Enhanced IL-6 Production by Bone Marrow Derived Dendritic Cells from Lupus-Prone Mice Inhibits CD4+CD25+ T Cell Mediated Suppression.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1732-1732
Author(s):  
Suigui Wan ◽  
Changqing Xia ◽  
Laurence Morel

Abstract The B6.Sle1.Sle2.Sle3 triple congenic mouse (B6.TC) is a model of lupus due to the co-expression of the three major NZM2410-derived susceptibility loci on a C57BL/6 background. B6.TC mice produce high titers of anti-nuclear nephrogenic autoantibodies and a highly penetrant glomerulonephritis. Previous studies have shown the Sle1 locus is associated with a reduced number of regulatory T cells (Treg), and that Sle3 results in intrinsic defects in myeloid cells that hyperactivate T cells. Here, we show that B6.TC dendritic cells (DCs) accumulate in lymphoid organs and present a defective maturation process, in which bone-marrow derived DCs, plasmacytoid and myeloid DCs express a significantly lower level of CD80, CD86 and class II MHC than B6 controls. B6.TC DCs also induce a higher level of proliferation in CD4+ T cells than B6 DCs, and B6.TC DCs block the suppressive activity of Treg. B6.TC DCs over-produce IL-6, which is necessary for the blockade of Treg activity, as shown by anti-IL-6 neutralizing antibody in the suppression assays. The over-production of IL-6 by DCs and the blockade of Treg activity maps to Sle1, which therefore not only confers a reduced number of Treg, but also blocks their ability to regulate autoreactive T cells. Taken together, these results provide a genetic and mechanistic evidence for systemic autoimmunity resulting from an impaired regulatory T cell compartment both in number and function, and for Sle1-expressing DCs playing a major role in the latter defect though their production of IL-6.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 960-964 ◽  
Author(s):  
JP Daley ◽  
MK Rozans ◽  
BR Smith ◽  
SJ Burakoff ◽  
JM Rappeport ◽  
...  

Abstract We have studied the effect of removing donor T cells by treatment with the monoclonal antibody Leu-1 and complement before marrow transplantation on the regeneration of functionally competent T lymphocytes in the blood at selected times after transplant. Using sensitive limiting-dilution methods that allow us to enumerate helper, cytotoxic, and proliferating T lymphocyte precursors, we report that regeneration of a functional T cell compartment is more severely impaired for the first 180 days after transplantation in those patients given T cell-depleted bone marrow than in recipients of untreated marrow. After this first 6 months, however, patients given T cell- depleted bone marrow had blood T cell frequencies comparable to those observed in patients given untreated marrow. Diminished frequencies of reactive T cells in recipients of depleted marrow could leave them more susceptible to infection or to the recurrence of neoplastic cells.


1987 ◽  
Vol 165 (5) ◽  
pp. 1403-1417 ◽  
Author(s):  
K Inaba ◽  
R M Steinman

T cell proliferation in response to many stimuli is known to occur in discrete clusters of dendritic cells (DC) and CD4+ helper lymphocytes. The role of lymphocyte function-associated antigen (LFA-1) and CD4 in the formation and function of these clusters has been evaluated in the mixed leukocyte reaction (MLR). By day 1 of the control MLR, most of the DC and responsive T cells are associated in discrete aggregates. Addition of anti-LFA-1 and CD4 reagents does not block DC-T aggregation but reduces the subsequent proliferative response by 80-90%. Anti-LFA-1 disassembles newly formed DC-T cell aggregates, whereas anti-CD4 inhibits blastogenesis without disrupting the cluster. Binding of DC to sensitized, antigen-specific CD4+ cells has been studied using lymphoblasts isolated at day 4 of the MLR. It has been shown previously that greater than 80% blasts rebind to DC in an antigen-specific fashion in rapid (10 min) binding assays. Antigen-dependent DC-T binding is blocked by anti-Ia but not by mAb to LFA-1 or CD4. However, the bound anti-CD4-coated lymphocytes are unable to release IL-2. Anti-LFA-1-coated T cells release IL-2 but are easily disaggregated after binding to DC. These findings lead to two conclusions. LFA-1 and CD4 are not involved in the initial steps whereby DC bind to T cells but exert an independent and subsequent role. LFA-1 acts to stabilize the DC-T cluster, while CD4 contributes to lymphocyte blastogenesis and IL-2 release. Because DC but not other presenting cells cluster unprimed lymphocytes, it seems likely that an antigen-independent mechanism distinct from LFA-1 and CD4 mediates aggregate formation at the onset of cell-mediated immunity.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2154-2154
Author(s):  
Jing-Xia Li ◽  
Jian-Ming Li ◽  
Edmund K Waller

Abstract Introduction: Pre-clinical murine experiments and clinical data from allogeneic bone marrow transplantation (allo-BMT) have shown that increased numbers of plasmacytoid dendritic cells (pDC) in the bone marrow graft results in better clinical outcomes with less severe graft-versus-host disease (GvHD) and improved survival. The mechanism by which donor pDC modulate GvHD is unknown. Knowing that vasoactive intestinal polypeptide (VIP) is an immunosuppressive peptide , we reasoned that VIP signaling might play a role in regulating T-cell activation and expansion, and the VIP pathway may be a potential therapeutic target for regulating GvHD in allo-BMT. We have tested the hypothesis that VIP synthesis by donor pDCs can modulate T cell alloreactivity. Methods: To explore the mechanisms by which pDC and VIP signaling regulate T cell activation in murine allo-BMT, we prepared B6-background donor cell grafts and transplanted them into lethally irradiated B10.BR recipients. In experiment 1, recipients were transplanted with grafts containing the combination of 5 x 103 VIP-GFP hematopoietic stem cells (HSC) and 3 x 106 VIP-wild type (VIP-WT) or VIP-knock out (VIP-KO) splenocytes. At day 7, splenocytes were isolated for flow cytometric analysis looking for GFP signal, which represents VIP-promotor activity. Experiment 2 used combinations of 5 x 103 VIP-WT HSC, 1 x 106 luciferase+ T cells, and 50 x 103 VIP-WT or VIP-KO pDC from B6 as donor grafts. Recipients were monitored for survival and GvHD based on fur texture, posture, activity, skin integrity and weight loss. T cell expansion was measured by bioluminescent imaging (BLI). Serum cytokines from bleeds at day 3 and day 8 post-transplant were analyzed using a Luminex 38 plex panel. Some recipients were euthanized on day 3 for intracellular cytokine analysis of splenic T cells. Results: In experiment 1, 7 days post-transplant, analysis of splenocytes from all mice showed increased activity of the VIP gene promoter in donor pDC that were derived from HSC, compared to other cell types. The VIP promoter signal was also stronger in donor HSC-derived pDCs, if originally transplanted with VIP-KO splenocytes. In experiment 2 over 70% of mice receiving HSC+T+VIP-WT pDC in the BM graft survived to day 100 post-transplant, while those getting VIP-KO pDC instead only had 30% survival (Fig 1A). All surviving recipients were fully engrafted by day 30. BLI revealed greater total T-cell proliferation (measured as radiance) in recipients of VIP-KO pDC (Fig 1B). Furthermore, recipients of VIP-KO pDC had more severe acute GvHD, with increased weight loss and GvHD clinical scores (Fig 1C, 1D). Some recipients were euthanized and their serum were collected for cytokine analysis on day 8 post-transplant, which showed up-regulation of pro-inflammatory or chemotactic cytokines MCP1, IL-1, IL-12, IL-17 in T cells co-transplanted with VIP-KO pDC compared to WT pDC. Conclusion: The present findings show that: 1) VIP is produced by donor pDC early after allo-BMT; 2) absence of VIP production by donor pDC leads to increased T-cell expansion in a murine allo-BMT model. Thus the pDC-T cell VIP signaling pathway is a critical element in controlling donor T cell alloreactivity after allo-BMT. Future studies will include VIP qPCR to confirm VIP production in donor pDC post-transplant, and determine the mechanism by which VIP production by pDC regulates T cell activity and modulates GvHD. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1116-1116
Author(s):  
Jeong-Su Do ◽  
Alex Y. Huang ◽  
Daniel Zwick ◽  
Fei Zhong ◽  
David Askew ◽  
...  

Abstract Tumor growth factor β (TGF-β)-induced peripheral regulatory T cells (pTreg) are a promising therapeutic cell source that exhibit Foxp3 expression and suppressive functions similar to natural regulatory T cells. Nonetheless, their clinical potential is limited by the instability of Foxp3 expression and T cell exhaustion that occurs during ex vivo expansion. We postulated that mesenchymal stromal cells (MSCs) could enhance the number, function and Foxp3 expression stability of pTregs during IL-2 driven 21 day expansion due to their diverse immunomodulatory properties. In this study, we observed that use of a human bone marrow mesenchymal stromal cells (hBM-MSC) platform significantly enhanced the number of pTreg during IL-2 driven 21 day ex vivo expansion vs. standard suspension culture condition (MSC platform: 80.2 x 106 vs. IL2/media: 39.3 x 106, n=6; p<0.01). Also the number of pTreg expressing a naive phenotype (CD4+CD45RA+ and CD4+CD62L+ ) were significantly increased (CD45RA+; MSC platform: 74.4 ± 1.6 x 106 vs. IL2/media: 45.9 ± 2.9 x 106, n=6, p<0.001; CD62L+; MSC platform: 79.1 ± 1.3 x 106 vs. IL2/media: 54.5 ± 2.1 x 106, n=6, p<0.001), as well as stability of Foxp3 expression (IL-2/media: 88.2 ± 1.7% vs. MSC platform: 96.2 ± 1.1%, n=7; p<0.05). In addition, pTreg suppressive function was noted to be more potent during 21 day IL-2 driven ex vivo expansion compared to standard IL-2/media culture condition (MSC platform: 79% vs. media: 35% inhibition of T cell proliferation in 10:1 ratio, n=6; p<0.01). pTreg expanded over a hBM-MSC platform exhibited higher surface CD25, CTLA-4, and ICOS MFI expression (CD25; MSC platform: 1410 vs. Media: 774; p<0.001, CTLA-4; MSC platform: 1084 vs. Media: 318; p<0.001, ICOS; MSC platform: 4386 vs. Media: 2641, p<0.01, n=6). Notably, hBM-MSC enhancement of pTreg ex vivo expansion requires direct cell-cell contact, as Foxp3 expression in pTreg was not enhanced by hBM-MSC conditioned media (CM:73.4 ± 6.8% vs. MSC platform: 96.2 ± 1.0%, p<0.001; and IL2/media: 88.8 ± 1.6% vs. MSC platform: 96.2 ± 1.0%, p<0.01) nor in a trans-well culture experiments (Transwell: 83.4 ± 2.5% vs. IL2/media: 88.8 ± 1.6%; and Transwell: 83.4 ± 2.5% vs. MSC platform: 96.2 ± 1.0%, p<0.01). Importantly, optical sectioning microscopy and flow cytometry revealed that hBM-MSC supports Treg number and function via direct contact-dependent mitochondrial transfer (Figure 1A-B). Cytochalasin B treatment blocked mitochondrial transfer, suggesting that tunneling nanotubes (TNT) facilitate mitochondrial transfer from hBM-MSC to pTreg during IL-2 driven ex vivo expansion (Mock: 2208 ± 122.1 vs. Cyto B: 923.8 ± 89 MFI, n=6, p<0.0001). Moreover, the quantity of ATP (n=6; p<0.01) mitochondrial potential of pTreg (MSC platform: 9010 ± 224.5 vs. media: 7316 ± 122.7 MFI, n=6; p<0.01) were significantly enhanced in pTreg during IL-2 driven ex vivo expansion over a hBM-MSC platform. Taken together, hBM-MSC significantly improves the number, maturation, and function of pTreg during 21 day IL-2 driven ex vivo expansion. We have identified one key mechanism of action of hBM-MSC underlying these favorable effects on pTreg during ex vivo expansion to be mitochondrial transfer via TNT. Notably, these studies identify a novel role of hBM-MSC to overcome current limitations in IL-2/media suspension culture conditions including T cell senescence, and loss of Foxp3 expression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3845-3845
Author(s):  
Amy Tang ◽  
Abdelhadi Rebbaa ◽  
Steven L Spitalnik ◽  
Eldad A. Hod ◽  
Stuart Phillip Weisberg

Abstract BACKGROUND: Chronic transfusion is associated with an increased risk of bone marrow graft rejection. In prior studies with mouse models, minor histocompatibility antigens in red blood cell (RBC) and platelet products were presented in the context of recipient MHC class I to prime recipient cytotoxic T cells; these represent cross presentation and cross priming, respectively. Once primed in the recipient, these T cells may attack allogeneic bone marrow grafts. Thus, understanding the mechanism of transfusion-induced T cell cross priming may lead to new methods to reduce bone marrow graft rejection in chronically transfused patients. Cross presentation is performed by a specialized subset of antigen presenting cells (APCs) - CD11b lo, XCR1+ dendritic cells (XCR DCs). Transfusion of RBCs after prolonged refrigerated storage induces erythrophagocytosis and pro-inflammatory gene expression in the spleen. Fluorescent tracking of transfused RBCs showed that splenic red pulp macrophages (RPMs) ingest the majority of damaged RBCs, but RPMs are weak APCs. Splenic dendritic cells, including XCR DCs, also display increased uptake of stored vs. fresh RBCs. These data suggested that refrigerated storage may increase cross presentation of RBC antigens, thereby enhancing T cell cross priming. AIMS: To compare T cell cross priming after transfusion of fresh and refrigerator-stored RBCs, a mouse model was used with transgenic OVA-carrying RBCs as the antigen source and transgenic naive MHC class I-restricted (H-2Kb) OVA-specific T cells (OT-1) as responders. In parallel, an in-vitro system was established to determine the cellular elements required for cross presentation of RBC antigens. METHODS: Purified CD8 T cells from OT-1 mice were loaded with the cell proliferation tracking dye Cell Trace Far Red (CTFR) and adoptively transferred (4 x 10e6 per mouse) into cohorts of 8-12 week old C57BL/6 GFP+ mice (n=3 per group). The next day mice were transfused with 400 uL of fresh (<24 hours old), or stored RBCs (14 days old) from transgenic HOD mice (RBCs express surface HEL, OVA, and Duffy antigens). After 96 hours, flow cytometry was used to assess OT-1 cell proliferation by dye dilution and the expression of activation markers CD44, CD122 and CD62L. Control transfusions with non-HOD GFP+ RBCs confirmed the antigen specificity of the response, and transfusions of HOD blood that had undergone RBC lysis ruled out direct antigen presentation by MHC identical white cells in the transfusate. For the in-vitro cross presentation assay, 1x10e5 CTFR-loaded OT-1 cells were plated in U-bottom 96 well plates with all possible combinations of fresh or stored HOD RBCs (50 x 10e6 per well), bone marrow Flt3L-derived C57BL/6 murine dendritic cells (Flt3L-DCs, 5 X 10e4 per well), and magnetically selected BALB/c (H-2Kd) RPMs (5 x 10e4 per well). MHC mismatch rules out antigen presentation by BALB/c RPMs (H-2Kd) to OT-I T cells (H-2Kb). RESULTS: Transfusion of both fresh and stored HOD RBCs induced vigorous proliferation and activation of OT-1 cells. After 4 days, no differences were seen in the proliferation and activation profiles of OT-1 cells in mice receiving fresh (78±4% CD44hi, CTFR diluted) vs. stored (79±5%) HOD RBCs. The in-vitro cross presentation assay showed weak to absent OVA-specific OT-1 proliferation with co-cultures including fresh or stored HOD RBCs alone, and fresh or stored HOD RBCs plus Flt3L-DCs. In contrast, cultures including RPMs and Flt3L-DCs showed enhanced OVA-specific OT-1 proliferation with fresh (29±10% CTFR diluted) and stored (25±2%) HOD RBCs. CONCLUSION: Cross priming by fresh RBCs was stronger than expected based on prior studies showing minimal RBC uptake by XCR DCs after fresh GFP + RBC transfusion. Cross priming in this system may be more sensitive due to the high frequency of antigen specific T cells and, thus, is saturated by the small antigen load delivered by fresh transfusion. It is also possible that direct uptake of RBCs by DCs harms the cross-presentation machinery and offsets the effect of increased RBC antigen delivery. Optimal cross-presentation of RBC antigen may require cooperation with cells functionally specialized for metabolizing RBC by-products. Indeed, the in-vitro study shows RPMs promote DC-mediated cross presentation of antigens on fresh and stored RBCs. Thus, RPMs may share ingested RBC antigen with adjacent DCs and increase DC activation by secreting inflammatory cytokines. . Figure Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3925-3925
Author(s):  
Pedro Horna ◽  
Rahul Chavan ◽  
Jason Brayer ◽  
Ildefonso Suarez ◽  
Eduardo M. Sotomayor

Abstract A large number of CD4+ T-cells from either aged mice or humans display surface markers associated with an activated/memory phenotype. In spite of these changes however, these T-cells have a markedly decreased ability to proliferate and produce IL-2 in response to antigen stimulation in vitro. The cellular and molecular mechanisms involved in this age-related unresponsiveness of the CD4+ T-cell compartment remain poorly understood. Utilizing a well-established experimental system in which transgenic CD4+ T cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA) are adoptively transferred into non-transgenic recipients, we have previously elucidated important mechanisms involved in the induction and maintenance of CD4+ T-cell tolerance. Our studies were however limited to the analysis of T-cell function in lymphoma bearing young mice (4 to 10 weeks old). Here, we assessed the influence of the aged microenvironment in determining the phenotype and function of antigen-specific T-cells. CD4+ T-cells from young TCR transgenic mice (2 months old) were adoptively transferred into either old (20–24 months) or young (2 months old) non-transgenic mice. Two weeks later, clonotypic and non-clonotypic CD4+ T-cells were isolated from the spleens of these animals and their phenotype and function were determined in vitro. Reminiscent of the age-related changes observed within the normal CD4+ T-cell repertoire, young transgenic T-cells transferred into aged hosts have acquired an activated/memory phenotype but displayed a significant impairment in antigen-specific proliferation and IL-2 production in response to cognate antigen in vitro. These changes were not due to homeostatic proliferation of the transferred T-cells into the relatively lymphopenic aged host. To determine whether the changes observed in “aged” T-cells were reversible or not, we adoptively transfer old T-cells back into young hosts or into control old mice. While old transgenic T-cells transferred into an old environment remained fully unresponsive, the adoptive transfer of the same old T-cells into a young host restored their ability to proliferate and produce IL-2. Surprisingly, these “old” T-cells were able to produce significantly higher levels of IFN-gamma indicative of their memory/effector phenotype. Furthermore, young animals adoptively transferred with “aged” antigen-specific T-cells were now capable of rejecting A20 B-cell lymphomas expressing HA as a model tumor antigen (A20HA). Taking together, factor(s) present in the aged microenvironment are responsible for limiting the effector function of CD4+ T-cells that seem otherwise well equipped to become fully activated if the proper environment is provided (young microenvironment). The potential role of soluble suppressive factors as well as regulatory T-cells (Tregs) in the unresponsiveness observed in the T-cell compartment of aged hosts will be discussed.


1987 ◽  
Vol 166 (2) ◽  
pp. 506-519 ◽  
Author(s):  
M L Birkeland ◽  
L Simpson ◽  
P C Isakson ◽  
E Pure

Sepharose-anti-Ig and purified populations of small, high-density B cells have been used to study the formation and function of B lymphoblasts. Sepharose-anti-Ig converts small, Ia-poor B cells with a high-buoyant density to large, Ia-rich, B blasts with a low-buoyant density. We find that this response proceeds efficiently in the absence of IL-4 (BSF-1) as well as most T cells, macrophages, and dendritic cells. Further development of the blasts requires an additional stimulus, such as LPS or the conditioned medium of stimulated EL-4 thymoma cells. Within 6 h, blasts begin to enter S phase and within 24 h most divide. At later times (48-72 h) most of the blasts are actively secreting IgM. Recombinant IL-1, -2, -3, and -4 have little or no effect on the B blasts, and a neutralizing mAb to IL-4 does not block the response to EL-4 Sn. We conclude that Sepharose-anti-Ig induces B cell blastogenesis in a T-independent fashion and that these blasts represent a highly enriched population of cells that respond to distinct, T cell-derived lymphokines.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Minhwa Park ◽  
Yu-Hee Kim ◽  
Jung-Hwa Ryu ◽  
So-Youn Woo ◽  
Kyung-Ha Ryu

Mesenchymal stem cells (MSCs) are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs) on the differentiation, maturation, and function of dendritic cells (DCs). We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM-) derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF), RANTES, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3224-3224
Author(s):  
Mauro Di Ianni ◽  
Raffaella Giancola ◽  
Stefano Baldoni ◽  
Francesca Ulbar ◽  
Beatrice Del Papa ◽  
...  

In high-risk acute leukemia patients undergoing HLA haploidentical T cell-depleted tranplantation, we demonstrated that adoptive immunotherapy with donor T regulatory cells (Tregs; 2x106/kg) co-infused with conventional T cells (Tcon; 1x106/kg ) provided significant protection from acute graft-versus-host disease (aGvHD) and was associated with an almost complete control of leukemia relapse (graft versus leukemia effect, GvL) (Di Ianni et al., Blood 2011; Martelli et al., Blood 2014; Ruggeri et al., ASH 2018). In the present study we investigated whether Tregs interact with bone marrow (BM) and peripheral blood (PB) dendritic cells (DCs) and whether such interaction is responsible for GvHD protection and GvL effect. Twenty six patients (median age 54 ; 20 AML; 4 ALL; 2 MDS) transplanted between July 2016 and April 2019 were evaluated up to one year after the transplant. BM and PB DCs (using CD123 for plasmocitoid DC-pDC; CD11c for myeloid DC-mDC; CD80/CD86 for costimulatory molecules) and T cells (CD3/CD4/CD8; CD4/CD25/CD127; CD28/PD-1/TIM3) were analysed by flow-cytometry. DCs were also sorted and analysed by RT-PCR for a panel of genes involved in activation (IL-6; TNF-a; IL-12; CCR7; NOTCH ligands) vs tolerigenic (TGF-beta; PD-1/PDL1; IDO; IL-10; ICOS) pathways. To study the effects of DCs on T cell proliferation, pre-activated (with GM-CSF at 50 ng/ml, IL-4 at 800 U/ml and TNF-a at 50 ng/ml for 18 hrs) BM and PB CD1c+ DCs were co-cultured for 96 hrs with autologous CFSE labelled BM and PB CD3+ cells at a DC:CD3 ratio of 1:10. mDC numbers were significantly higher in BM than PB during the first 6 months after transplant. BM-derived mDCs expressed higher levels of the co-stimulatory receptor CD86. No differences emerged in pDCs. RT-PCR showed an activation signature in BM-DCs (significantly higher IL-6 level) and a tolerigenic signature in PB-DCs (significantly higher TGF-beta and PDL-1 levels). BM-derived CD8+ T cells displayed a higher expression of the co-stimulatory receptor CD28 than PB-derived CD8+ T cells (30.3±18.8 vs 9.2±4.9; p<0.05 ). In contrast, the expression of the immune checkpoint inhibitor PD-1 was significantly higher in both PB-derived CD4 (69%±29 vs 24±11) and CD8 (65±25 vs 4±3; p<0.05) T cells than BM-derived T lymphocytes. T cells from both BM and PB did not express the T cell exhaustion marker TIM-3. CD3/CFSE+-DCs co-cultures showed a T cell proliferation rate that was significantly higher in BM than in PB (25±7.2 vs 6.7±8.7; p<0.05). These data show that haploidentical transplantation with Treg/Tcon immunotherapy promotes the reconstitution of DCs with an activating signature in the BM and a tolerigenic signature in the PB. Human peripheral blood Tregs that are used for adoptive immunotherapy are largely CD45RO+ and express low level of CxCR4 bone marrow homing receptor. When infused in immunodeficient mice they migrate to the periphery (spleen, gut, liver) but are unable to home to the bone marrow (Ruggeri et al., ASH 2018). In conclusion, Tregs/DC interaction induce tolerance in the periphery (and may protect from GvHD). In the BM, in the absence of Tregs, DCs activate alloreactive Tcon and may favour killing of the leukemic targets. Therefore, Tregs/DC interactions may contribute to the separation between GvL effect and GvHD in the Treg based haploidentical transplantation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Jin Yan Yap ◽  
Leen Moens ◽  
Ming-Wei Lin ◽  
Alisa Kane ◽  
Anthony Kelleher ◽  
...  

Abstract Purpose Deficiency of adenosine deaminase type 2 (ADA2) (DADA2) is a rare inborn error of immunity caused by deleterious biallelic mutations in ADA2. Clinical manifestations are diverse, ranging from severe vasculopathy with lacunar strokes to immunodeficiency with viral infections, hypogammaglobulinemia and bone marrow failure. Limited data are available on the phenotype and function of leukocytes from DADA2 patients. The aim of this study was to perform in-depth immunophenotyping and functional analysis of the impact of DADA2 on human lymphocytes. Methods In-depth immunophenotyping and functional analyses were performed on ten patients with confirmed DADA2 and compared to heterozygous carriers of pathogenic ADA2 mutations and normal healthy controls. Results The median age of the patients was 10 years (mean 20.7 years, range 1–44 years). Four out of ten patients were on treatment with steroids and/or etanercept or other immunosuppressives. We confirmed a defect in terminal B cell differentiation in DADA2 and reveal a block in B cell development in the bone marrow at the pro-B to pre-B cell stage. We also show impaired differentiation of CD4+ and CD8+ memory T cells, accelerated exhaustion/senescence, and impaired survival and granzyme production by ADA2 deficient CD8+ T cells. Unconventional T cells (i.e. iNKT, MAIT, Vδ2+ γδT) were diminished whereas pro-inflammatory monocytes and CD56bright immature NK cells were increased. Expression of the IFN-induced lectin SIGLEC1 was increased on all monocyte subsets in DADA2 patients compared to healthy donors. Interestingly, the phenotype and function of lymphocytes from healthy heterozygous carriers were often intermediate to that of healthy donors and ADA2-deficient patients. Conclusion Extended immunophenotyping in DADA2 patients shows a complex immunophenotype. Our findings provide insight into the cellular mechanisms underlying some of the complex and heterogenous clinical features of DADA2. More research is needed to design targeted therapy to prevent viral infections in these patients with excessive inflammation as the overarching phenotype.


Sign in / Sign up

Export Citation Format

Share Document