PI3K Regulates Pleckstrin-2 in T-Cell Cytoskeletal Re-Organization.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3305-3305
Author(s):  
Tami L. Bach ◽  
Wesley T. Kerr ◽  
Charles S. Abrams

Abstract Pleckstrin-2, a paralog of pleckstrin-1, is composed of two Pleckstrin Homology (PH) domains and a Disheveled-Egl 10-Pleckstrin (DEP) domain. Several studies have shown that PH domains mediate binding of their host proteins to inositol phosphates and phospholipids, and thus regulate protein function. PH domains are found in many molecules involved in cellular signaling, cytoskeletal organization, membrane trafficking, and phospholipid modification. Proteins containing the DEP domain also regulate a broad range of cellular functions and evidence is emerging that several signaling proteins may rely on their DEP domains for membrane association. We speculated that the function of pleckstrin-2 is dependent upon its ability to bind to specific polyphosphatidylinositols. A lipid-binding assay revealed that pleckstrin-2 binds with greatest affinity to the products of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 5-kinase. The individual PH domains of pleckstrin-2 bind to the same products but with lower affinity, implying that both PH domains cooperate for maximal lipid affinity of the full-length protein. To examine the effect of pleckstrin-2 in human T-cells, Jurkat T-cells were transfected with GFP-tagged plasmids that direct the expression of pleckstrin-2 variants. Using confocal video microscopy we demonstrated that upon activation of the T-cell antigen receptor or the integrin α4β1, pleckstrin-2 rapidly moves from the cytoplasm to the cellular membrane and enhances membrane ruffling. Quantitation of cell footprint size revealed a two-fold increase in cell spreading. Furthermore, the membrane association of pleckstrin-2 and its resultant cell spreading were dependent on D3-phosphoinositides since these effects were disrupted by pharmacologic inhibition of PI3K with either wortmannin or LY294002. Consistent with this observation, a pleckstrin-2 variant containing point mutations in both of its PH domains failed to associate with the cell membrane and had no effect on spreading under the same conditions, suggesting that pleckstrin-2 membrane association occurs through a pathway dependent on the phospholipid-binding pocket of its PH domains. Although still membrane-bound, a pleckstin-2 variant containing point mutations in the second β-turn and second α-helical coil of the DEP domain demonstrated a decreased ability of pleckstrin-2 to induce membrane ruffles and lamellipodia, without decreasing filopodia formation. The cell footprint size of the DEP domain mutants was also decreased compared to that of wild type pleckstrin-2. These results suggest that the pleckstrin-2 DEP domain may function to promote actin-rich membrane extensions and ruffling. The localization of receptors, signaling intermediates, and cytoskeletal components at the T-cell/APC interface is thought to be a major determinant of efficient T-cell activation. Our data indicate that in T-lymphocytes, pleckstrin-2 uses modular motifs to bind to membrane-associated phosphatidylinositols, such as those generated by PI3K, to organize the actin cytoskeleton and to promote lymphocyte spreading.

2018 ◽  
Author(s):  
Christopher Bricogne ◽  
Michael Fine ◽  
Pedro M. Pereira ◽  
Julia Sung ◽  
Maha Tijani ◽  
...  

AbstractTMEM16F, an ion channel gated by high cytoplasmic Ca2+, is required for cell surface phosphatidylserine exposure during platelet aggregation and T cell activation. Here we demonstrate in Jurkat T cells and HEK293 cells that TMEM16F activation triggers large-scale surface membrane expansion in parallel with lipid scrambling. Following TMEM16F mediated scrambling and surface expansion, cells undergo extensive membrane shedding. The membrane compartment that expands the cell surface does not involve endoplasmic reticulum or acidified lysosomes. Surprisingly, T cells lacking TMEM16F expression not only fail to expand surface membrane, but instead rapidly internalize membrane via massive endocytosis (MEND). The T cell co-receptor PD-1 is selectively shed when TMEM16F triggers membrane expansion, while it is selectively internalized in the absence of TMEM16F. Its participation in this trafficking is determined by its single transmembrane domain. Thus, we establish a fundamental role for TMEM16F as a regulator of Ca2+-activated membrane trafficking.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3522-3522
Author(s):  
Yanfeng Wang ◽  
Lurong Lian ◽  
Charles S. Abrams

Abstract Pleckstrin-2, a widely expressed paralog of pleckstrin, is composed of two Pleckstrin Homology (PH) domains and Disheveled-Egl 10-Pleckstrin (DEP) domain. Although the activity of pleckstrin is regulated by its’ phosphorylation state, pleckstrin-2 is not a phospho-protein suggesting that it possesses a different mechanism of regulation. Previous reports have shown that many PH domains mediate protein binding to inositol phosphates and phospholipids, thus regulating protein function. Therefore, we speculated that localized production of specific polyphosphatidylinositols might bind, and activate, pleckstrin-2. Using a lipid-binding assay, we found that pleckstrin-2 bound with greatest affinity to the products of phosphatidylinositol 3-kinase and phosphatidylinositol 5-kinase. The individual PH domains of pleckstrin-2 bound the same products but with lower affinity, implying that both PH domains cooperate for maximal lipid affinity of the full-length protein. GFP-tagged pleckstrin-2 had a cytoplasmic distribution in non-adherent Jurkat cells, but through a pathway dependent on the phospholipid-binding pocket of its PH domains, rapidly moved to the cell membrane following adhesion to immobilized fibronectin. Once bound to the cell membrane, pleckstrin-2 enhanced Jurkat cell spreading 2-fold and increased membrane ruffling. The membrane association of pleckstrin-2, and its resultant cell spreading, were dependent on D3-phosphoinositides since these effects were disrupted by pharmacologic inhibition of PI3K with either wortmannin or LY294002. To investigate the role of this protein within platelets, we generated mice containing a null mutation within the pleckstrin-2 gene. Pleckstrin-2 null mice were born at the expected frequency, and had no overt spontaneous hemorrhagic events. Mice lacking pleckstrin-2 had normal platelet counts and morphologic appearance of their megakaryocytes. Following stimulation of the PAR-4 (thrombin) receptor, pleckstrin-2 knockout platelets displayed normal assembly of filamentous actin. However, pleckstrin-2 null platelets had impaired aggregation following stimulation by collagen or submaximal doses of the PAR-4 activating peptide. Since pleckstrin-2 deficient platelets aggregated normally in response to ADP, these results suggested that these platelets might have an impaired ability to secrete dense granules. Accordingly, we found that pleckstrin-2 null platelets had a defect in their ability to secrete ATP in response to stimulation by 5μM collagen or 200μM of the PAR-4 activating peptide. However, pleckstrin-2 knockout platelets did incorporate 14C-serotonin as efficiently as wild type platelets. This latter observation suggested that the secretion defect in pleckstrin-2 null platelets was not attributable to a deficiency of dense granules, but instead is due to a defect in exocytosis of granules. Together, these data suggest that the PH domains of pleckstrin-2 cooperatively bind PI3K generated phospholipids on the cell membrane, and help mediate platelet secretion.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1147-1155 ◽  
Author(s):  
Tami L. Bach ◽  
Wesley T. Kerr ◽  
Yanfeng Wang ◽  
Eve Marie Bauman ◽  
Purnima Kine ◽  
...  

Abstract Pleckstrin-2 is composed of 2 pleckstrin homology (PH) domains and a disheveled–Egl-10–pleckstrin (DEP) domain. A lipid-binding assay revealed that pleckstrin-2 binds with greatest affinity to D3 and D5 phosphoinositides. Pleckstrin-2 expressed in Jurkat T cells bound to the cellular membrane and enhanced actin-dependent spreading only after stimulation of the T-cell antigen receptor or the integrin α4β1. A pleckstrin-2 variant containing point mutations in both PH domains failed to associate with the Jurkat membrane and had no effect on spreading under the same conditions. Although still membrane bound, a pleckstrin-2 variant containing point mutations in the DEP domain demonstrated a decreased ability to induce membrane ruffles and spread. Pleckstrin-2 also colocalized with actin at the immune synapse and integrin clusters via its PH domains. Although pleckstrin-2 can bind to purified D3 and D5 phosphoinositides, the intracellular membrane association of pleckstrin-2 and cell spreading are dependent on D3 phosphoinositides, because these effects were disrupted by pharmacologic inhibition of phosphatidylinositol 3-kinase (PI3K). Our results indicate that pleckstrin-2 uses its modular domains to bind to membrane-associated phosphatidylinositols generated by PI3K, whereby it coordinates with the actin cytoskeleton in lymphocyte spreading and immune synapse formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josephine F. Reijneveld ◽  
Mira Holzheimer ◽  
David C. Young ◽  
Kattya Lopez ◽  
Sara Suliman ◽  
...  

AbstractThe cell wall of Mycobacterium tuberculosis is composed of diverse glycolipids which potentially interact with the human immune system. To overcome difficulties in obtaining pure compounds from bacterial extracts, we recently synthesized three forms of mycobacterial diacyltrehalose (DAT) that differ in their fatty acid composition, DAT1, DAT2, and DAT3. To study the potential recognition of DATs by human T cells, we treated the lipid-binding antigen presenting molecule CD1b with synthetic DATs and looked for T cells that bound the complex. DAT1- and DAT2-treated CD1b tetramers were recognized by T cells, but DAT3-treated CD1b tetramers were not. A T cell line derived using CD1b-DAT2 tetramers showed that there is no cross-reactivity between DATs in an IFN-γ release assay, suggesting that the chemical structure of the fatty acid at the 3-position determines recognition by T cells. In contrast with the lack of recognition of DAT3 by human T cells, DAT3, but not DAT1 or DAT2, activates Mincle. Thus, we show that the mycobacterial lipid DAT can be both an antigen for T cells and an agonist for the innate Mincle receptor, and that small chemical differences determine recognition by different parts of the immune system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anaïs Sadoun ◽  
Martine Biarnes-Pelicot ◽  
Laura Ghesquiere-Dierickx ◽  
Ambroise Wu ◽  
Olivier Théodoly ◽  
...  

AbstractWe designed a strategy, based on a careful examination of the activation capabilities of proteins and antibodies used as substrates for adhering T cells, coupled to protein microstamping to control at the same time the position, shape, spreading, mechanics and activation state of T cells. Once adhered on patterns, we examined the capacities of T cells to be activated with soluble anti CD3, in comparison to T cells adhered to a continuously decorated substrate with the same density of ligands. We show that, in our hand, adhering onto an anti CD45 antibody decorated surface was not affecting T cell calcium fluxes, even adhered on variable size micro-patterns. Aside, we analyzed the T cell mechanics, when spread on pattern or not, using Atomic Force Microscopy indentation. By expressing MEGF10 as a non immune adhesion receptor in T cells we measured the very same spreading area on PLL substrates and Young modulus than non modified cells, immobilized on anti CD45 antibodies, while retaining similar activation capabilities using soluble anti CD3 antibodies or through model APC contacts. We propose that our system is a way to test activation or anergy of T cells with defined adhesion and mechanical characteristics, and may allow to dissect fine details of these mechanisms since it allows to observe homogenized populations in standardized T cell activation assays.


2021 ◽  
Vol 6 (57) ◽  
pp. eabf7570
Author(s):  
Laura A. Vella ◽  
Josephine R. Giles ◽  
Amy E. Baxter ◽  
Derek A. Oldridge ◽  
Caroline Diorio ◽  
...  

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


Author(s):  
Yan Yan ◽  
Wei Zhao ◽  
Wei Liu ◽  
Yan Li ◽  
Xu Wang ◽  
...  

Abstract Background Chemokine (C–C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. Methods We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C–C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. Results From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. Conclusions Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.


Sign in / Sign up

Export Citation Format

Share Document