The t(15;17)-Associated Fusion Protein PML/RAR Upregulates c-Kit Which Contributes to the Induction of the Leukemic Phenotype.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1608-1608
Author(s):  
Xiaomin Zheng ◽  
Tim Beissert ◽  
Brigitte Ruster ◽  
Dieter Hoelzer ◽  
Reinhard Henschler ◽  
...  

Abstract The pathogenesis of acute myeloid leukemia (AML) is strictly related to a block of terminal differentiation combined with an increased proliferation of hematopoietic progenitors (HP) in the bone marrow (BM). Furthermore an aberrant self-renewal of leukemic stem cells seems to be obligatory for the establishment of the leukemic clone in the BM. The block of differentiation is due to a deregulated function of differentiation-relevant transcription factors, whereas the proliferation is induced by aberrantly activated signaling pathways related to growth factor-dependent receptor kinases such as Flt3 or c-Kit (CD117). The aberrant self renewal can be attributed to specific pathways such as the Wnt-signaling, which play an important role also in the maintenance of the normal hematopoietic stem cell (HSC). The acute promyelocytic leukemia (APL) is characterized by the t(15;17) which leads to the expression of the PML/RAR fusion protein in the leukemic cells. PML/RAR mediates the APL phenotype given by a differentiation block at the promyelocytic level and an increased self renewal of the APL stem cells by the activation of the Wnt-signaling. The differentiation block, but not the aberrant self renewal, can be overcome by treatment with ATRA resulting ina high percentage of complete remissions. Nevertheless, if ATRA is used as a monotherapy a relapse is inevitable. APL blasts are frequently positive for constitutive activating Flt3 mutations and are constantly c-Kit-positive. Given the fact that c-Kit is a stem cell marker, the expression of c-Kit has to be considered aberrant and not related to the differentiation stage of the promyelocytes in APL. Therefore we investigated first the relationship between PML/RAR and the aberrant expression of c-Kit and then the role of aberrantly activated c-Kit for the pathogenesis of APL by studying its influence on the biology of early HSC. Here we report that i.) in contrast to the t(8;21)-associated AML-1/ETO, PML/RAR activated the c-Kit promotor in HP; ii.) the inhibition of the endogenous c-Kit kinase activity by imatinib or by AZD2171 abrogated the aberrant “replating efficiency“ of PML/RAR-positive HSC; iii.) activated c-Kit (c-Kit-D814H) accelerated cell cycle progression of Sca1+/lin- HSC; iv.) activated c-Kit blocked the differentiation of Sca1+/lin- HSC and increased their “replating efficiency“; v.) “colony forming unit-spleen“ (CFU-S) as well as “competitive repopulation“ assays“ (CRA) revealed that c-Kit-D814H strongly increased the “self renewal“-potential of Sca1+/lin- HSC; vi) c-Kit-D814H augmented the migration of Sca1+/lin- HSC into a 3D stromal spheroid model based on M2-10B4 cells, but did not have any influence on their adhesion (flow chamber on TNFalpha-stimulated HUVEC cells) as well as on their chemotaxis (SDF-1 gradient in transwell assays); vii.) c-Kit-D814H further increased the aberrant replating efficiency of PML/RAR- as well as of AML-1/ETO-positive HSC. Taken together our results strongly indicate not only that c-Kit importantly contributes to the leukemogenesis of APL, but that PML/RAR has a dual effect on c-Kit - the amplification of its expression at the promotor level as well as driving its expression in cells which normally do not have this proliferation stimulus. Thus it seems that there is a sort of positive feedback between PML/RAR and c-Kit which establishes c-Kit as a valuable therapeutic target for the treatment of APL-patients.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1231-1231
Author(s):  
Andrew Lewis ◽  
Chun Shik Park ◽  
Monica Puppi ◽  
H. Daniel Lacorazza

Acute myeloid leukemia (AML) develops from sequential mutations which transform hematopoietic stem and progenitor cells (HSPCs) in the bone marrow into leukemic stem cells (LSCs) which drive the progression of frank leukemia. Especially poor outcomes in elderly patients coupled with frequent relapse have led to a dismal 28.3% 5-year survival, warranting the need for innovative therapeutic approaches. Successful targeted therapy will selectively eliminate LSCs, which possess distinct characteristics enabling self-renewal and chemotherapeutic resistance, while sparing normal HSPCs. We theorized that KLF4, a zinc finger transcription factor, maintains key self-renewal pathways in LSCs due to its known importance in preserving stemness in embryonic and cancer stem cells. KLF4 alters gene transcription through its activating and repressing domains as well as remodeling chromatin through various epigenetic mechanisms, and work from our lab has demonstrated that loss of KLF4 in leukemia driven by the BCR-ABL fusion oncogene results in depletion of LSCs (Park et. al in revision) while enhancing self-renewal of hematopoietic stem cells. To address this hypothesis, mice featuring floxed Klf4 gene (Klf4fl/fl) were crossed with transgenic Vav-iCre mice to produce mice with hematopoietic-specific deletion of Klf4 (Klf4Δ/Δ). The murine t(9;11)(p21;q23) translocation (MLL-AF9 or MA9) transduction model has previously been shown to reflect clinical disease attributes, and represents the MLL-rearranged human patient subset with particularly poor prognosis and relatively higher levels of KLF4. Lin−Sca-1+c-Kit+ (LSK) cells from Klf4fl/fl and Klf4Δ/Δ mice were transduced with retrovirus containing MA9 and GFP reporter and transplanted into lethally-irradiated wild-type (WT) mice to generate trackable Klf4fl/fl and Klf4Δ/ΔAMLs. Recipients of both MA9Klf4fl/fl and Klf4Δ/Δ cells developed a rapid expansion of leukemic cells with myeloid immunophenotype by flow cytometric analysis (CD11b+Gr-1+; 68-91%), characterized as AML with latency of approximately 44.5 days. To quantify the defect induced by loss of KLF4 in the leukemic stem cell population, we performed secondary transplant of multiple limiting-dilution cell doses of primary transformed leukemic bone marrow from moribund mice. Klf4Δ/Δ AML mice exhibited significantly improved survival in all dose-cohorts, in some cases presenting no detectable leukemic cells at completion of monitoring (225 days). Limiting dilution analysis using the ELDA online software tool demonstrated a 7-fold reduction from 1 in 513 in Klf4fl/fl to 1 in 3836 in Klf4Δ/Δ AML bone marrow cells capable of leukemic initiation function (p<0.001), a hallmark of LSCs. Using the ERCre-tamoxifen inducible deletion system, Klf4 deletion 15 days post-transplant of AML significantly improved survival of Klf4Δ/Δ mice compared to controls, demonstrating KLF4 promotes maintenance of disease. Plating of leukemic bone marrow from Klf4Δ/Δ mice in methylcellulose medium revealed a reduction in serial colony-forming ability, further supporting a defect in self-renewal. To further determine the mechanisms connected to this reduction in functional LSCs, we isolated leukemic granulocyte-macrophage progenitors (L-GMPs), a population previously reported to be highly enriched for functional LSCs and representing a comparable cellular subset in human clinical samples, from Klf4fl/fl and Klf4Δ/Δ AMLs and conducted RNA-Seq to identify potential transcriptional targets of KLF4 with therapeutic promise. Taken together, these data suggest a novel function of the stemness transcription factor KLF4 in the preservation of leukemic stem cells in AML. Whereas prior models based on KLF4 expression in human cell lines and bulk AML samples have proposed a tumor suppressive role, our work suggests KLF4 supports expansion of leukemic cells with a stem cell phenotype and serial assays suggest an effect on LSC self-renewal. Further studies are being conducted to define the transcriptional and epigenetic mechanisms governing these findings. Understanding the molecular changes induced by loss of KLF4 presents promise for development of new therapies selectively targeting LSCs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4196-4196
Author(s):  
Yoshikane Kikushige ◽  
Junichiro Yuda ◽  
Takahiro Shima ◽  
Toshihiro Miyamoto ◽  
Koichi Akashi

Abstract Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. We have reported that the T-cell immunoglobulin mucin-3 (TIM-3) is expressed on LSCs in most types of AML but not on normal hematopoietic stem cells (HSCs) (Kikushige et al, Cell Stem Cell, 2010). We extended the analysis of TIM-3 expression into various types of human hematological malignancies, and found that human TIM-3 is expressed in the vast majority of CD34+CD38- LSCs of human myeloid malignancies including chronic myeloid leukemia, chronic myelomonocytic leukemia and myelodysplastic syndromes (MDS). Although CD34+CD38- normal bone marrow stem cells do not express TIM-3, TIM-3 is expressed in the CD34+CD38- population in MDS, and is further up-regulated with progression into leukemia. The average percentages of TIM-3+ cells in the CD34+CD38- population was 7.8% in RCMD (n=10), 19.2% in RAEB-1 (n=10), 84.0% in RAEB-2 (n=10) and 92.2% in overt AML (n=10). The close association of TIM-3 expression with transformation into AML led us to hypothesize that TIM-3 itself has a function in AML stem cell development. TIM-3 is a type 1 cell-surface glycoprotein and has a structure that includes an N-terminal immunoglobulin variable domain followed by a mucin domain, a transmembrane domain and a cytoplasmic tail. Tyrosine residues are clustered in the cytoplasmic tail, suggesting that TIM-3 can induce signal transduction in TIM-3+ AML cells. To understand the function of TIM-3, we investigated the interaction between TIM-3 and its ligand galectin-9 in AML LSCs. We found that AML patients showed significantly higher serum galectin-9 concentration than healthy individuals (healthy controls: 18.3+4.3 pg/ml, AML patients: 139.1+33.4 pg/ml, P<0.05). Unexpectedly, we found that leukemic cells expressed a high level of galectin-9 protein, as compared to other hematopoietic cells including T cells, B cells and monocytes. Using KASUMI-3 (TIM-3+ AML cell line) and primary AML samples, we confirmed that AML cells could secrete galectin-9 after TLR stimulation in vitro. Furthermore, microarray analysis demonstrated that TIM-3 stimulation by the physiological concentration of galectin-9 induced significant gene expression changes toward pro-survival axis including up-regulation of MCL-1, the important survival factor for HSCs and LSCs. These results collectively suggest that AML cells can produce and secrete galectin-9, and galectin-9 can bind and stimulate TIM-3-expressing AML cells including LSCs in an autocrine manner to support their survival or leukemia progression. Disclosures: Miyamoto: Kyushu University Hospital: Employment.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-20 ◽  
Author(s):  
Jun-Cheng Guo ◽  
Yi-Jun Yang ◽  
Jin-Fang Zheng ◽  
Jian-Quan Zhang ◽  
Min Guo ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter.


2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2420-2429 ◽  
Author(s):  
Christoph Schaniel ◽  
Dario Sirabella ◽  
Jiajing Qiu ◽  
Xiaohong Niu ◽  
Ihor R. Lemischka ◽  
...  

Abstract The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow and spleen, manifesting an impaired ability to maintain a self-renewing stem cell pool. Exhaustion of the stem cell pool was apparent only in the context of systemic stress by chemotherapy or transplantation of wild-type stem cells into irradiated Wif1 hosts. Paradoxically this is mediated, at least in part, by an autocrine induction of canonical Wnt signaling in stem cells on sequestration of Wnts in the environment. Additional signaling pathways are dysregulated in this model, primarily activated Sonic Hedgehog signaling in stem cells as a result of Wif1-induced osteoblastic expression of Sonic Hedgehog. We find that dysregulation of the stem cell niche by overexpression of an individual component impacts other unanticipated regulatory pathways in a combinatorial manner, ultimately disrupting niche mediated stem cell fate decisions.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2460-2460 ◽  
Author(s):  
Hairui Su ◽  
Szu-Mam Liu ◽  
Chiao-Wang Sun ◽  
Mark T. Bedford ◽  
Xinyang Zhao

Protein arginine methylation is a common type of post-translational modification. PRMT1, the major type I protein arginine methyltransferase, catalyzes the formation of asymmetric dimethyl-arginine and is implicated in various cellular processes, including hematopoiesis and tumorigenesis. We have shown that PRMT1 expression is naturally low in hematopoietic stem cells (HSCs). However, the functions of PRMT1 in hematopoietic stem cell self-renewal and differentiation are yet to be revealed. We have found a cyanine-based fluorescent probe (E84) that can specifically label PRMT1 protein. E84 staining dynamically captures intracellular PRMT1 level and was used to separate live HSC populations with differential PRMT1 expression by flow cytometry. Subsequent bone marrow transplantation of E84high or E84low Lin−Sca1+cKit+ (LSK) cells showed that E84low LSK cells were much more advantageous in reconstituting each blood cell lineages, compared to the E84high counterparts, meaning that the stem-ness of HSCs is negatively correlated with endogenous PRMT1. Therefore, inhibition of PRMT1 was expected to enhance the number and differentiation potential of functional HSCs. The treatment of a PRMT1-specific inhibitor (MS023) to mice resulted in an enlarged LT-HSC population in bone marrow and decreased frequency of granulocyte progenitor cells. In vitro colony formation assays further demonstrated that PRMT1 is required for GMP differentiation. Then we asked whether copious expression of PRMT1 promotes the differentiation of HSC. In this line, we made a LoxP-STOP-LoxP-PRMT1 transgenic mouse model, which induces PRMT1 overexpression upon the expression of Cre recombinase from tissue-specific promoters. We established Mx1-Cre-PRMT1 (Mx1-Tg) mice. Mx1-Tg mice were injected with poly(I:C) for PRMT1 induction and analyzed at four weeks after the last dose. We found that, as predicted, LT-HSC population was reduced and the Pre-GM population was raised. Accordingly, more CFU-Gs but less GEMMs were grown on CFU assays. We further utilized this animal model to compare the blood reconstitution capabilities of bone marrow cells from Mx1-Tg vs. WT mice in the same repopulating conditions. We performed competitive bone marrow transplantation by injecting Mx1-Tg/WT (CD45.2) bone marrow plus supporting cells (CD45.1) to irradiated mice, followed by 5 doses of poly(I:C) induction. Recipient mice were analyzed during a course of approximately 16 weeks. Mx1-Tg cells were outcompeted by WT cells in reconstituting every blood lineages. Taken together, we conclude that PRMT1 promotes HSC differentiation and accelerates HSC exhaustion during the stress caused by bone marrow irradiation. To understand the mechanism on PRMT1-mediated stress hematopoiesis, we also made Pf4-Cre PRMT1 transgenic mice. When PRMT1 is specifically expressed in MK cells, the number of LT-HSCs was also reduced, implying that PRMT1 affects the self-renewal of LT-HSCs via communication between MK cells and HSCs. Mechanistically, two PRMT1 substrates - RBM15 and DUSP4 - are critical for stem cell self-renewal. We further characterized how PRMT1 activates p38 kinase pathway via directly methylating DUSP4 thus induces ubiquitylation and degradation of DUSP4. The arginine methylation site on DUSP4 has been identified. Moreover, introducing methyl-R mutated DUSP4 back to PRMT1-overexpressing cells partially rescued the loss of HSC differentiation potential. This data adds a new link between arginine methylation and protein phosphorylation mediated by MAP kinases/phosphatases. In addition, we discovered that RBM15 controls alternative RNA splicing and RNA processing in a PRMT1-dosage dependent manner. In this report, we will further address how RBM15 target genes, such as enzymes involved in fatty acid metabolic pathways, affect HSC differentiation. In summary, we report that arginine methylation is a novel regulator for the HSC differentiation via controlling p38-regulated stress pathway and metabolic reprogramming. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 463-463 ◽  
Author(s):  
Ulrich Steidl ◽  
Frank Rosenbauer ◽  
Roel G.W Verhaak ◽  
Xuesong Gu ◽  
Hasan H. Otu ◽  
...  

Abstract Knockdown of the expression of the myeloid master regulator PU.1 leads to the development of an immature acute myeloid leukemia (AML) in mice. Recent reports suggest that functional inactivation of PU.1 might also play a role in human AML. However, the molecular mechanisms underlying PU.1-mediated malignant transformation are unknown. We examined leukemic PU.1 knockdown mice and found a 3-fold expansion of lin-, c-kit+, Sca1+ (KLS) hematopoietic stem cells (HSC) as compared to wildtype controls, which was not observed during the preleukemic phase. When we transplanted double-sorted leukemic KLS-HSC into NOD-SCID mice the recipients developed AML after 9–12 weeks indicating that the leukemic stem cells derive from the HSC compartment. This finding prompted us to examine the transcriptome of PU.1 knockdown preleukemic HSC to identify early transcriptional changes underlying their malignant transformation. After lineage-depletion and FACS sorting of preleukemic KLS-HSC we performed linear amplification of RNA by 2 cycles of RT-IVT and hybridized the cRNA with Affymetrix Mouse Genome 430 2.0 arrays. Principal component analysis as well as hierarchical cluster analysis clearly distinguished PU.1 knockdown and wildtype HSC. Several in-vitro targets of PU.1 such as c-Fes, BTK, TFEC, CSF2R, and Ebi3 were downregulated demonstrating that those are also affected in HSC in vivo. Differential expression of 16 genes was corroborated by qRT-PCR. Strikingly, several Jun family transcription factors including c-Jun and JunB were downregulated. Retroviral restoration of c-Jun expression in bone marrow cells of preleukemic mice rescued the PU.1-initiated myelomonocytic differentiation block in this early phase. To target cells in the leukemic stage we applied lentiviral vectors expressing c-Jun or JunB. While c-Jun did not affect leukemic proliferation, lentiviral restoration of JunB led to an 80% reduction of clonogenic growth and a loss of leukemic self-renewal capacity in serial replating assays. Expression analysis of 285 patients with AML confirmed the correlation between PU.1 and JunB downregulation and suggests its relevance in human disease. These results delineate a transcriptional pattern that precedes leukemic transformation in PU.1 knockdown HSC and demonstrate that downregulation of c-Jun and JunB contribute to the development of PU.1-induced AML by blocking differentiation (c-Jun) and increasing self-renewal (JunB). Therefore, examination of disturbed gene expression in preleukemic HSC can identify genes whose dysregulation is essential for leukemic stem cell function and are potential targets for therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document