RBC 9 55.37 ± 5.37 94.88 ± 3.71 0.001 GSH Platelets 9 59.41 ± 4.98 97.55 ± 5.26 <0.0001 PMN 9 58.29 ± 5.35 90.06 ± 5.87 0.005


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1049-1049
Author(s):  
Eitan Fibach ◽  
Orly Zelig ◽  
Johnny Amer

Abstract Paroxysmal Nocturnal Hemoglobinuria (PNH) is an acquired stem cell disorder characterized by the unique triad of intravascular hemolysis, bone marrow failure and thrombosis. Complement-mediated hemolysis in PNH is explained by a deficiency in glycosylphosphotidylinositol (GPI)-anchored proteins, CD55 and CD59 on the RBC surface. Using flow cytometry for simultaneous measurement of oxidative-state markers in RBC and platelets, we studied blood samples obtained from normal donors and PNH patients. Reactive oxygen species (ROS), reduced glutathione (GSH), membrane lipid peroxidation and phosphatidylserine (PS) exposure were measured by staining with dichlorofuorescein, mercury orange, fluor-DHPE and Annexin V, respectively, followed by gating based on size and granularity. The results of blood samples obtained from normal donors (N=25) and PNH patients (N=11) indicated that the RBC from the patients had higher levels of ROS (1.4-fold) and lipid peroxides (3.5-fold) and lower GSH levels (two-fold) than those of normal RBC. Similar results were obtained with platelets from the same samples, indicating that both cell types are in a state of oxidative stress. Within each cell type, cells with the PNH immunophenotype (CD55− CD59−) had higher ROS levels and PS exposure than cells with the normal (CD55+CD59+) phenotype. These results support the direct relationship between the PNH phenotype and intracellular oxidative stress. Oxidants, such as hydrogen peroxide, phenylhydrazine, hemin, ferric ammonium citrate, increased the oxidative status of the cells and caused concentration-dependent RBC lysis and platelet activation. Complement-containing plasma had a similar effect. The RBC lysis and platelet activation were preceded by a burst of ROS and were more prominent in cells with the PNH phenotype. Incubation of PNH-cells with antioxidants such as N-acetyl cysteine, vitamin C and tocotrinol, prevented the complement-mediated lysis. We previously reported that cellular oxidative stress, prevalent in conditions such as thalassemia, may be associated with RBC hemolysis, platelet activation and a decreased PMN antibacterial potential. Oxidative stress in RBC, platelets and neutrophils in PNH could in part account for clinical manifestations such as hemolysis, a hypercoagulable state and recurrent bacterial infections. Our present results, indicating that incubation with antioxidants ameliorates such stress and its adverse consequences, suggest the possibility of using antioxidants for treatment of PNH and similar conditions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3765-3765
Author(s):  
Johnny Amer ◽  
Eitan Fibach

Abstract Thromboembolic complications, possibly involving chronic platelet activation, are an important cause of morbidity and mortality in beta-thalassemia. Oxidative stress, with the generation of reactive oxygen species (ROS), has been suspected to play a role in the pathophysiology of thalassemia and cardiovascular disorders. Previous investigations demonstrated that ROS profoundly affect platelet function and promote platelet activation. Other studies have shown that platelets themselves produce ROS upon activation. In the present study, we adapted flow cytometric techniques to measure oxidative-state markers, ROS generation and reduced glutathione (GSH), using 2′-7′-dichlorofluorescin diacetate and mercury orange, respectively, in platelets. GSH is the major intracellular antioxidant - an important scavenger of ROS. To exclude non-platelets from analysis, a two-parameter (side light scatter and forward light scatter) gate was set. The identity of the gated cells was verified by immunofluorescence staining for CD41 - a platelet-specific antigen. Using these techniques, the average Mean Fluorescence Channel (MFC) values of platelets from 46 normal donors and 22 beta-thalassemic donors were 176 ± 99 vs. 314 ± 81, respectively, for ROS and 319 ± 87 vs. 113 ± 47, respectively, for GSH. These results show that thalassemic platelets contain higher ROS and lower GSH levels than do normal platelets, indicating a state of oxidative stress. The relationship between platelet activation and oxidative status was determined by treating platelets with thrombin (0.1 U/ml), calcium ionophore (5 μM) or phorbol myristate acetate (400 ng/ml). All these treatments caused platelet activation as well as ROS generation; thalassemic platelets were more responsive than platelets from normal controls. In the absence of any known inherent abnormality in thalassemic platelets, the increased oxidative status was attributable to continuous exposure to oxidative insults from extra-platelet sources. Indeed, further investigation indicated that the oxidative status of normal platelets was increased by thalassemic plasma and was inhibited by the iron-chelator Desferoxamin. Iron and hemin, whose levels are increased in thalassemic plasma, stimulated the platelets’ oxidative stress. This was also affected by RBC: it was higher in normal platelets incubated with thalassemic RBC than when incubated with normal RBC. Normal RBC stimulated with hydrogen peroxide, a treatment which results in an elevated oxidative status, increased platelet ROS to a greater extent (3.3-fold) than did unstimulated RBC. These results suggest that thalassemic RBC, having higher than normal ROS, mediate oxidative stress in platelets directly, probably by contact or close proximity. Platelet oxidative stress was ameliorated by antioxidants such as N-acetyl-L-cysteine and vitamin C. Treatment with these agents of oxidant-stimulated platelets reduced ROS and enhanced the GSH level. The present results indicate that in thalassemia, platelets are in a state of oxidative stress, causing their chronic activation and possibly thromboembolic consequences. This situation may also prevail in other RBC anomalies, such as sickle cell anemia, Polycythemia Vera and Paroxysmal Nocturnal Hemoglobinuria, which are also associated with thromboembolic phenomena. Our findings raise the possibility of using antioxidants in addition to antithrombotic drugs as prophylactic treatment in these diseases.


2020 ◽  
Vol 13 (1) ◽  
pp. e2021010
Author(s):  
Salam Alkindi ◽  
Shoaib Al Zadjali ◽  
Mohamed Al Rawahi ◽  
Hamoud Al Haddabi ◽  
Shahina Daar ◽  
...  

Abstract Hemoglobin La Desirade (Hb La Desirade) is an unstable hemoglobin variant characterized by amino acid Alanine (Ala) replacing Valine (Val) at position 129 (H7) in the beta chain. Hb La Desirade exhibits a decreased oxygen affinity and normal heme-heme interaction. Interestingly, on analysis by standard electrophoresis, it migrates in the same region as normal HbA, and HbA actually represents a combination of HbA and Hb La Desirade together. This variant was reported as compound heterozygous with other Hemoglobin variants such as HbS, HbC or beta thalassemia, and more recently with Southeast Asian ovalocytosis and Hb Louisville with varying clinical manifestations.  Herein, we describe the clinical and laboratory findings in a number of Omani Arab families who presented to our service for various reasons, presenting with Hemoglobin La Desirade with sickle gene and alpha thalassemia. Our patients with Hb La Desirade trait, were clinically asymptomatic with no evidence of anemia. However when it is associated with other abnormal hemoglobin variants such as HbS, leading to sickle/La Desirade compound heterozygosity, there was mild anemia with significant degree of hypochromia and microcytosis. The most striking feature was that the levels of HbS and HbA were almost equal on HPLC, and these cases could be misdiagnosed as sickle cell trait (SCT). However, the levels of Hb S in these compound heterozygotes (40.4-45.9) were higher than normally seen for the diagnosis of SCT in this population.  


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3599-3599
Author(s):  
Ashutosh Lal ◽  
Jung H. Suh ◽  
Bruce N. Ames

Abstract Antioxidant supplementation could reduce organ damage and premature death in patients with iron overload. We evaluated the improvement in iron-induced oxidative stress with α-Lipoic acid (LA), a multifunctional thiol antioxidant and inducer of phase II enzymes, and compared it with benzylhydroxylamine (BH), a reducing agent that protects against free radicals. Human fibroblasts (IMR-90) were grown in regular cell culture medium or with ferric ammonium citrate (FAC). The intracellular iron content was measured by inductively-coupled plasma spectrometry (ICP). Either LA or BH was added on day 2, and cells grown to confluence. Oxidative stress was assessed by dichlorodihydrofluorescein diacetate fluorescence (DCF-fl). GSH:GSSG was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total intracellular iron content (mean±SEM, ng per 5x10^6 cells) increased from 66.95±6.51 in control cells to 262.26±4.69 after exposure to 25 μM FAC, and 556.26±21.15 after exposure to 125 μM FAC. The increase in iron-content of the IMR-90 fibroblasts caused significant rise in oxidant appearance at the highest concentration, as evidenced by 27.8±2.6% increase in steady-state DCF-fl compared with control cells (p &lt;.001). Addition of increasing concentrations of LA attenuated iron-mediated rise in DCF-fl in dose dependent manner. LA at concentrations above 25 μM completely abolished the iron-dependent rise in DCF-fl (91.9±2.3% for FAC+LA, p &lt;.001). BH treated cells also exhibited a dose-dependent decrease in DCF-fl, but a much higher concentration (&gt;200 μM) was needed for complete attenuation of iron-induced rise in DCF-fl (108.3±3.4%, p &lt;.001). These results suggest that LA is more effective than BH in ameliorating iron-mediated increase in oxidative stress. To further understand the basis for the efficacy of LA, intracellular GSH and GSSG were measured. Results show that LA improved the total GSH levels and its redox state in a dose dependent manner. LA and BH attenuated iron-mediated oxidant production, with LA exhibiting greater efficacy. This effect may be due to potent ability of LA to improve intracellular GSH levels and redox state. Our results suggest LA may be useful in reducing complications from iron overload.


2017 ◽  
Vol 43 (2) ◽  
pp. 431-444 ◽  
Author(s):  
Mohamed Jemaà ◽  
Myriam Fezai ◽  
Rosi Bissinger ◽  
Florian Lang

Suicidal erythrocyte death or eryptosis contributes to or even accounts for anemia in a wide variety of clinical conditions, such as iron deficiency, dehydration, hyperphosphatemia, vitamin D excess, chronic kidney disease (CKD), hemolytic-uremic syndrome, diabetes, hepatic failure, malignancy, arteriitis, sepsis, fever, malaria, sickle-cell disease, beta-thalassemia, Hb-C and G6PD-deficiency, Wilsons disease, as well as advanced age. Moreover, eryptosis is triggered by a myriad of xenobiotics and endogenous substances including cytotoxic drugs and uremic toxins. Eryptosis is characterized by cell membrane scrambling with phosphatidylserine exposure to the erythrocyte surface. Triggers of eryptosis include oxidative stress, hyperosmotic shock, and energy depletion. Signalling involved in the regulation of eryptosis includes Ca2+ entry, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, cyclin-dependent kinase 4, AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and ill-defined tyrosine kinases. Inhibitors of eryptosis may prevent anaemia in clinical conditions associated with enhanced eryptosis and stimulators of eryptosis may favourably influence the clinical course of malaria. Additional experimentation is required to uncover further clinical conditions with enhanced eryptosis, as well as further signalling pathways, further stimulators, and further inhibitors of eryptosis. Thus, a detailed description of the methods employed in the analysis of eryptosis may help those, who enter this exciting research area. The present synopsis describes the experimental procedures required for the analysis of phosphatidylserine exposure at the cell surface with annexin-V, cell volume with forward scatter, cytosolic Ca2+ activity ([Ca2+]i) with Fluo3, oxidative stress with 2′,7′-dichlorodihydrofuorescein diacetate (DCFDA), glutathione (GSH) with mercury orange 1(4-chloromercuryphenyl-azo-2-naphthol), lipid peroxidation with BODIPY 581/591 C11 fluorescence, and ceramide abundance with specific antibodies. The contribution of kinases and caspases is defined with the use of the respective inhibitors. It is hoped that the present detailed description of materials and methods required for the analysis of eryptosis encourages further scientists to enter this highly relevant research area.


Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Mutaz Dana ◽  
Eugenia Prus ◽  
Eitan Fibach

We studied the nature of enucleated RBCs containing DNA remnants, Howell-Jolly (HJ) RBCs and reticulocytes (retics), that are characteristically present in the circulation of thalassemic patients, especially after splenectomy. Using flow cytometry methodology, we measured oxidative status parameters of these cells in patients withβ-thalassemia. In each patient studied, these cells had higher content of reactive oxygen species and exposed phosphatidylserine compared with their DNA-free counterparts. These results suggest that oxidative stress in thalassemic developing erythroid precursors might, through DNA-breakage, generate HJ-retics and HJ-RBCs and that oxidative stress-induced externalization of phosphatidylserine is involved in the removal of these cells from the circulation by the spleen, a mechanism similar to that of the removal of senescent RBCs.


Sign in / Sign up

Export Citation Format

Share Document