The “Trans-Amplicon” in Myeloma; a Mechanism of Clonal Selection Favoring Retention of Derivative Chromosomes Involved in Translocations.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4346-4346
Author(s):  
Azzah Al Masri ◽  
Renee Tschumper ◽  
Scott Van Wier ◽  
Tammy Price-Troska ◽  
Diane Jelinek ◽  
...  

Abstract Background: Multiple mechanisms exist for the positive selection of genes involved in oncogenesis such as gene amplification and transcriptional deregulation associated with chromosome translocations. Here we describe the case of a myeloma cell line that over time acquired extra copies of a derivative chromosome 4 involved in the t(4;14). These changes occurred over time both in vitro (in the generated JMW myeloma cell lines) as well as in vivo from extramedullary myeloma samples collected from the patient at various time points. In the case of the t(4;14)(p16;q32) 30% can be unbalanced translocations, always with loss of the der(14) and consequent loss of the FGFR3 gene expression, suggesting an indispensable role for MMSET located in the der(4). Results: We performed serial analysis on patient samples obtained at 9, 10 and 12 mos from diagnosis, along with a time course analysis of the cell line. At diagnosis the patient tumor cells displayed a complex clinical karyotype subsequently characterized by hypodiploidy, a t(4;14)(p16;q32), 13 monosomy and 17p13.1-. The remaining chromosome 13 and 17 were involved in an unbalanced reciprocal translocation. Notably, over time the cell line duplicated the total chromosome number becoming near-tetraploid. At the time of diagnosis, FISH analysis was performed on the patient sample revealing the translocation t(4;14)(p16.3:q32) in nearly all cells. The t(4;14) was also present in the stable cell line. It was noted that the patient cells exhibited more than one fusion signal per cell for the t(4;14) by FISH. As the disease progresses both in vitro and in vivo, the number of t(4;14)(p16.3:q32) fusion signals detected per cell increased with time suggesting a positive selection of the derivative chromosomes of the translocation. We further analyzed the t(4;14) in the JMW cells by FISH using MMSET/VH, and FGFR3/CH probe combinations. The full-length (MMSET/FGFR3+VH/CH) probe was used to detect the total number of fusions in the JMW cells. At the time of analysis (cell line passage #23), the majority of the cells (69%) had 6 fusion signals per cell while 23% had 5 fusions and 8% of the cells had 4 fusions. We found that most of the cells (88%) displayed 4 fusion signals detected using the MMSET/VH probes. In parallel studies using the FGFR3/CH probes, 61% of the cells had 2 fusion signals and 39% with 1 fusion signal. It is evident that the tumor cells display positive selection of the derivative chromosome der(4) of the t(4;14)(p16.3;q32), accompanied by an increased dosage of the target gene (MMSET) upregulated by the translocation. Conclusion: We present evidence for the amplification of the translocated chromosome in multiple myeloma, which we have termed “trans-amplicons”. Trans-amplicons may provide a selective growth and survival advantage to the myeloma tumor cells in an analogous manner to amplicons of DNA segments, but with much more powerful transcriptional consequences. Importantly, the evolution of genomic instability exemplified by the “trans-amplicons” in the patient cells was paralleled in vitro in the JMW cells.

Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4578-4587 ◽  
Author(s):  
Victoria J. Weston ◽  
Ceri E. Oldreive ◽  
Anna Skowronska ◽  
David G. Oscier ◽  
Guy Pratt ◽  
...  

Abstract The Ataxia Telangiectasia Mutated (ATM) gene is frequently inactivated in lymphoid malignancies such as chronic lymphocytic leukemia (CLL), T-prolymphocytic leukemia (T-PLL), and mantle cell lymphoma (MCL) and is associated with defective apoptosis in response to alkylating agents and purine analogues. ATM mutant cells exhibit impaired DNA double strand break repair. Poly (ADP-ribose) polymerase (PARP) inhibition that imposes the requirement for DNA double strand break repair should selectively sensitize ATM-deficient tumor cells to killing. We investigated in vitro sensitivity to the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) of 5 ATM mutant lymphoblastoid cell lines (LCL), an ATM mutant MCL cell line, an ATM knockdown PGA CLL cell line, and 9 ATM-deficient primary CLLs induced to cycle and observed differential killing compared with ATM wildtype counterparts. Pharmacologic inhibition of ATM and ATM knockdown confirmed the effect was ATM-dependent and mediated through mitotic catastrophe independently of apoptosis. A nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft model of an ATM mutant MCL cell line demonstrated significantly reduced tumor load and an increased survival of animals after olaparib treatment in vivo. Addition of olaparib sensitized ATM null tumor cells to DNA-damaging agents. We suggest that olaparib would be an appropriate agent for treating refractory ATM mutant lymphoid tumors.


2004 ◽  
Vol 72 (6) ◽  
pp. 3359-3365 ◽  
Author(s):  
Dea Garcia-Hermoso ◽  
Françoise Dromer ◽  
Guilhem Janbon

ABSTRACT Cryptococcus neoformans capsule structure modifications after prolonged in vitro growth or in vivo passaging have been reported previously. However, nothing is known about the dynamics of these modifications or about their environmental specificities. In this study, capsule structure modifications after mouse passaging and prolonged in vitro culturing were analyzed by flow cytometry using the glucuronoxylomannan-specific monoclonal antibody E1. The capsule structures of strains recovered after 0, 1, 8, and 35 days were compared by using the level of E1-specific epitope expression and its cell-to-cell heterogeneity within a given cell population. In vitro, according to these parameters, the diversity of the strains was higher on day 35 than it was initially, suggesting the absence of selection during in vitro culturing. In contrast, the diversity of the strains recovered from the brain tended to decrease over time, suggesting that selection of more adapted strains had occurred. The strains recovered on day 35 from the spleen and the lungs had different phenotypes than the strains isolated from the brain of the same mouse on the same day, thus strongly suggesting that there is organ specificity for C. neoformans strain selection. Fingerprinting of the strains recovered in vitro and in vivo over time confirmed that genotypes evolved very differently in vitro and in vivo, depending on the environment. Overall, our results suggest that organ-specific selection can occur during cryptococcosis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3720-3720
Author(s):  
Yasuhiro Nagate ◽  
Sachiko Ezoe ◽  
Jiro Fujita ◽  
Takafumi Yokota ◽  
Michiko Ichii ◽  
...  

Abstract Background: Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell neoplasm, linked to the human T-cell lymphotropic virus, HTLV-1. Patients with ATLL are often at the risk of opportunistic infections. Some studies suggested that ATLL cells originate from HTLV-1-infected regulatory T cells (Tregs). It could be possible that this immunocompromised state is caused by the function of ATLL cells having similar phenotypes with Tregs. In this study, we examined the expression of immunosuppressive molecules associated with Tregs in ATLL cells, and analyzed their roles in the function of ATLL cells. Methods: The protocol of this study was approved by the Investigational Review Board of Osaka University Hospital. Peripheral blood mononuclear cells (PBMCs) were collected from 10 asymptomatic HTLV-1 carriers and 22 ATLL patients (1 with smoldering type, 5 with chronic type, 2 with lymphoma type, and 14 with acute type) after getting informed consent. PBMCs from 3 ATLL patients were separated into CD4+ CD7- CADM1+ATLL cells and adjacent CD4+CD7+ CADM1-normal T cells using Fluorescence-activated Cell Sorter (FACS), and cells in each fraction were subjected to total RNA sequencing experiments. Based on the results, we examined the expression patterns of CD39 and CD73 in HTLV-1 carriers or each type of ATLL patients, and also analyzed the immune functions of these molecules in ATLL tumor cells. Results: We compared whole transcriptome of ATLL cells and normal CD4+cells. Bioinformatic analyses showed that many genes associated with immunosuppressive functions were elevated or downregulated in ATLL cells. Among these genes we focused on CD39, CD73 and CD26, because they have recently been reported to be strongly associated with the functions of Tregs. CD39, expressed on normal Tregs, and extrinsic CD73 have immunosuppressive potential by catalyzing adenosine from extracellular ATP, and CD26 has opposite potential by resolving adenosine, which have a strong anti-inflammatory function and plays major role in Treg-mediated immunosuppression. We found that all of 4 ATLL cell lines (MJ, MT1, MT2, MT4) expressed CD39, but not CD73 just as human effector Tregs. Tumor cells from 12 acute ATLL patients (86%) and 2 chronic ATLL patients (40%) expressed CD39, but the expressions of CD73 were various. Also in asymptomatic carriers, we could detect CD39 and/or CD73 positive in CD7- CADM1+ abnormal fraction of CD4+cells. On the other hand, CD26, normally expressed on human CD4+Th cells other than effector Tregs, was negative in ATLL cell lines and primary ATLL cells except for cells in abnormal fraction of one asymptomatic carrier. CD39 negative cases in chronic/smoldering type tended to show slower disease progression after the blood collection. Next, the role of CD39 and/or CD73 in ATLL cells was assessed in vitro and in vivo. As expected, CD39+ ATLL cells converted significantly more extracellular ATP than CD39- ATLL cells, and mass spectrometry analysis of AMP/adenosine concentration identified the AMPase activity of CD73+ ATLL cells. Furthermore, we established CD39 knockout (KO) cells from ATL cell-line MJ using CRISPR/Cas9 system, and performed in vitro suppression assays for assessment of immunosuppressive function. Although wild type MJ suppressed the growth of normal CD4+ and CD8+ T cells, KO MJ did little. Next, we analyzed the role of CD39 in the progression of tumor cells in vivo. We transplanted mouse T-cell lymphoma cell-line EG7-OVA artificially expressing CD39 or mock into mice subcutaneously. The coinjection of immunoadjuvant poly(I:C) significantly suppressed the tumor growth of mock cells, but the tumor sizes of CD39 expressing cells were almost the same as those of mock cells without poly(I:C) injection (Figure). Conclusion: In this study, we reported that most of ATLL cells in acute type patients express CD39+ CD26- just as Tregs, and that CD39- KO of ATLL cell line cancelled its immunosuppressive effects, and forcibly expressed CD39 on tumor cells rejected the anti-tumor immunity in vivo. From these data, we clarified the pathological mechanism of immunosuppressive function in ATLL cells, and also showed that CD39 expression could be used as a prognostic clue and be a new therapeutic target of ATLL. Disclosures Ezoe: TAIHO Phamaceutical Co., Ltd.: Research Funding. Yokota:Celgene: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer Inc.: Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; MSD K.K.: Research Funding. Ichii:Novartis Pharma K.K.: Speakers Bureau; Kowa Pharmaceutical Co.,LTD.: Speakers Bureau; Celgene K.K.: Speakers Bureau. Shibayama:Novartis Pharma K.K.: Honoraria, Research Funding; Celgene K.K.: Honoraria, Research Funding; Takeda Pharmaceutical Co.,LTD.: Honoraria, Research Funding; Fujimoto Pharmaceutical: Honoraria, Research Funding; Jansen Pharmaceutical K.K: Honoraria; Ono Pharmaceutical Co.,LTD: Honoraria, Research Funding; Mundipharma K.K.: Honoraria, Research Funding; Bristol-Meyer Squibb K.K: Honoraria, Research Funding. Oritani:Novartis Pharma: Speakers Bureau. Kanakura:Alexion Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5658-5658
Author(s):  
Mariana Bleker de Oliveira ◽  
Angela Isabel Eugenio ◽  
Veruska Lia Fook Alves ◽  
Daniela Zanatta ◽  
Mihoko Yamamoto ◽  
...  

Abstract Introduction: HSP70 has an integrative role in protein degradation due to the interaction with many pathways, such as ubiquitin proteasome (UPS), unfolded protein response (UPR) and autophagy. In multiple myeloma (MM) HSP70 is overexpressed and helps to prevent proteotoxic stress and cell death caused by overload of unfolded/misfolded proteins produced by tumor cells. Aims: To explore the role of HSP70 inhibition, isolated or in association with proteasome inhibitor, as therapeutic strategy for MM through in vitro and in vivo analyses. Methods: RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines were treated with HSP70 inhibitor (VER155008- 50 μM or 80μM) and proteasome inhibitor (bortezomib 100nM) for evaluation of apoptosis induction by flow cytometry using annexin V and propidium iodide. NOD.Cg-rkdcscid Il2rgtm1Wjl/SzJ immunodeficient mice were used for plasmacytoma xenograft model and treated with intravenous VER155008 (40mg/kg) and bortezomib (1mg/kg), immediately after transplant of RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines (N=3 for each group, including controls, bortezomib, VER155008, and combination of bortezomib and VER155008). Bioluminescence was measured in IVIS Kinetic (Capiler Life Science) once a day for seven days. Results: Bortezomib used as single treatment was able to induce apoptosis in RPMI8226-LUC-PURO cell line: the best result for in vitro studies RPMI8226-LUC-PURO was 65% of late apoptosis after treatment with bortezomib. On the other hand, U266-LUC-PURO cell line presented higher percentage of apoptosis when treated with bortezomib and VER155008 combination: U266-LUC-PURO cell line presented more than 60% of late apoptosis after VER155008 (80μM) combined with bortezomib, showing that inhibition of HSP70 could overcome U266-LUC-PURO resistance to bortezomib alone. Mice treated with VER155008, alone or in combination with bortezomib, showed complete inhibition of tumor growth (absence of bioluminescence) for both cell lines when compared with control group after one week of treatment (p<0.001, Two-way ANOVA). Therefore, in vivo studies using mice treated with VER155008, alone or in combination with bortezomib, prevented tumor development after one week of treatment, independent of the cell line used in the xenotransplant. Conclusion: Our study shows that HSP70 and proteasome inhibitors combination induced apoptosis in tumor cells in vivo for both MM cell lines. Since HSP70 is overexpressed in MM and connects several signaling pathways that maintain cell survival, such as UPS, UPR and autophagy, it can represent a key role to establish a new approach for the treatment of MM. Financial support: FAPESP 2010/17668-6 and CNPq (155272/2013-6). UNIFESP Ethics Committee (0219/12). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4553-4553
Author(s):  
Christopher S Seet ◽  
Chongbin He ◽  
Michael Bethune ◽  
Suwen Li ◽  
Brent Chick ◽  
...  

Abstract Engineered adoptive immunotherapies have shown unprecedented activity in the treatment of cancer and chronic viral infections. Current approaches rely on individualized ex vivo genetic modification of autologous T cells due to the risk of graft-versus-host disease from allogeneic T cells. These processes furthermore require activation and prolonged expansion of T cells, which may reduce in vivo efficacy and persistence. Direct in vitro differentiation of engineered T cells from hematopoietic stem and progenitor cells (HSPCs) may overcome these problems by permitting the suppression of endogenous TCR expression through allelic exclusion, and the de novo generation of naïve antigen-specific T cells. Existing methods of in vitro human T cell differentiation are subject to wide experimental variability and do not adequately support the positive selection of immature T cell precursors to mature T cells, and thus have not been suitable for clinical-scale production of engineered T cells. We report here the preclinical development of an artificial thymic organoid (ATO) system using off-the-shelf, serum-free components and a standardized stromal cell line that supports highly efficient in vitro differentiation and positive selection of native and TCR-engineered human T cells from cord blood (CB), bone marrow, and mobilized peripheral blood CD34+ HSPCs, and purified CD34+CD38- hematopoietic stem cells. ATOs closely recapitulated thymic T cell commitment and differentiation, resulting in greater than 80% CD7+CD5+ T-lineage cells and 50% CD4+CD8+ double positive (DP) T cell precursors by 4 weeks. By 6 weeks, 30-40% of ATO cells were CD3+TCRαβ+ T cells, of which 20-30% were mature CD8 single positive (SP) T cells. CD4SP cells were generated at a lower frequency and later in culture (2-14% of CD3+TCRαβ+ cells). ATO-derived T cells exhibited a naïve CD45RA+CD27+CCR7+CD62L+ phenotype, a diverse, thymic-like TCR repertoire, and robust TCR-dependent cytokine release and proliferation. Transduction of CB CD34+ HSPCs with an HLA-A*02:01-restricted αβ TCR specific for NY-ESO-1 resulted in a markedly increased cell output per ATO (>400-fold, relative to input HSPCs) and enhanced generation of naïve CD3+TCRαβ+CD8αβ+ conventional T cells, the majority of which were antigen-specific by tetramer staining. Positive selection of TCR-engineered naïve T cells could be further enhanced by expression of cognate HLA-A*02:01 in ATO stromal cells. ATO-derived TCR-engineered T cells exhibited a near complete lack of endogenous TCR Vβ expression, consistent with induction of allelic exclusion by the exogenous TCR during T cell development. ATO-derived engineered T cells underwent antigen-specific cytotoxic priming, polyfunctional cytokine release, and proliferation in response to artificial APCs; and exhibited antigen-specific killing of NY-ESO-1+ tumor cells in vitro and in vivo. ATOs thus present a highly efficient off-the-shelf platform for the generation of clinically relevant numbers of naïve and potentially non-alloreactive engineered T cells for adoptive immunotherapy. Clinical translation of the ATO system will be aided by its simplicity, scalability, use of serum-free components, and compatibility with irradiated stromal cells. In addition, genetic manipulation of stem or stromal cell components can be easily incorporated into the system to further enhance downstream T cell engraftment or function. Disclosures Seet: Kite Pharma: Patents & Royalties: Kite Pharma holds an exclusive license to certain intellectual property. Montel-Hagen:Kite Pharma: Patents & Royalties: Kite Pharma holds an exclusive license to certain intellectual property. Crooks:Kite Pharma: Patents & Royalties: Kite Pharma holds an exclusive license to certain intellectual property, Research Funding.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 246-246 ◽  
Author(s):  
Yang Yang ◽  
Joseph P. Ritchie ◽  
Telisha Swain ◽  
Annamaria Naggi ◽  
Giangiacomo Torri ◽  
...  

Abstract Heparanase (HPSE) is an enzyme that cleaves heparan sulfate (HS) chains of proteoglycans. Work by us and others has demonstrated that heparanase promotes the growth and metastasis of many types of tumors, including multiple myeloma (MM). Heparanase expression is rare in normal tissue but becomes evident in many human tumors, making it a viable target for cancer therapy. SST0001, a chemically modified heparin that is 100% N-acetylated and 25% glycol-split, dramatically inhibits heparanase activity. SST0001 lacks anticoagulant activity and thus can be administered at relatively high doses in vivo. We previously reported that delivery of SST0001 by Alzet osmotic pumps to SCID mice potently inhibited growth of subcutaneous tumors formed by CAG human myeloma cells. In the present studies, we further tested the effects of SST0001 against additional MM cell lines, using alternative routes of drug delivery in two different animal models. Ten days after subcutaneous injection of either MM.1S or RPMI 8226 tumor cells, mice were treated for 28 days using Alzet pumps delivering 30 mg/kg/day of SST0001. Results showed that, compared to PBS control, MM.1S and RPMI-8226 tumors in SST0001-treated mice were reduced by 50% and 51%, respectively. In a separate experiment, delivery of SST0001 by distant subcutaneous injection inhibited tumor growth by 77% in comparison to controls. In the SCID-hu model, in which CAG cells were implanted directly into human bones engrafted in SCID mice, SST0001 also significantly inhibited tumor growth as measured by human immunoglobulin kappa light chain in murine sera (1055 ± 295 ng/ml in PBS-treated mice vs 155 ± 295 ng/ml in SST0001- treated mice (P &lt;0.003)). These data demonstrate that SST0001 is a strong inhibitor of MM growth in vivo, even when tumors grow within the bone microenvironment and that the effect of SST0001 is not cell-line specific. We did not observe any adverse side effects in animals, even at doses as high as 120 mg/kg/day. To determine the mechanism of action of SST0001, we examined several pharmacodynamic parameters. Immunohistochemistry demonstrated that SST0001 treatment significantly reduced microvessel density of tumors as compared to controls (99% in CAG and 54% in RPMI-8226 tumors). In addition, SST0001 treatment blocked HGF expression (CAG, RPMI 8226 and MM.1S tumors) and inhibited VEGF expression in CAG tumors but not RPMI 8226 and MM.1S tumors. Moreover, a series of in vitro experiments, using the CAG MM cell line and human umbilical vein endothelial cells (HUVEC), were performed. Unlike its strong antitumor effect in vivo, SST0001 only slightly inhibited CAG cell proliferation, cell cycle and growth factor signaling in vitro, suggesting that the compound does not have a direct cytotoxic effect on tumor cells. Since blood vessels are an important element of the tumor microenvironment and angiogenic endothelium in tumors also expresses high levels of heparan sulfate proteoglycans and heparanase, we assessed the effects of SST0001 on HUVEC cells. In contrast with results on CAG MM cells, SST0001 treatment showed a strong inhibition on HUVEC proliferation (46%, MTT assay), dramatically blocked the phosphorylation of ERK stimulated by HS-binding growth factors (HGF, VEGF, HDGF and EGF), blocked the Akt pathway of HGF signaling in HUVECs and inhibited HUVEC tube formation, stimulated by HGF and VEGF. Based on these results, we conclude that SST0001 strongly inhibits the growth of myeloma tumors in vivo by targeting the tumor microenvironment, including a significant inhibition of tumor angiogenesis. Because of its unique target site in the tumor microenvironment, we predict that the combination of SST0001 with conventional tumor cell-targeting chemotherapeutic drugs will greatly improve patient outcome in MM.


2019 ◽  
Vol 26 (3) ◽  
pp. 1879-1892 ◽  
Author(s):  
Andrea Angelo Pierluigi Tripodi ◽  
Ivan Ranđelović ◽  
Beáta Biri-Kovács ◽  
Bálint Szeder ◽  
Gábor Mező ◽  
...  

AbstractAmong various homing devices, peptides containing the NGR tripeptide sequence represent a promising approach to selectively recognize CD13 receptor isoforms on the surface of tumor cells. They have been successfully used for the delivery of various chemotherapeutic drugs to tumor vessels. Here, we report on the murine plasma stability, in vitro and in vivo antitumor activity of our recently described bioconjugates containing daunorubicin as payload. Furthermore, CD13 expression of KS Kaposi’s Sarcoma cell line and HT-29 human colon carcinoma cell line was investigated. Flow cytometry studies confirm the fast cellular uptake resulting in the rapid delivery of the active metabolite Dau = Aoa-Gly-OH to tumor cells. The increased in vitro antitumor effect might be explained by the faster rearrangement from NGR to isoDGR in case of conjugate 2 (Dau = Aoa-GFLGK(c[NleNGRE]-GG)-NH2) in comparison with conjugate 1 (Dau = Aoa-GFLGK(c[KNGRE]-GG)-NH2). Nevertheless, results indicated that both conjugates showed significant effect on inhibition of proliferation in the primary tumor and also on blood vessel formation making them a potential candidate for targeting angiogenesis processes in tumors where CD13 and integrins are involved.


1980 ◽  
Vol 151 (2) ◽  
pp. 407-417 ◽  
Author(s):  
K Molnar-Kimber ◽  
J Sprent

Negative and positive selection procedures were used to establish whether the strong proliferative response of T cells to M1sa determinants is H-2 restricted. After negative selection of H-2 determinants in vivo, it was shown that T cells give high primary mixed lymphocyte reactions in vitro to M1sa determinants presented on H-2-incompatible stimulator cells. Other studies demonstrated that (a) negative selection of T cells to M1sa determinants on H-2-incompatible cells removed T cells with specificity for M1sa-bearing H-2-compatible cells, and (b) T cells primed in vitro or in vivo to M1sa determinants on H-2-compatible cells gave high secondary responses to M1sa determinants presented either on H-2-compatible or H-2-incompatible stimulator cells. From these data we conclude that T cells recognize M1sa determinants per se rather than an association of M1sa plus self or allo-H-2 determinants.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5728-5728
Author(s):  
Ferit Avcu ◽  
Mustafa Guner ◽  
Muammer Misirci ◽  
Pinar Elci ◽  
Mukerrem Safali ◽  
...  

Abstract Ankaferd Blood Stopper (ABS), a unique traditional herbal mixture, has been used topically to stop bleeding for centuries in Anatolia. As well as ABS has been used as a blood-stopping agent, it may also have a considerable therapeutic benefit, because of its anti-infective, anti-neoplastic, and wound healing properties. The aim of this study is to investigate the anti-neoplastic effects of the ABS on myeloma cell line, in vitro and on the plasmocytoma development in Balb/c mice by intraperitoneal injection of pristane, in vivo. We therefore sought to evaluate the efficacy of ABS on MM cells and to study the modulation of cell-death pathways. The cytotoxicity of ABS against the MM cell lines (RPMI-8226, and ARH-77) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-dye reduction assay. Responses to ABS by RPMI-8226 and ARH-77 cell lines were dose dependent but not time dependent. The IC50 values for RPMI 8226 and ARH 77 myeloma cell lines in 24h were 12,84 μL/mL and 13,86 μL/mL, respectively. Various cell-death characteristics such as caspase-3, Bcl-2, Bax were studied in response to ABS, but we couldn’t demonstrate specific features of apoptotic cell death, in vitro. We have also investigated the effect of the ABS on the pristane (2.6.10.14-tetramethylpentadecane)-induced plasmacytoma (PCT) development on six-week-old BALB/c mice. Three groups of mice were treated with intraperitoneal ABS (1 mg/kg, 0.5mg/kg, and 0,1mg/kg) per-week for eight weeks after pristane-induced PCT development. The study was stopped at twelfth week, the remaining mice were autopsied, and peritoneal tissues were examined histologically for PCTs. A database of different groups’ mice was analyzed using Kaplan-Meier and Cox regression statistics based on variables. Kaplan-Meier analysis revealed a difference of the survival of pristane-induced alone between the groups of pristane-induced plus ABS 1 mg/kg, 0.5mg/kg, and 0.1mg/kg. (Log-rank, p=0.016; p<0.001 and p<0.001; respectively). The present results indicate that direct anti-tumor effect of ABS on pristane-induced PCT and significantly increased survival. This hypothesis needs to now be further investigated in clinical trials. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-34
Author(s):  
Ying Du ◽  
Baoan Chen

Objective:Tumor targeting proteins were modified on the surface of platelets and chemotherapeutic drugs were encapsulated in platelets. Based on the fact that platelets can enter the tumor environment and interact with tumor cells, the functionalized platelets carrier has dual targeting effect to kill tumor cells.Methods:Aspirin was used to inhibit platelets aggregation and deformation in vitro to obtain complete platelets. Exogenous Tf (transferrin) was modified on platelets surface to target specific tumor cells (human multiple myeloma cell line RPMI8226). DOX (doxorubicin) was loaded into platelets. To verify the inhibitory effect of functional platelets vector on cell. To observe the distribution of targeted functional platelets vector and treatment effect on implant tumor in mice.Results:Aspirin can inhibit platelets aggregation and deformation during the preparation process effectively. Stable platelets can be modified by Tf and encapsulate DOX effectively. At the same time, the functional platelet vector can specifically aggregate in the implant tumor site in vivo and achieve effective anti-tumor effect.Conclusion:Platelets aggregation and deformation can be inhibited by aspirin effectively, which makes it a stable natural drug carrier. The antitumor effect can be achieved by the functional platelets. Keywords:platelets, encapsulation, doxorubicin, tumor Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document