CD4+ Peptide Epitopes from the WT1 Oncoprotein Stimulate CD4+ and CD8+ T Cells That Recognize and Kill Leukemia and Solid Tumor Cells.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3706-3706
Author(s):  
Rena J. May ◽  
Javier Pinilla ◽  
Tatyana Korontsvit ◽  
Victoriya Zakhaleva ◽  
Ronghua H. Zhang ◽  
...  

Abstract Wilms tumor protein 1 (WT1) is a transcription factor over-expressed in several types of leukemias and solid tumors, making it an ideal target for immunotherapy. A number of class I binding WT1 peptides have been identified and shown to stimulate CD8+ T cells. These peptides are being tested as potential cancer vaccine candidates in a variety of clinical trials. However, the induction and maintenance of a robust memory CD8+ cytotoxic T cell response requires CD4+ T cell help. Herein we report the identification of three HLA Class II peptide epitopes of WT1 using the SYFPEITHI and RANKPEP predictive algorithms. Peptides 328–349 and 423–441 are able to stimulate a peptide specific CD4+ response that can recognize WT1 positive tumor cells in multiple HLA-DRB*1 settings, as determined by IFN-gamma ELISPOT assays. Due to the highly polymorphic nature of the HLA class II alleles, such broad reactivity is critical in the development of a universal therapeutic. In addition, we identified a WT1 CD4+ peptide epitope (122–140) that lies within close proximity to a previously identified CD8+ peptide epitope (126–134). Residue 126 was mutated from an Arginine (R) to a Tyrosine (Y) thereby embedding a synthetic immunogenic analog CD8+ peptide that was previously designed to improve immunogenicity and induce a potent CD8+ response. Mutated peptide 122–140 is able to induce a CD4+ and cytotoxic CD8+ WT1 specific T cell response that can recognize the native WT1 epitopes on the surface of human CML and solid tumor cells. Cross-priming experiments demonstrated that APCs pulsed with either CML or mesothelioma tumor lysates can process and present each of the CD4+ peptides identified. These studies provide the rationale for using the three WT1 CD4+ peptides in conjunction with CD8+ peptide epitopes to vaccinate patients with WT1 expressing cancers.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S852-S853
Author(s):  
Hassen Kared ◽  
Evan Bloch ◽  
Andrew Redd ◽  
Alessandra Nardin ◽  
Hermi Sumatoh ◽  
...  

Abstract Background Understanding the diversity, breadth, magnitude, and functional profile of the T cell response against SARS-CoV-2 in recovered COVID-19 individuals is critical to evaluate the contribution of T cells to produce a potentially protective immune response. Methods We used a multiplexed peptide-MHC tetramer approach to screen a total of 408 SARS-CoV-2 candidate peptide epitopes for CD8+ T cell recognition in a cohort of 30 individuals recovered from COVID-19. The peptides spanned the whole viral genome and were restricted to six prevalent HLA alleles; T cells were simultaneously characterized by a 28-marker phenotypic panel. The evolution of the SARS-CoV-2 T cell responses was then statistically modeled against time from diagnosis, and in relation to humoral and inflammatory response. Workflow for Study. A multiplexed peptide-MHC tetramer approach was used to screen SARS-CoV-2 candidate peptide epitopes in a cohort of 30 COVID-19 recovered patients across 6 prevalent HLA alleles, and T cells profiled with a 28-marker phenotypic panel. Multiplex tetramer screen. One representative COVID-19 recovered patient and one healthy donor were screened for HLA- relevant SARS-CoV-2 epitopes, as well as epitopes for CMV, EBV, Influenza, Adenovirus and MART-1. Shown are the frequencies of tetramer-positive CD8 T cells from 2 technical replicates per subject. Results Almost all individuals screened showed a T cell response against SARS-CoV-2 (29/30): 132 SARS-CoV-2-specific CD8+ T cells hits were detected, corresponding to 52 unique reactive epitopes. Twelve of the 52 unique SARS-CoV-2-specific epitopes were recognized by more than 40% of the individuals screened, indicating high prevalence in the subjects. Importantly, these CD8+ T cell responses were directed against both structural and non-structural viral proteins, with the highest magnitude against nucleocapsid derived peptides, but without any antigen-driven bias in the phenotype of specific T cells. Overall, SARS-CoV-2 T cells showed specific states of differentiation (stem-cell memory and transitional memory), which differed from those of MART-1, influenza, CMV and EBV-specific T cells. UMAP visualization revealed a phenotypic profile of SARS-CoV-2-specific CD8 T cells in COVID-19 convalescent donors that is distinct from other viral specificities, such as influenza, CMV, EBV and Adenovirus. SARS-CoV-2 epitope screening revealed CD8+ T cell responses directed against both structural and non-structural viral proteins, with the highest magnitude response against nucleocapsid derived peptides Conclusion The kinetics modeling demonstrates a dynamic, evolving immune response characterized by a time-dependent decrease in overall inflammation, increase in neutralizing antibody titer, and progressive differentiation of a broad SARS-CoV-2 CD8 T cell response. It could be desirable to aim at recapitulating the hallmarks of this robust CD8 T cell response in the design of protective COVID-19 vaccines. Disclosures Hassen Kared, PhD, ImmunoScape (Shareholder) Alessandra Nardin, DvM, ImmunoScape (Shareholder) Hermi Sumatoh, BSc, Dip MTech, ImmunoScape (Shareholder) Faris Kairi, BSc, ImmunoScape (Shareholder) Daniel Carbajo, PhD, ImmunoScape (Shareholder) Brian Abel, PhD, MBA, ImmunoScape (Shareholder) Evan Newell, PhD, ImmunoScape (Shareholder)


2016 ◽  
Vol 90 (10) ◽  
pp. 5187-5199 ◽  
Author(s):  
Qingsong Qin ◽  
Shwetank ◽  
Elizabeth L. Frost ◽  
Saumya Maru ◽  
Aron E. Lukacher

ABSTRACTMouse polyomavirus (MPyV) is a ubiquitous persistent natural mouse pathogen. A glutamic acid (E)-to-glycine (G) difference at position 91 of the VP1 capsid protein shifts the profile of tumors induced by MPyV from an epithelial to a mesenchymal cell origin. Here we asked if this tropism difference affects the MPyV-specific CD8 T cell response, which controls MPyV infection and tumorigenesis. Infection by the laboratory MPyV strain RA (VP1-91G) or a strain A2 mutant with an E-to-G substitution at VP1 residue 91 [A2(91G)] generated a markedly smaller virus-specific CD8 T cell response than that induced by A2(VP1-91E) infection. Mutant A2(91G)-infected mice showed a higher frequency of memory precursor (CD127hiKLRG1lo) CD8 T cells and a higher recall response than those of A2-infected mice. Using T cell receptor (TCR)-transgenic CD8 T cells and immunization with peptide-pulsed dendritic cells, we found that early bystander inflammation associated with A2 infection contributed to recruitment of the larger MPyV-specific CD8 T cell response. Beta interferon (IFN-β) transcripts were induced early during A2 or A2(91G) infections. IFN-β inhibited replication of A2 and A2(91G)in vitro. Using mice lacking IFN-αβ receptors (IFNAR−/−), we showed that type I IFNs played a role in controlling MPyV replicationin vivobut differentially affected the magnitude and functionality of virus-specific CD8 T cells recruited by A2 and A2(91G) viral infections. These data indicate that type I IFNs are involved in protection against MPyV infection and that their effect on the antiviral CD8 T cell response depends on capsid-mediated tropism properties of the MPyV strain.IMPORTANCEIsolates of the human polyomavirus JC virus from patients with the frequently fatal demyelinating brain disease progressive multifocal leukoencephalopathy (PML) carry single amino acid substitutions in the domain of the VP1 capsid protein that binds the sialic acid moiety of glycoprotein/glycolipid receptors on host cells. These VP1 mutations may alter neural cell tropism or enable escape from neutralizing antibodies. Changes in host cell tropism can affect recruitment of virus-specific CD8 T cells. Using mouse polyomavirus, we demonstrate that a single amino acid difference in VP1 known to shift viral tropism profoundly affects the quantity and quality of the anti-polyomavirus CD8 T cell response and its differentiation into memory cells. These findings raise the possibility that CD8 T cell responses to infections by human polyomaviruses may be influenced by VP1 mutations involving domains that engage host cell receptors.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2010 ◽  
Vol 6 (8) ◽  
pp. e1001051 ◽  
Author(s):  
Elena Sandalova ◽  
Diletta Laccabue ◽  
Carolina Boni ◽  
Anthony T. Tan ◽  
Katja Fink ◽  
...  

2012 ◽  
Vol 188 (9) ◽  
pp. 4289-4296 ◽  
Author(s):  
Marc A. Frahm ◽  
Ralph A. Picking ◽  
JoAnn D. Kuruc ◽  
Kara S. McGee ◽  
Cynthia L. Gay ◽  
...  

2018 ◽  
Author(s):  
Xiaoyan Zheng ◽  
Jennifer Dora Oduro ◽  
Julia Désirée Boehme ◽  
Lisa Borkner ◽  
Thomas Ebensen ◽  
...  

Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


2000 ◽  
Vol 74 (17) ◽  
pp. 8094-8101 ◽  
Author(s):  
Robbert G. van der Most ◽  
Kaja Murali-Krishna ◽  
Rafi Ahmed ◽  
James H. Strauss

ABSTRACT We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.


2008 ◽  
Vol 37 ◽  
pp. 62-68 ◽  
Author(s):  
David A. Hokey ◽  
Jian Yan ◽  
Lauren A. Hirao ◽  
Anlan Dai ◽  
Jean D. Boyer ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 606-606 ◽  
Author(s):  
Louis J. Picker ◽  
Andrew W. Sylwester ◽  
Bridget L. Mitchell ◽  
Cara Taormina ◽  
Christian Pelte ◽  
...  

Abstract Human Cytomegalovirus (HCMV) is among the largest and most complex of known viruses with 150–200nm virions enclosing a double stranded 230kb DNA genome capable of coding for >200 proteins. HCMV infection is life-long, and for the vast majority of immune competent individuals clinically benign. Disease occurs almost exclusively in the setting of immune deficiency, suggesting that the stable host-parasite relationship that characterizes these infections is the result of an evolutionarily “negotiated” balance between viral mechanisms of pathogenesis and the host immune response. In keeping with, and perhaps because of this balance, the human CD4+ T cell response to whole HCMV viral lysates is enormous, with median peripheral blood frequencies of HCMV-specific cells ~5–10 fold higher than for analogous preparations of other common viruses. Although certain HCMV ORFs have been identified as targets of either the CD4+ or CD8+ T cell response, the specificities comprising the CD4+ T cell response, and both the total frequencies and component parts of the CD8+ T cell response are unknown. Here, we used cytokine flow cytometry and ~14,000 overlapping 15mer peptides comprising all 213 HCMV ORFs encoding proteins >100 amino acids in length to precisely define the total CD4+ and CD8+ HCMV-specific T cell responses and the HCMV ORFs responsible for these responses in 33 HCMV-seropositive, HLA-disparate donors. An additional 9 HCMV seronegative donors were similarly examined to define the extent to which non-HCMV responses cross-react with HCMV-encoded epitopes. We found that when totaled, the median frequencies of HCMV-specific CD4+ and CD8+ T cells in the peripheral blood of the seropositive subjects were 4.0% and 4.5% for the total CD4+ or CD8+ T cell populations, respectively (which corresponds to 9.1% and 10.5% of the memory populations, respectively). The HCMV-specific CD4+ and CD8+ T cell responses included a median 12 and 7 different ORFs, respectively, and all told, 73 HCMV ORFs were identified as targets for both CD4+ and CD8+ T cells, 26 ORFs as targets for CD8+ T cells alone, and 43 ORFS as targets for CD4+ T cells alone. UL55, UL83, UL86, UL99, and UL122 were the HCMV ORFs most commonly recognized by CD4+ T cells; UL123, UL83, UL48, UL122 and UL28 were the HCMV ORFs most commonly recognized by CD8+ T cells. The relationship between immunogenicity and 1) HLA haplotype and 2) ORF expression and function will be discussed. HCMV-seronegative individuals were non-reactive with the vast majority of HCMV peptides. Only 7 potentially cross-reactive responses were identified (all by CD8+ T cells) to 3 ORFs (US32, US29 and UL116) out of a total of almost 4,000 potential responses, suggesting fortuitous cross-reactivity with HCMV epitopes is uncommon. These data provide the first glimpse of the total human T cell response to a complex infectious agent, and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3267-3267
Author(s):  
Lauren T. Southerland ◽  
Jian-Ming Li ◽  
Sohrab Hossain ◽  
Cynthia Giver ◽  
Wayne Harris ◽  
...  

Abstract Background: The severe morbidity and mortality associated with bone marrow transplantation (BMT) is caused by uninhibited immune responses to alloantigen and suppressed immune responses to pathogens. Vasoactive Intestinal Peptide (VIP) is an immunomodulatory neuropeptide produced by T-cells and nerve fibers in peripheral lymphoid organs that suppresses immune responses by induction of tolerogenic dendritic cells. In order to determine the immunoregulatory effects of VIP, we examined T-cell immune responses to allo- and viral-antigens in VIP knockout (KO) mice and mouse BMT recipients of hematopoietic cells from VIP KO donors. Methods: VIP KO mice and VIP WT littermates were infected with lethal or sub-lethal doses (5 × 104− 5 × 105 PFU) of murine cytomegalovirus (mCMV) and the T-cell response to viral antigen was measured by flow cytometry for mCMV peptide-MHC class 1-tetramer+ CD8+ T-cells. We transplanted 5 × 106 BM plus 1 × 106 splenocytes (SP) either from VIP KO or VIP WT donors in an C57BL/6 to F1(BL/6 × Balb/c) allo-BMT model and assessed survival, GvHD, donor T-cell expansion, chimerism, and response to mCMV vaccination and mCMV infection. Results: B-cell, αβ and γδ T-cell, CD8+ T-cell, CD11b+ myeloid cell, and dendritic cell numbers were equivalent between VIP KO and WT mice, while VIP KO mice had higher number of CD4+ and CD4+CD62L+CD25+ T-cells. Non-transplanted VIP KO mice survived mCMV infection better compared to VIP WT, with a brisker anti-viral T-cell response in the blood. In the allogeneic BMT setting, recipients of VIP KO BM plus VIP KO SP had more weight loss and lower (40%) 100 day post-transplant survival compared to the recipients of VIP KO BM plus WT SP (80% survival), recipients of WT BM plus KO SP (100% survival), and recipients of WT BM plus WT SP (80% survival). Recipients of VIP KO grafts had a significantly greater anti-mCMV response that peaked four days earlier than the tetramer response of mice transplanted with WT cells. This increased anti-viral response to vaccination correlated with a greater and more rapid T-cell response to secondary viral challenge. Conclusions: These experiments suggest that the absence of all VIP in the body, or the absence of VIP in a transplanted immune system, enhances anti-viral immunity and allo-immune responses. Modulation of the VIP pathway is a novel method to regulate post-transplant immunity. Figure 1: VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day. Figure 1:. VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day.


Sign in / Sign up

Export Citation Format

Share Document