scholarly journals Dendritic Cell Cross Presentation of RBC Antigens in-Vivo Is Not Affected By RBC Storage Duration and Requires Red Pulp Macrophage "Help" in-Vitro

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3845-3845
Author(s):  
Amy Tang ◽  
Abdelhadi Rebbaa ◽  
Steven L Spitalnik ◽  
Eldad A. Hod ◽  
Stuart Phillip Weisberg

Abstract BACKGROUND: Chronic transfusion is associated with an increased risk of bone marrow graft rejection. In prior studies with mouse models, minor histocompatibility antigens in red blood cell (RBC) and platelet products were presented in the context of recipient MHC class I to prime recipient cytotoxic T cells; these represent cross presentation and cross priming, respectively. Once primed in the recipient, these T cells may attack allogeneic bone marrow grafts. Thus, understanding the mechanism of transfusion-induced T cell cross priming may lead to new methods to reduce bone marrow graft rejection in chronically transfused patients. Cross presentation is performed by a specialized subset of antigen presenting cells (APCs) - CD11b lo, XCR1+ dendritic cells (XCR DCs). Transfusion of RBCs after prolonged refrigerated storage induces erythrophagocytosis and pro-inflammatory gene expression in the spleen. Fluorescent tracking of transfused RBCs showed that splenic red pulp macrophages (RPMs) ingest the majority of damaged RBCs, but RPMs are weak APCs. Splenic dendritic cells, including XCR DCs, also display increased uptake of stored vs. fresh RBCs. These data suggested that refrigerated storage may increase cross presentation of RBC antigens, thereby enhancing T cell cross priming. AIMS: To compare T cell cross priming after transfusion of fresh and refrigerator-stored RBCs, a mouse model was used with transgenic OVA-carrying RBCs as the antigen source and transgenic naive MHC class I-restricted (H-2Kb) OVA-specific T cells (OT-1) as responders. In parallel, an in-vitro system was established to determine the cellular elements required for cross presentation of RBC antigens. METHODS: Purified CD8 T cells from OT-1 mice were loaded with the cell proliferation tracking dye Cell Trace Far Red (CTFR) and adoptively transferred (4 x 10e6 per mouse) into cohorts of 8-12 week old C57BL/6 GFP+ mice (n=3 per group). The next day mice were transfused with 400 uL of fresh (<24 hours old), or stored RBCs (14 days old) from transgenic HOD mice (RBCs express surface HEL, OVA, and Duffy antigens). After 96 hours, flow cytometry was used to assess OT-1 cell proliferation by dye dilution and the expression of activation markers CD44, CD122 and CD62L. Control transfusions with non-HOD GFP+ RBCs confirmed the antigen specificity of the response, and transfusions of HOD blood that had undergone RBC lysis ruled out direct antigen presentation by MHC identical white cells in the transfusate. For the in-vitro cross presentation assay, 1x10e5 CTFR-loaded OT-1 cells were plated in U-bottom 96 well plates with all possible combinations of fresh or stored HOD RBCs (50 x 10e6 per well), bone marrow Flt3L-derived C57BL/6 murine dendritic cells (Flt3L-DCs, 5 X 10e4 per well), and magnetically selected BALB/c (H-2Kd) RPMs (5 x 10e4 per well). MHC mismatch rules out antigen presentation by BALB/c RPMs (H-2Kd) to OT-I T cells (H-2Kb). RESULTS: Transfusion of both fresh and stored HOD RBCs induced vigorous proliferation and activation of OT-1 cells. After 4 days, no differences were seen in the proliferation and activation profiles of OT-1 cells in mice receiving fresh (78±4% CD44hi, CTFR diluted) vs. stored (79±5%) HOD RBCs. The in-vitro cross presentation assay showed weak to absent OVA-specific OT-1 proliferation with co-cultures including fresh or stored HOD RBCs alone, and fresh or stored HOD RBCs plus Flt3L-DCs. In contrast, cultures including RPMs and Flt3L-DCs showed enhanced OVA-specific OT-1 proliferation with fresh (29±10% CTFR diluted) and stored (25±2%) HOD RBCs. CONCLUSION: Cross priming by fresh RBCs was stronger than expected based on prior studies showing minimal RBC uptake by XCR DCs after fresh GFP + RBC transfusion. Cross priming in this system may be more sensitive due to the high frequency of antigen specific T cells and, thus, is saturated by the small antigen load delivered by fresh transfusion. It is also possible that direct uptake of RBCs by DCs harms the cross-presentation machinery and offsets the effect of increased RBC antigen delivery. Optimal cross-presentation of RBC antigen may require cooperation with cells functionally specialized for metabolizing RBC by-products. Indeed, the in-vitro study shows RPMs promote DC-mediated cross presentation of antigens on fresh and stored RBCs. Thus, RPMs may share ingested RBC antigen with adjacent DCs and increase DC activation by secreting inflammatory cytokines. . Figure Figure. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 5074-5083 ◽  
Author(s):  
Abdelilah Wakkach ◽  
Anna Mansour ◽  
Romain Dacquin ◽  
Emmanuel Coste ◽  
Pierre Jurdic ◽  
...  

Abstract Finding that activated T cells control osteoclast (OCL) differentiation has revealed the importance of the interactions between immune and bone cells. Dendritic cells (DCs) are responsible for T-cell activation and share common precursors with OCLs. Here we show that DCs participate in bone resorption more directly than simply through T-cell activation. We show that, among the splenic DC subsets, the conventional DCs have the higher osteoclastogenic potential in vitro. We demonstrate that conventional DCs differentiate into functional OCLs in vivo when injected into osteopetrotic oc/oc mice defective in OCL resorptive function. Moreover, this differentiation involves the presence of activated CD4+ T cells controlling a high RANK-L expression by bone marrow stromal cells. Our results open new insights in the differentiation of OCLs and DCs and offer new basis for analyzing the relations between bone and immune systems.


Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3508-3512 ◽  
Author(s):  
K Garrigan ◽  
P Moroni-Rawson ◽  
C McMurray ◽  
I Hermans ◽  
N Abernethy ◽  
...  

We have compared dendritic cells (DC) isolated from mouse spleen, or generated in vitro from bone marrow (BM) precursors cultured in granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), for the ability to process and present soluble antigen and stimulate major histocompatibility complex (MHC) Class II-restricted T cells. DC from spleen or BM cultures were equally able to stimulate the in vitro proliferation of allogeneic T cells or of antigen-specific T-cell receptor (TCR)-transgenic T cells. Both DC populations also induced comparable levels of IL-2 secretion by a T-cell hybridoma. Therefore, splenic and BM-derived DC express comparable levels of (Antigen + MHC Class II) ligands and/or costimulatory molecules and have comparable ability to stimulate T-cell responses. When presentation of a native protein antigen, rather than peptide, was evaluated, BM-derived DC were at least 50 times better than splenic DC at stimulating the proliferation of TCR-transgenic T cells. The antigen processing ability of the two populations was similar only when splenic DC were used immediately ex vivo. Therefore, unlike spleen DC, BM-derived DC maintain the capacity to process protein antigen for MHC Class II presentation during in vitro culture. Due to these characteristics, BM-derived DC may represent a useful tool in immunotherapy studies, as they combine high T-cell stimulatory properties with the capacity to process and present native antigen.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 742-742
Author(s):  
Stuart P. Weisberg ◽  
Aidin Shabro ◽  
Lyla A Youssef ◽  
Steven Spitalnik ◽  
Eldad A. Hod

Abstract BACKGROUND: Donor red blood cell (RBC) alloantigens are efficiently cross-presented by recipient antigen presenting cells (APCs), thereby priming recipient naive CD8 T cells; however, this process and its downstream immunological consequences are poorly understood. RBC antigen cross presentation has been linked to cytotoxic T cell responses driving bone marrow graft rejection, but in other systems it causes tolerance. The conventional dendritic cell (cDC) subset, cDC1, is required for cross-presentation of RBC antigen. Macrophages are insufficient for cross-presentation in the absence of cDC1s, but do promote RBC antigen cross-presentation by cDCs in vitro. After prolonged storage, a portion of transfused RBCs are rapidly cleared by the spleen. In murine models, transfused stored RBCs have multiple effects on splenic APCs, including architectural distortion, dendritic cell activation, and macrophage depletion via ferroptosis due to increased erythrophagocytosis. Thus, the antigen presentation machinery controlling alloimmunization to RBC antigens may be influenced by the storage duration of previously transfused RBCs. AIMS: To better understand how recent transfusions may influence the immunogenicity of future transfusions, we used a mouse model to determine whether prior transfusion of stored, antigen-matched RBCs influences CD8 T cell cross priming to antigen mismatched RBCs in a subsequent transfusion. METHODS: In an in vivo cross-priming assay, OVA-expressing RBCs from transgenic HOD mice (with RBC surface expression of hen egg lysozyme, ovalbumin (OVA), and Duffy antigens) were the transfused antigen source and naïve OT-1 CD8 T cells, which express an MHC class I restricted OVA-specific TCR transgene, were the responders. Magnetically-selected CD8+ OT-1 cells, labeled with CellTrace Far Red (CTFR), were adoptively transferred into MHC identical (H-2Kb) UBC-GFP C57BL6/J recipients. After 16 hours, these mice were transfused with fresh or stored (12 days in CPDA-1), leukoreduced UBC-GFP RBCs or PBS. Five hours after the initial transfusion, recipients were transfused again with fresh leukoreduced HOD RBCs. To determine the effect of stored RBC transfusion on T cell priming to a non-RBC associated antigen, groups of mice carrying adoptively transferred OT-1 T cells were transfused with fresh or stored RBCs and then challenged 5 hours later with soluble OVA protein (10 µg, IV). After 4 days, splenic OT-1 T cells were analyzed for proliferation (by CTFR dye dilution) and activation (by CD44 and CD122 expression). RESULTS: Proliferation and activation of OT-1 T cells in response to challenge with soluble OVA protein were significantly increased in mice that had been previously transfused with stored RBCs compared to those transfused with fresh RBCs (Fig. 1A). In contrast, OT-1 T cell activation in response to HOD RBC transfusion was decreased in mice that had previously received a stored RBC transfusion, as compared to those receiving fresh RBCs or PBS (Fig. 1B). CONCLUSION: The increased T cell priming after soluble OVA challenge in the mice previously transfused with stored vs. fresh RBCs may be related to the increased expression of co-stimulatory molecules on DCs after stored RBC transfusion. However, T cell priming to the RBC-associated antigen requires additional factors, which are disrupted by previous transfusion of stored, but not fresh, RBCs. Splenic red pulp macrophages potentiate OT-1 T cell cross priming by dendritic cells in vitro and become severely depleted after stored RBC transfusion in vivo. Thus, macrophage help may be needed for T cell cross priming to an RBC antigen in vivo, and stored RBC transfusions may disrupt macrophage function, thereby affecting the immunogenicity of subsequent RBC alloantigen exposure. Figure 1. Effect of fresh and stored RBC transfusion on priming after antigenic challenge with soluble OVA or HOD RBCs. Representative contour plots show proliferation-induced dye dilution and CD44 expression on OT-1 cells in the spleen 4 days after transfusion of fresh (left) or stored (right) RBCs followed 5 hours later with IV injection of soluble OVA protein (A) or HOD RBCs (B). Dot plots at the right of representative contour plots show compiled data from two independent experiments quantifying the percentage of activated and proliferated cells (CTFR diluted, CD44hi) in the OT-1 subgate (mean ± SEM, n = 4-9). *P < 0.05, **P < 0.01, unpaired t test. Disclosures No relevant conflicts of interest to declare.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Gisele Olinto Libanio Rodrigues ◽  
Julie Hixon ◽  
Hila Winer ◽  
Erica Matich ◽  
Caroline Andrews ◽  
...  

Mutations of the IL-7Rα chain occur in approximately 10% of pediatric T-cell acute lymphoblastic leukemia cases. While we have shown that mutant IL7Ra is sufficient to transform an immortalized thymocyte cell line, mutation of IL7Ra alone was insufficient to cause transformation of primary T cells, suggesting that additional genetic lesions may be present contributing to initiate leukemia. Studies addressing the combinations of mutant IL7Ra plus TLX3 overexpression indicates in vitro growth advantage, suggesting this gene as potential collaborative candidate. Furthermore, patients with mutated IL7R were more likely to have TLX3 or HOXA subgroup leukemia. We sought to determine whether combination of mutant hIL7Ra plus TLX3 overexpression is sufficient to generate T-cell leukemia in vivo. Double negative thymocytes were isolated from C57BL/6J mice and transduced with retroviral vectors containing mutant hIL7R plus hTLX3, or the genes alone. The combination mutant hIL7R wild type and hTLX3 was also tested. Transduced thymocytes were cultured on the OP9-DL4 bone marrow stromal cell line for 5-13 days and accessed for expression of transduced constructs and then injected into sublethally irradiated Rag-/- mice. Mice were euthanized at onset of clinical signs, and cells were immunophenotyped by flow cytometry. Thymocytes transduced with muthIL-7R-hTLX3 transformed to cytokine-independent growth and expanded over 30 days in the absence of all cytokines. Mice injected with muthIL7R-hTLX3 cells, but not the controls (wthIL7R-hTLX3or mutIL7R alone) developed leukemia approximately 3 weeks post injection, characterized by GFP expressing T-cells in blood, spleen, liver, lymph nodes and bone marrow. Furthermore, leukemic mice had increased white blood cell counts and presented with splenomegaly. Phenotypic analysis revealed a higher CD4-CD8- T cell population in the blood, bone marrow, liver and spleen compared in the mutant hIL7R + hTLX3 mice compared with mice injected with mutant IL7R alone indicating that the resulting leukemia from the combination mutant hIL7R plus hTLX3 shows early arrest in T-cell development. Taken together, these data show that oncogenic IL7R activation is sufficient for cooperation with hTLX3 in ex vivo thymocyte cell transformation, and that cells expressing the combination muthIL7R-hTLX3 is sufficient to trigger T-cell leukemia in vivo. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Javier Martin Broto ◽  
Katia Scotlandi ◽  
Michele Cavo ◽  
...  

BackgroundHigh-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma.MethodsThe human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed.ResultsAlong with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells.ConclusionsTaken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2694-2705 ◽  
Author(s):  
Sherrie J. Divito ◽  
Zhiliang Wang ◽  
William J. Shufesky ◽  
Quan Liu ◽  
Olga A. Tkacheva ◽  
...  

Abstract The prevailing idea regarding the mechanism(s) by which therapeutic immunosuppressive dendritic cells (DCs) restrain alloimmunity is based on the concept that they interact directly with antidonor T cells, inducing anergy, deletion, and/or regulation. However, this idea has not been tested in vivo. Using prototypic in vitro–generated maturation-resistant (MR) DCs, we demonstrate that once MR-DCs carrying donor antigen (Ag) are administered intravenously, they decrease the direct and indirect pathway T-cell responses and prolong heart allograft survival but fail to directly regulate T cells in vivo. Rather, injected MR-DCs are short-lived and reprocessed by recipient DCs for presentation to indirect pathway CD4+ T cells, resulting in abortive activation and deletion without detrimental effect on the number of indirect CD4+ FoxP3+ T cells, thus increasing the regulatory to effector T cell relative percentage. The effect on the antidonor response was independent of the method used to generate therapeutic DCs or their viability; and in accordance with the idea that recipient Ag-presenting cells mediate the effects of therapeutic DCs in transplantation, prolongation of allograft survival was achieved using donor apoptotic MR-DCs or those lacking surface major histocompatibility complex molecules. We therefore conclude that therapeutic DCs function as Ag-transporting cells rather than Ag-presenting cells to prolong allograft survival.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


2021 ◽  
Vol 478 (22) ◽  
pp. 3999-4004
Author(s):  
Lawrence P. Kane

Tim-3 is a transmembrane protein that is highly expressed on subsets of chronically stimulated CD4+ helper and CD8+ cytotoxic T cells, with more transient expression during acute activation and infection. Tim-3 is also constitutively expressed by multiple types of myeloid cells. Like other TIM family members, Tim-3 can bind to phosphatidylserine displayed by apoptotic cells, and this interaction has been shown to mediate uptake of such cells by dendritic cells and cross-presentation of antigens to CD8+ T cells. In contrast, how the recognition of PS by Tim-3 might regulate the function of Tim-3+ T cells is not known. In their recent paper, Lemmon and colleagues demonstrate for the first time that recognition of PS by Tim-3 leads to enhanced T cell activation.


Sign in / Sign up

Export Citation Format

Share Document