Expression of Activating Natural Killer Cell Receptor Ligands in Childhood Acute Lymphoblastic Leukemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4478-4478
Author(s):  
Ulrike Mura ◽  
Matthias Pfeiffer ◽  
Rupert Handgretinger ◽  
Peter J. Lang

Abstract Activating and inhibitory cell surface receptors regulate natural killer (NK) cell effector functions. The extent of expression of their activating ligands on target cells probably plays a critical role in tumor immune surveillance, but the data of this expression on blasts of leukemia patients are still poor. We examined blasts of children with ALL for the activating human NKG2D ligands MICA, MICB, ULBP1, ULBP2 and ULBP3, and for the ligands of the activating human natural cytotoxic receptors (NCRs) NKp30, NKp44 and NKp46. Using ligand specific mouse monoclonal antibodies and flow cytometry, we screened 24 children (23 common-ALL, one pre-T-ALL) for the expression of NKG2D ligands and 15 children (all common-ALL) for NCR ligands. In 13 patients (all common-ALL), also the density of the NKG2D ligands was determined by quantitative flow cytometry. Considering cells positive for a particular ligand in case of a two fold increase of median fluorescence above negative control, 38 percent of the patients were positive for one or more NKG2D ligands, while only 13 percent expressed one or more NCR ligands at significant levels. ULBP1 was most frequently expressed (29 percent of patients positive), while no patients were positive for ULBP2 and NKp44 ligands. ULBP3 was positive in 17 percent of the patients, NKp30 and NKp46 ligands in 13 percent, MICA and MICB in 4 percent. The patient with pre-T-ALL was positive only for ULBP1. So ULBP1 was expressed more frequently, while the other NKG2D ligands were expressed less frequently in children than reported for adult leukemia patients before (Salih et al. Blood.2003;102:1389–1396.). The density of detected NKG2D ligand molecules was always rather low. For MICA the maximum were 1700 molecules per cell in a single patient, for MICB 900, for ULBP1 1100, and for ULBP3 1000 molecules per cell. In summary, blasts of pediatric ALL patients displayed low or negative surface levels of ligands for the human activating NK cell receptors NKG2D, NKp30, NKp44 and NKp46. QUALITATIVE LIGAND EXPRESSION QUALITATIVE LIGAND EXPRESSION QUANTITATIVE LIGAND EXPRESSION QUANTITATIVE LIGAND EXPRESSION

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2128-2128 ◽  
Author(s):  
Abdual H. Siddiqui ◽  
Mohammad Bhuiyan ◽  
Akila Muthukumar ◽  
Steven Buck ◽  
Yaddanapudi Ravindranath ◽  
...  

Abstract Abstract 2128 Background: Maintenance chemotherapy (MC) is an important component of childhood B-precursor acute lymphoblastic leukemia (ALL) therapy; however, it is not necessary in the treatment of mature B cell neoplasms. The operational mechanisms of MC are not understood. Improvement in immunologic function including near normal levels of natural killer (NK) lymphocytes was reported during ALL MC. We hypothesize that in addition to their direct cytotoxicity, MC drugs alter surviving lymphoblasts, rendering them susceptible to innate immune response, likely through cell mediated cytotoxicity via stress proteins such as NKG2D ligands, co-stimulatory or adhesion molecules. Objective: The effect of 6-mercaptopurine (6MP) or methotrexate (MTX) treatment of B-precursor and mature B leukemia/lymphoma cells in their elimination by NK lymphocytes was investigated in this study. Design and Methods: Allogeneic NK cell-mediated elimination of REH (TEL/AML-positive B-precursor ALL) and Raji (mature B cell lymphoma) cells treated with standard MC drugs was studied. High dose cytarabine (Ara-C) and MTX are used during the consolidation chemotherapy; therefore, Ara-C and MTX-resistant REH and Raji cell sub-lines were established by exposing wild type cells to increasing concentrations of drugs over several months. Natural killer cells from 17 healthy volunteers were separated using the MACS NK cell isolation kit. After purity evaluation, NK cells were incubated with interleukin-15 overnight. Leukemia cells were incubated in minimally toxic (20% cytotoxicity) concentrations of 6MP and MTX. The leukemia/lymphoma cells were then co-incubated with NK cells at different ratios. The NK cell-mediated leukemia/lymphoma cell cytotoxicity was measured by flow cytometric cell-mediated cytotoxicity assay, marking effector cells with lineage-specific monoclonal antibodies and staining target cells with propidium iodide and annexin-V and using microspheres for quantification of viable and apoptotic cells. The level of resistance of the respective cell sub-lines was evaluated using MTT assay. We also investigated whether NK cell exposure to same concentrations of MC drugs before co-incubation alters cytotoxicity. Surface expression of NKG2D ligands, ULBP 1, 2 and 3, MICA and MICB was studied by flow cytometry. Results: 6-mercaptopurine treatment of REH cells and MTX treatment of Raji cells resulted in enhanced NK cell-mediated elimination when compared to untreated cells by 25% and 20%, respectively. The results were similar when NK cells were exposed to the same concentrations of MC drugs before co-incubation, indicating lack of negative effect of the drug exposure in NK cells’ ability to kill. Similar experiments were conducted on resistant cells, in order to make the target cells more comparable to the residual lymphoblasts during MC. Most interestingly, the REH cells, but not the Raji cells, resistant to Ara-C and MTX showed about 14% and 4% enhancement of NK cell-mediated killing, respectively, after being exposed to the minimally toxic concentrations of MC drugs. This indicates that resistant B precursor ALL cells can be eliminated by NK cells upon MC drug exposure, but not mature B lymphoblasts, in this experimental setting. No increase in the expression of NKG2D ligands on drug treated ALL cells was observed. Conclusion: These findings suggest that enhanced susceptibility of drug-exposed leukemia cells to innate immune response may be an operational mechanism of MC. This mechanism may involve pathways other than NKG2D. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2858-2866 ◽  
Author(s):  
Yanmei Han ◽  
Minghui Zhang ◽  
Nan Li ◽  
Taoyong Chen ◽  
Yi Zhang ◽  
...  

Abstract Natural killer (NK) cell inhibitory receptors play important roles in the regulation of target susceptibility to natural killing. Here, we report the molecular cloning and functional characterization of a novel NK cell receptor, KLRL1, from human and mouse dendritic cells. KLRL1 is a type II transmembrane protein with an immunoreceptor tyrosine-based inhibitory motif and a C-type lectinlike domain. The KLRL1 gene is located in the central region of the NK gene complex in both humans and mice, on human chromosome 12p13 and mouse chromosome 6F3, adjacent to the other KLR genes. KLRL1 is preferentially expressed in lymphoid tissues and immune cells, including NK cells, T cells, dendritic cells, and monocytes or macrophages. Western blot and fluorescence confocal microscopy analyses indicated that KLRL1 is a membrane-associated glycoprotein, which forms a heterodimer with an as yet unidentified partner. Human and mouse KLRL1 are both predicted to contain putative immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoprecipitation experiments demonstrated that KLRL1 associates with the tyrosine phosphatases SHP-1 (SH2-domain-containing protein tyrosine phosphatase 1) and SHP-2. Consistent with its potential inhibitory function, pretreatment of target cells with human KLRL1-Fc fusion protein enhances NK-mediated cytotoxicity. Taken together, our results demonstrate that KLRL1 belongs to the KLR family and is a novel inhibitory NK cell receptor.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


2018 ◽  
Vol 115 (15) ◽  
pp. E3509-E3518 ◽  
Author(s):  
Suresh Bugide ◽  
Michael R. Green ◽  
Narendra Wajapeyee

Natural killer (NK) cell-mediated tumor cell eradication could inhibit tumor initiation and progression. However, the factors that regulate NK cell-mediated cancer cell eradication remain unclear. We determined that hepatocellular carcinoma (HCC) cells exhibit transcriptional down-regulation of NK group 2D (NKG2D) ligands and are largely resistant to NK cell-mediated eradication. Because the down-regulation of NKG2D ligands occurred at the transcriptional level, we tested 32 chemical inhibitors of epigenetic regulators for their ability to re-express NKG2D ligands and enhance HCC cell eradication by NK cells and found that Enhancer of zeste homolog 2 (EZH2) was a transcriptional repressor of NKG2D ligands. The inhibition of EZH2 by small-molecule inhibitors or genetic means enhanced HCC cell eradication by NK cells in a NKG2D ligand-dependent manner. Collectively, these results demonstrate that EZH2 inhibition enhances HCC eradication by NK cells and that EZH2 functions, in part, as an oncogene by inhibiting immune response.


2012 ◽  
Vol 54 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Laura Jardine ◽  
Sophie Hambleton ◽  
Venetia Bigley ◽  
Sarah Pagan ◽  
Xiao-Nong Wang ◽  
...  

2002 ◽  
Vol 11 (4) ◽  
pp. 219-224 ◽  
Author(s):  
Toshiaki Kogure ◽  
Naoki Mantani ◽  
Hirozo Goto ◽  
Yutaka Shimada ◽  
Jun'ichi Tamura ◽  
...  

Interleukin (IL)-15 has emerged as a key regulator of both natural killer (NK) cell differentiation and activation. The aim of the present study was to investigate the expansion of the population of cells expressing killer-cell immunoglobulin-like receptors (CD158a and CD158b) in human peripheral lymphocytes by treatment with IL-15. One million peripheral lymphocytes were cultured in RPMI1640 medium alone or in medium containing IL-2 at 100 U/ml or IL-15 at 0.1, 1.0, or 10.0 ng/ml for 48 h. After each incubation, we assessed the natural killing activity and the population of CD16+CD158a+/b+cells and CD8+CD158a+/b+cells. IL-15 increased the NK activity and expanded the populations of CD16+CD158a+/b+cells and CD8+CD158a+/b+cells. These actions were dose dependent, and the effects of IL-15 at 1.0 ng/ml were close to those of IL-2 at 100 U/ml. These findings suggest that IL-15 induces the effector functions of resting NK cells throughout the body, and thereby plays a critical role in the activation of tissue-associated immune responses.


1995 ◽  
Vol 181 (3) ◽  
pp. 1133-1144 ◽  
Author(s):  
J E Gumperz ◽  
V Litwin ◽  
J H Phillips ◽  
L L Lanier ◽  
P Parham

Although inhibition of natural killer (NK) cell-mediated lysis by the class I HLA molecules of target cells is an established phenomenon, knowledge of the features of class I molecules which induce this effect remains rudimentary. Using class I alleles HLA-B*1502 and B*1513 which differ only at residues 77-83 which define the Bw4 and Bw6 serological epitopes, we tested the hypothesis that the presence of the Bw4 epitope on class I molecules determines recognition by NKB1+ NK cells. HLA-B*1513 possesses the Bw4 epitope, whereas B*1502 has the Bw6 epitope. Lysis by NKB1+ NK cell clones of transfected target cells expressing B*1513 as the only HLA-A, -B, or -C molecule was inhibited, whereas killing of transfectants expressing B*1502 was not. Addition of an an anti-NKB1 monoclonal antibody reconstituted lysis of the targets expressing B*1513, but did not affect killing of targets bearing B*1502. The inhibitory effect of B*1513 could be similarly prevented by the addition of an anti-class I monoclonal antibody. These results show that the presence of the Bw4 epitope influences recognition of HLA-B molecules by NK cells that express NKB1, and suggest that the NKB1 molecule may act as a receptor for Bw4+ HLA-B alleles. Sequences outside of the Bw4 region must also affect recognition by NKB1+ NK cells, because lysis of transfectants expressing HLA-A*2403 or A*2501, which possess the Bw4 epitope but are in other ways substantially different from HLA-B molecules, was not increased by addition of the anti-NKB1 antibody. Asparagine 86, the single site of N-linked glycosylation on class I molecules, is in close proximity to the Bw4/Bw6 region. The glycosylation site of the Bw4-positive molecule B*5801 was mutated, and the mutant molecules tested for inhibition of NKB1+ NK cells. Inhibition that could be reversed by addition of the anti-NKB1 monoclonal antibody was observed, showing the presence of the carbohydrate moiety is not essential for class I recognition by NKB1+ NK cell clones.


2003 ◽  
Vol 197 (10) ◽  
pp. 1245-1253 ◽  
Author(s):  
Melissa Lodoen ◽  
Kouetsu Ogasawara ◽  
Jessica A. Hamerman ◽  
Hisashi Arase ◽  
Jeffrey P. Houchins ◽  
...  

Natural killer (NK) cells play a critical role in the innate immune response against cytomegalovirus (CMV) infections. Although CMV encodes several gene products committed to evasion of adaptive immunity, viral modulation of NK cell activity is only beginning to be appreciated. A previous study demonstrated that the mouse CMV m152-encoded gp40 glycoprotein diminished expression of ligands for the activating NK cell receptor NKG2D on the surface of virus-infected cells. Here we have defined the precise ligands that are affected and have directly implicated NKG2D in immune responses to CMV infection in vitro and in vivo. Murine CMV (MCMV) infection potently induced transcription of all five known retinoic acid early inducible 1 (RAE-1) genes (RAE-1α, RAE-1β, RAE-1δ, RAE-1ε, and RAE-1γ), but not H-60. gp40 specifically down-regulated the cell surface expression of all RAE-1 proteins, but not H-60, and diminished NK cell interferon γ production against CMV-infected cells. Consistent with previous findings, a m152 deletion mutant virus (Δm152) was less virulent in vivo than the wild-type Smith strain of MCMV. Treatment of BALB/c mice with a neutralizing anti-NKG2D antibody before infection increased titers of Δm152 virus in the spleen and liver to levels seen with wild-type virus. These experiments demonstrate that gp40 impairs NK cell recognition of virus-infected cells through disrupting the RAE-1–NKG2D interaction.


2002 ◽  
Vol 197 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Carsten Watzl ◽  
Eric O. Long

A dynamic balance of positive and negative signals regulates target cell lysis by natural killer (NK) cells upon engagement of a variety of different activation receptors and of inhibitory receptors that recruit the tyrosine phosphatase SHP-1. However, the step at which activation signals are blocked by SHP-1 is not known. We have been using activation receptor 2B4 (CD244) to study the influence of inhibitory receptors on NK cell activation. Engagement of inhibitory receptors by HLA class I on target cells blocks phosphorylation of 2B4, placing the inhibitory step at the level, or upstream of 2B4 phosphorylation. Here we show that phosphorylated 2B4, after engagement with either antibodies or target cells that express the 2B4 ligand, is found exclusively in a detergent-resistant membrane fraction that contains lipid rafts. Integrity of lipid rafts was essential for phosphorylation and activating function of 2B4. Coengagement of inhibitory receptors blocked 2B4 phosphorylation and 2B4 association with detergent-resistant membranes, indicating that inhibitory receptors function upstream of raft-dependent signals. Recruitment of 2B4 into detergent-resistant membrane fractions and 2B4 phosphorylation were dependent on actin polymerization. Blocking actin cytoskeleton-dependent raft recruitment of different receptors may be a general mechanism by which inhibitory receptors control NK cell activation.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2316-2323 ◽  
Author(s):  
Stefania Marcenaro ◽  
Federico Gallo ◽  
Stefania Martini ◽  
Alessandra Santoro ◽  
Gillian M. Griffiths ◽  
...  

Abstract Natural killer (NK) cells from patients with familial hemophagocytic lymphohistiocytosis because of PRF1 (FHL2, n = 5) or MUNC13-4 (FHL3, n = 8) mutations were cultured in IL-2 prior to their use in various functional assays. Here, we report on the surface CD107a expression as a novel rapid tool for identification of patients with Munc13-4 defect. On target interaction and degranulation, FHL3 NK cells displayed low levels of surface CD107a staining, in contrast to healthy control subjects or perforin-deficient NK cells. B-EBV cell lines and dendritic cell targets reveal the FHL3 NK-cell defect, whereas highly susceptible tumor targets were partially lysed by FHL3 NK cells expressing only trace amounts of Munc13-4 protein. Perforin-deficient NK cells were completely devoid of any ability to lyse target cells. Cytokine production induced by mAb-crosslinking of triggering receptors was comparable in patients and healthy control subjects. However, when cytokine production was induced by coculture with 721.221 B-EBV cells, FHL NK cells resulted in high producers, whereas control cells were almost ineffective. This could reflect survival versus elimination of B-EBV cells (ie, the source of NK-cell stimulation) in patients versus healthy control subjects, thus mimicking the pathophysiologic scenario of FHL.


Sign in / Sign up

Export Citation Format

Share Document