Recombinant Protein A Activity in SCID Mouse Models of Human B Cell Tumors.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4757-4757
Author(s):  
Andrew Cooper ◽  
Rhona Stein ◽  
Katherine Hall ◽  
Richard Boismenu ◽  
Susan Chen ◽  
...  

Abstract Protein A from Staphylococcus Aureus acts as a potent B cell superantigen through specific interaction with B cell receptors displaying variable heavy chain sequences from the VH3 clan. In humans, 30–50% of all B cells are VH3-positive, so protein A activity may serve to interfere with host immune responses to S. Aureus through deletion of normal B cell subsets. Indeed, protein A-mediated B cell deletion has been demonstrated in transgenic mice with nearly all B cells expressing VH3-positive surface Ig [Goodyear, J. Immunol176(4), 2262, 2006]. However, it is conceivable that this activity may be usurped to target clonal B cell diseases with a VH3-positive cell origin. In the current study, the superantigen function of a recombinant therapeutic form of protein A (TpA) was exploited to investigate potential anti-tumor activity of protein A in in vitro and in vivo models of B cell neoplastic disease. TpA initiated apoptotic cell death of VH3-positive B cell tumor lines in culture within 24–48 of exposure as evidenced by alteration in mitochondrial membrane potential, activation of caspases, and external exposure of phosphatidylserine in the cell membrane. By 72–96 hours, cell viability was reduced by >50%. Addition of human IgG was essential for cell killing and optimal activity was observed at a 2:1 molar ratio of IgG to TpA. In SCID mice engrafted with the non-Hodgkin’s lymphoma cell line 2F7, TpA administered along with human IgG resulted in modest but statistically significant extension of median survival. In two independent studies employing a SCID mouse KMS-12-BM tumor model, TpA along with 40mg/kg human IgG produced a dose-dependent, reproducible therapeutic effect. At the highest dose studied (30mg/kg), median survival was 45 days compared to median survival of 27 days for control animals. Increased frequency of TpA administration also positively impacted median survival. While human IgG was required for optimal response, a five-fold increase in IgG diminished TpA anti-tumor activity, further underscoring the importance of the ratio of TpA to IgG in cell killing. These results demonstrate that the capacity of protein A to act as a B cell superantigen is not limited to normal cells but can be manifest on transformed cells as well. Since the VH3 clan is highly represented in the human B cell repertoire and is over-represented in some B cell neoplastic diseases, protein A may have utility as a therapeutic agent in cases of B cell malignancy where a VH3 origin is identified.

Blood ◽  
1985 ◽  
Vol 65 (6) ◽  
pp. 1335-1341 ◽  
Author(s):  
RJ Ford ◽  
NM Kouttab ◽  
CG Sahasrabuddhe ◽  
FM Davis ◽  
SR Mehta

Abstract The non-Hodgkin's lymphomas (NHLs) are a heterogeneous group of human lymphoid tumors, primarily of B cell lineage, which appear to represent arrested stages in B lymphocyte differentiation. Control of cell proliferation is a fundamentally important but poorly understood area of study in these tumors. We have studied a representative group of B cell NHLs to assess their potential for growth factor-mediated proliferation in vitro. Our results show that purified monoclonal NHL B cells of the small cell (well-differentiated lymphocytic lymphoma, nodular poorly differentiated lymphocytic lymphoma, etc) type, that were positive for the human malignancy-associated nucleolar antigen could be stimulated by human B cell growth factor (BCGF) to proliferate in vitro. Other B cell activators such as insoluble anti-Ig and the mitogen protein A also could stimulate thymidine incorporation in the lymphoma cell populations. In vitro lymphoma cell growth could be maintained in the presence of the growth factor for up to five weeks. The large B cell type NHL, however, appeared to be refractory to in vitro stimulation by BCGF as well as other stimulators of normal B cells. These studies suggest that human B cell lymphoid tumors are not only phenotypically similar to their normal B lymphocyte counterparts, but are also sensitive in some cases, to the same types of immunoregulatory molecules that control normal lymphoid cell growth.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 711
Author(s):  
Henry A. Utset ◽  
Jenna J. Guthmiller ◽  
Patrick C. Wilson

The generation of high affinity antibodies is a crucial aspect of immunity induced by vaccination or infection. Investigation into the B cells that produce these antibodies grants key insights into the effectiveness of novel immunogens to induce a lasting protective response against endemic or pandemic pathogens, such as influenza viruses, human immunodeficiency virus, or severe acute respiratory syndrome coronavirus-2. However, humoral immunity has largely been studied at the serological level, limiting our knowledge on the specificity and function of B cells recruited to respond to pathogens. In this review, we cover a number of recent innovations in the field that have increased our ability to connect B cell function to the B cell repertoire and antigen specificity. Moreover, we will highlight recent advances in the development of both ex vivo and in vivo models to study human B cell responses. Together, the technologies highlighted in this review can be used to help design and validate new vaccine designs and platforms.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily E. Radke ◽  
Zhi Li ◽  
David N. Hernandez ◽  
Hanane El Bannoudi ◽  
Sergei L. Kosakovsky Pond ◽  
...  

Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.


2016 ◽  
Vol 7 ◽  
Author(s):  
Victoria G. Martin ◽  
Yu-Chang Bryan Wu ◽  
Catherine L. Townsend ◽  
Grace H. C. Lu ◽  
Joselli Silva O’Hare ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2522-2522 ◽  
Author(s):  
Nishitha Reddy ◽  
Raymond Cruz ◽  
Francisco Hernandez-Ilizaliturri ◽  
Joy Knight ◽  
Myron S. Czuczman

Abstract Background: Lenalidomide is a potent thalidomide analogue shown to activate both the innate and adoptive immune system, inhibit angiogenesis, and modify the tumor microenvironment. While lenalidomide has received approval by the U.S. Federal Drug Administration (FDA) for the treatment of various hematological conditions, ongoing clinical trials are addressing its role in the treatment of B-cell lymphomas. There is a dire need to develop novel well-tolerated, therapies which combine various target-specific agents such as lenalidomide and monoclonal antibodies (mAbs). We previously demonstrated that lenalidomide is capable of expanding natural killer (NK) cells in a human-lymphoma-bearing SCID mouse model and improve rituximab anti-tumor activity in vivo. Methods: In our current work we studied the effects of lenalidomide on the biological activity of a panel of mAbs against various B-cell lymphomas, utilizing various rituximab-sensitive (RSCL) and rituximab-resistant cell lines (RRCL) generated in our laboratory from Raji and RL cell lines. Functional assays including antibody-dependant cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CMC) were performed to demonstrate changes in sensitivity to rituximab. RSCL and RRCL (1′105 cells/well) were exposed to either lenalidomide (5 μg/ml) or vehicle with or without mAb at a final concentration of 10μg/ml. The mAb panel consisted of two anti-CD20 mAbs: rituximab (Biogen IDEC, Inc.) and hA20, a humanized anti-CD20 mAb (Immunomedics, Inc.); an anti-CD80 mAb (galixumab, Biogen IDEC Inc.), and an anti-CD52 antibody (Alemtuzumab, Berlex Inc.). Changes in DNA synthesis and cell proliferation were determined at 24 and 48 hrs by [3H]-thymidine uptake. For ADCC/CMC studies, NHL cells were exposed to lenalidomide or vehicle for 24 hrs and then labeled with 51Cr prior to treatment with one of various mAbs (10 mg/ml) and peripheral blood mononuclear cells (Effector: Target ratio, 40:1) or human serum, respectively. 51Cr-release was measured and the percentage of lysis was calculated. Changes in antigen (CD20, CD80, and CD52) expression following in vitro exposure to lenalidomide were studied by multicolor flow cytometric analysis. Results: Concomitant in vitro exposure of various RSCL and RRCL cells to lenalidomide and either galixumab, hA20 or alemtuzumab for 24 hrs resulted in improved anti-tumor activity when compared to controls. In addition, pre-incubation of both RSCL and RRCL with lenalidomide rendered cells more susceptible to alemtuzumab-, hA20- and galixumab-mediated ADCC and CMC. No antigen modulation (i.e., upregulation) was observed following in vitro exposure of lenalidomide to NHL cell lines, suggesting an alternative mechanism involved in the improvement antitumor activity observed. Conclusions: Our data suggest that the augmented antitumor effect of lenalidomide is not limited to its combination with rituximab, but also that it augments the antiproliferative and biological activity of alemtuzumab, hA20 and galixumab. Furthermore, these interactions are observed even in our RRCL. Future studies will be directed towards evaluating whether similar activity will be seen in vivo using a human lymphoma-bearing SCID mouse model. (Supported by USPHS grant PO1-CA103985 from the National Cancer Institute.)


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2008-2008
Author(s):  
Ryan T Phan ◽  
Khang Nguyen ◽  
Sonia Romero ◽  
Alice Nicolson ◽  
Phillipp Nham ◽  
...  

Abstract Abstract 2008 Most human B-cell lymphomas represent mature phenotypes of germinal center (GC) or post-GC origin and are frequently associated with chromosomal translocations, often involving the rearrangement of immunoglobulin (Ig) loci to various cellular oncogenes, leading to oncogenic activation. The mechanisms underlying these processes, however, are not well understood. Several studies suggest that these genetic lesions arise from errors of physiologic DNA rearrangements in GC B cells, namely class switch recombination (CSR) and somatic hypermutation (SHM). Here we report the generation of a mouse model in which DNA breaks are physiologically instituted in mature B cells, yet inefficiently repaired via specific deletion of DNA repair gene XRCC4 in GC B cells, thus effectively creating an in vivo environment for errors in DNA rearrangements. These activated B cells exhibit significant increased chromosomal IgH locus breaks and reduced CSR. In p53-deficient background, these mice develop B-cell lymphoma from 5.5 to 16 months. These clonally developed tumors characteristically harbor chromosomal translocations and phenotypically resemble mature phenotypes. Many of these tumors bear mutated V genes, suggesting that those cells have transited through GC. Thus, this mouse model mimics human B-cell lymphoma and might be useful for the development of therapeutic interventions in B-cell lymphoma. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3063-3063
Author(s):  
C. Cerveny ◽  
L. Grosmaire ◽  
E. Espling ◽  
R. Bader ◽  
C. Nilsson ◽  
...  

3063 Background: CD37 is a member of the tetraspanin family expressed at high levels by normal mature B cells and by most B cell malignancies. Previously, an antibody to CD37 has been labeled with 131I and tested in clinical trials for therapy of NHL. Treatment with 131I-MB-1, resulted in durable tumor remissions in patients lasting from 4 to 11 months (Press OW, Eary JF, Badger CC, et al. Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol. 1989;7:1027–1038). Here we assess the functional properties and therapeutic potential of a small modular immunopharmaceutical (SMIP) targeting CD37. Methods: Growth arrest and apoptosis of B lymphoma cell lines was assessed. ADCC activity was evaluated using BJAB targets and human peripheral blood mononuclear cells (PBMC) effectors. Drug-drug interactions were assessed by the Combination Index method. In vivo studies were performed utilizing established human B cell tumor xenografts in nude mice. Results: A CD37-directed SMIP drug candidate mediated growth arrest, apoptosis and ADCC, but not CDC, towards B lymphoma cell lines. The protein showed significant anti-tumor activity in a mouse xenograft model, and selectively depleted normal human B cells in short term cultures of PBMC. When combined with rituximab, the molecule increased apoptosis, C1q binding, and C’ dependent target cell death in vitro, and increased anti-tumor activity in vivo in a xenograft model. Conclusions: In vitro and in vivo characterization of the CD37-targeted SMIP drug suggest a potent capacity to eliminate target cells through combined effects of direct target cell signaling and effector cell recruitment. CD37-mediated growth was synergistic with standard chemotherapies in vitro and showed additive in vivo activity with CD20-targeted therapy. On the basis of these data CD37-directed SMIP therapy is being developed for clinical evaluation against B cell malignancies. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document