Vaccination Strategies for Patients with B-CLL.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2106-2106
Author(s):  
Fatma V Okur ◽  
Eric Yvon ◽  
Gianpietro Dotti ◽  
George Carrum ◽  
Helen E. Heslop ◽  
...  

Abstract B-chronic lymphocytic leukemia (B-CLL) cells express tumor associated antigens that may generate a T cell mediated immune response, but present these antigens poorly. Moreover, patients with B-CLL often have poor immune function due to the disease or its treatment. We have shown that expression of transgenic CD40L increases the immunogenecity of human B-CLL cells ex vivo and in vivo, and that this effect can be potentiated by co-expression of transgenic IL2. Previous studies described outcomes when adenoviral vectors were used to obtain gene transfer, but because of the complexities and expense of manufacture of viral vectors, and their lingering safety concerns, we determined whether it was possible to use electroporation (with the MaxCyte device) as a physical means of transferring CD40L and IL2 plasmids to produce vaccines with similar biological properties in vitro and in vivo. Table 1 compares the phenotype of the vaccines using each vector. Table 1. Comparision of immunogenic characteristics and viability of the adenoviral and plasmid vaccines Type of Vaccine CD40L (%) CD80 (%) CD86 (%) IL-2 (pg/ml/10e6 cells) Viability (%) IL2 CD40L All the values are given as mean ± SE. * P< 0.01, Paired Student’s t test. Adenoviral Pre 0.2 ± 0.01 2.6 ± 2.4 7.5 ± 3.9 Post 66.1 ± 5.5* 50.2 ± 7.8* 69.5 ±11* 253.5 ± 82.6 93.6 94.2 Plasmid Pre 1.3 ± 0.85 11.5 ± 6.2 19.7 ± 6.8 Post 55.5 ± 5.1* 19.2 ± 9.3 26.4 ± 9.7 4806.6 ±1398.9 84.4 88.4 Vaccines made by both approaches met the release criteria for CD40L and IL2 expression (CD40L ≥20% and IL-2 ≥ 150 pg/ml/1x10e6 cells ), but expression of IL2 was higher in the plasmid vaccines, expression of CD40L was equivalent in each and expression of the additional co-stimulatory molecules CD80 and CD86 (induced after CD40 activation by transgenic CD40L) was higher in the adenoviral vaccines. Fourteen patients were given adenoviral-vaccines and nine the plasmid transduced cells. Each of these patients received up to 18 s.c. injections of IL-2 secreting and CD40L expressing tumor cells. Both types of vaccine were well tolerated. Table 2 shows the results of culturing patient T cells with autologous B-CLL tumor cells. Table 2. Comparision of anti-B-CLL T cell responses induced by adenoviral and plasmid vaccines Type of Vaccine Pre-vaccine After 3rd vaccine After 6th vaccine All the values were are given as mean ± SE. *P<0.05, Wilcoxon Signed Ranks test Adenoviral 307.3 ± 293.9 375 ± 306.8 656.8 ± 373.8 IFN-γ spots/10e6 T cells
 IL-5 spots/10e6 T cells 0 12.8 ± 7.9 5.8 ± 2.3 Plasmid 31.1 ± 14.8 38 ± 17.8 32.9 ± 19.5 IFN-γ spots/10e6 T cells
 IL-5 spots/10e6 T cells 4 ± 2.7 14 ± 10.2 203.9 ± 156.3* After 3 and 6 injections, both the adenoviral and plasmid vaccines had induced a rise in spot forming cells (SFC) for IL5, a cytokine associated with Th2 cells, but the rise was greatest in the recipients of the electroporated plasmid vaccine. By contrast, only the adenoviral vaccine induced a rise in SFC that produced IFN-γ, a cytokine associated with Th1 cells. Studies using MHC class I and II blocking antibodies showed that the IL5 and IFN-γ responses to both types of vaccine were mediated by HLA restricted T lymphocytes. The 1-year progression-free survival rates (PFS) for adenoviral vaccine group and plasmid vector group were 43% and 22% respectively. Figure 1 shows 1-year PFS rates for each group. Hence electroporation provides a more rapid and simpler means of preparing IL2/CD40L expressing B-CLL vaccines, but the cells express higher levels of IL2 and lower levels of “secondary” co-stimulator molecules than adenoviral vaccines, and produce an anti-tumor immune response of different polarity. Currently, we are evaluating electroporation of mRNA encoded CD40L which appears to augment upregulation of additional costimulatory molecules. Figure Figure

2020 ◽  
Author(s):  
Ganapathy Sriram ◽  
Lauren Milling ◽  
Jung-Kuei Chen ◽  
Wuhbet Abraham ◽  
Erika D. Handly ◽  
...  

ABSTRACTInhibition of immune checkpoints has shown promising results in the treatment of certain tumor types. However, the majority of cancers do not respond to immune checkpoint inhibition (ICI) treatment, indicating the need to identify additional modalities that enhance the response to immune checkpoint blockade. In this study, we identified a tumor-tailored approach using ex-vivo DNA damaging chemotherapy-treated tumor cells as a live injured cell adjuvant. Using an optimized ex vivo system for dendritic cell-mediated T-cell IFN-γ induction in response to DNA-damaged tumor cells, we identified specific dose-dependent treatments with etoposide and mitoxantrone that markedly enhance IFN-γ production by T-cells. Unexpectedly, the immune-enhancing effects of DNA damage failed to correlate with known markers of immunogenic cell death or with the extent of apoptosis or necroptosis. Furthermore, dead tumor cells alone were not sufficient to promote DC cross-presentation and induce IFN-γ in T-cells. Instead, the enhanced immunogenicity resided in the fraction of injured cells that remained alive, and required signaling through the RIPK1, NF-kB and p38MAPK pathways. Direct in vivo translation of these findings was accomplished by intra-tumoral injection of ex vivo etoposide-treated tumor cells as an injured cell adjuvant, in combination with systemic anti-PD1/CTLA4 antibodies. This resulted in increased intra-tumoral CD103+ dendritic cells and circulating tumor antigen-specific CD8+ T-cells, leading to enhanced anti-tumor immune responses and improved survival. The effect was abrogated in BATF3-deficient mice indicating that BATF3+ DCs are required for appropriate T-cell stimulation by live but injured DNA-damaged tumor cells. Notably, injection of the free DNA-damaging drug directly into the tumor failed to elicit such an enhanced anti-tumor response as a consequence of simultaneous damage to dendritic cells and T-cells. Finally, the DNA damage induced injured cell adjuvant and systemic ICI combination, but not ICI alone, induced complete tumor regression in a subset of mice who were then able to reject tumor re-challenge, indicating induction of a long-lasting anti-tumor immunological memory by the injured cell adjuvant treatment in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1019-1019
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Elisa Orioli ◽  
Elena De Marchi ◽  
Sabina Sangaletti ◽  
...  

Abstract BACKGROUND: Overall survival of adult acute myeloid leukemia (AML) is still poor due to the lack of novel and effective therapies. In different malignancies including AML, some chemotherapy agents, such as daunorubicin (DNR) but not cytarabine (Ara-C), activate the immune response via the cross-priming of anti-tumor T cells by dendritic cells (DCs). Such process, known as immunogenic cell death (ICD), is characterized by intracellular and pericellular modifications of tumor cells, such as the cell surface translocation of calreticulin (CRT) and heat shock proteins 70/90 (HSPs 70/90), the extracellular release of ATP and pro-inflammatory factor HMGB1. Alongside with ICD, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, which may ultimately affect anti-tumor T-cell responses. In this study, we characterize ICD in AML to evaluate the involvement of some DC-related inhibitory pathways, such as the expression of indoleamine-2,3-dioxygenase 1 (IDO1) and the activation of PD-L1/PD-1 axis. METHODS: AML patients were analyzed at diagnosis.Before and after DNR-based chemotherapy, patient-derived T cells were extensively characterized by FACS and analyzed for their capacity to produce IFN-γ in response to autologous blasts. The AML cell line HL-60 and primary AML cells were then exposed, in vitro, to different drugs, including DNR and, as control drug, Ara-C. Dying cells were tested for the surface expression of CRT and HSPs 70/90, the release of HMGB1 and ATP. Functionally, immature DCs generated from healthy donors were pulsed with DNR-treated AML cells. Then, loaded DCs were tested for the expression of maturation-associated markers and of inhibitory pathways, such as IDO1 and PD-L1 and used to stimulate autologous CD3+ T cells. After co-culture, autologous healthy donor T cells were analyzed for IFN-g production, PD-1 expression and Tregs induction. A mouse model was set up to investigate in vivo the mechanism(s) underlying ICD in AML. The murine myelomonocytic leukemia cell line WEHI was transfected with luciferase PmeLUC probe, inoculated subcutaneously into BALB/c mice and used to measure in vivo ATP release after chemotherapy. Tumor-infiltrating T cells and DCs were characterized and correlated with ATP release. RESULTS: DNR treatment induced ICD-related modifications in both AML cell lines and primary blasts, including CRT, HSP70 and HSP90 exposure on cell surface, HMGB1 release from nucleus to cytoplasm and supernatant increase of ATP. Ex vivo, T-cell monitoring of DNR-treated AML patients displayed an increase in leukemia-specific IFN-g-producing CD4+ and CD8+ T cells in 20/28 evaluated patients. However, FACS analysis of CD8+ effector T cells emerging after chemotherapy showed a significant up-regulation of exhaustion marker such as LAG3 and PD-1, which paralleled with their reduced ability to produce active effector molecules, such as perforin and granzyme. Moreover, an increase of circulating Tregs was observed after DNR-based chemotherapy. In vitro, loading of chemotherapy-treated AML cells into DCs resulted not only in the induction of a maturation phenotype, but also in over-expression of inhibitory pathways, such as IDO1 and PD-L1. The silencing of IDO1 increased the capacity of DCs loaded with DNR-treated AML cells to induce leukemia-specific IFN-γ production by CD4+ and CD8+ T cells. In vivo, DNR therapy of mice inoculated with established murine AML cell line resulted in increased ATP release. Similarly to ex vivo and in vitro results, tumor-infiltrating DCs showed an increase in maturation status. Moreover, CD4+ and CD8+ T cells had increased IFN-γ production, but showed an exhausted phenotype. CONCLUSIONS: Our data confirm that chemotherapy-induced ICD may be active in AML and results in increased leukemia-specific T-cell immune response. However, a deep, ex vivo, in vitro and in vivo characterization of chemotherapy-induced T cells demonstrated an exhausted phenotype, which may be the result of the inhibitory pathways induction in DCs, such as IDO and PD-L1. The present data suggest that combination of chemotherapy with inhibitors of IDO1 and PD-L1 may represent an interesting approach to potentiate the immunogenic effect of chemotherapy, thus resulting in increased anti-leukemia immune response. Disclosures Cavo: Janssen-Cilag, Celgene, Amgen, BMS: Honoraria.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3123-3123 ◽  
Author(s):  
David M. Lucas ◽  
Ryan B. Edwards ◽  
Michael D. De Lay ◽  
Derek A. West ◽  
Gerard Lozanski ◽  
...  

Abstract Chronic Lymphocytic Leukemia (CLL) is an incurable disease with limited therapeutic options, especially for high-risk populations such as the del(17p13) patient subset. Currently available therapies for CLL, even if effective, can have significant detrimental effects on remaining T cells, leaving patients at risk of potentially lethal opportunistic infections. New agents with unique mechanisms of action, independence of key resistance pathways, and selectivity for tumor cells are crucial to make an impact on patient survival. Silvestrol, a structurally unique compound isolated from the plant genus Aglaia, exhibited potent activity against several tumor cell lines and moderate in vivo activity in the P388 mouse leukemia model (J. Org. Chem. 2004, 69:3350; ibid. 69:6156). Based on these results, we tested silvestrol against tumor cells obtained from CLL patients. The LC50 (concentration lethal to 50% of cells relative to untreated control) of silvestrol was 6.5 nM at 72 hours by MTT assay. We performed assays to determine CLL patient cell viability at 72 hours with or without drug washout at various times. In these studies, silvestrol showed up to 50% killing at 72 hours with only a four hour exposure, and reached maximum efficacy with a 24 hour exposure. Silvestrol was similarly effective against cells from CLL patients with or without del(17p13). Furthermore, there was no significant difference in silvestrol-mediated cytotoxicity between lymphoblastic cells with a ten-fold overexpression of Bcl-2 relative to control cells. In MTT assays using isolated CD3+ or CD19+ cells, and in whole blood from healthy volunteers and CLL patients, silvestrol demonstrated substantially more cytotoxicity toward B cells than T cells. We then tested silvestrol using Tcl-1 transgenic mice, which are initially normal but develop a slow-progressing B cell leukemia very similar to human CLL. Lymphocytes obtained from spleens of Tcl-1 mice with leukemia were incubated ex vivo with 80 nM silvestrol and analyzed by flow cytometry. Silvestrol produced an 88% reduction in the B cell percentage after 24 hours with no negative effect on the T cell percentage (8% increase), in contrast to 1 μM fludarabine, which affected both B cell (22% reduction) and T cell (14% reduction) subsets. Non-leukemic mice of the Tcl-1 background strain were treated with 1.0, 1.5 and 2.5 mg/kg/day silvestrol for 5 days to determine a tolerable dose. Three of five mice treated with 2.5 mg/kg/day died at the beginning of the second week of treatment. However, none of the animals treated at 1.0 or 1.5 mg/kg showed signs of toxicity or weight loss even after two full weeks of treatment and were normal at pathological examination. Tcl-1 mice with evidence of leukemia as determined by elevated leukocyte counts and enlarged spleens were then treated with silvestrol at 1.5 mg/kg/day × 5 days for two weeks. Treated mice experienced decreased overall leukocyte counts relative to vehicle controls. Furthermore, CD19+ cell numbers and percentages diminished substantially while the T cells were only mildly affected. Additional leukemic Tcl-1 mice are currently being treated and studies are underway examining the mechanism of action of silvestrol in CLL cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p&lt;0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p&lt;0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 696-696
Author(s):  
Alan G. Ramsay ◽  
Andrew James Clear ◽  
Alexander Davenport ◽  
Rewas Fatah ◽  
John G. Gribben

Abstract Abstract 696 The ability of cancer cells to modulate the immune microenvironment is now recognized as an important hallmark of disease pathophysiology. Identifying the molecular mechanisms of cancer immune suppression in the laboratory is key to the design of more effective immunotherapeutic treatment strategies. We previously demonstrated that chronic lymphocytic leukemia (CLL) cells induce alterations in global gene expression profiles in patient CD4 and CD8 T cells, and a profound T cell immunological synapse formation defect that can be reversed with lenalidomide (J Clin Invest. 2005;115(7):1797-1805, and 2008;118(7):2427-2437). Here we used small interfering RNA (siRNA) with a 2-part functional screen to identify key CLL cell molecules inducing T cell immune suppression. siRNA treated tumor cells were cocultured in direct contact with healthy allogeneic T cells for 24 hours, T cells purified from coculture and used in cell conjugation immune synapse assays with superantigen-pulsed third party B cells as antigen-presenting cells (APCs). Confocal microscopy and image analysis software was used to quantify the mean area of T cell F-actin immune synapse formation events from each experimental cell population. Treatment of the CLL cell line MEC-1 with either TNFα, TGFβ, IL-10, or IL-6 siRNA identified no gain in subsequent CD3 T cell immune synapse function compared to control non-targeting siRNA or untreated CLL cells. However, CD200 or programmed death 1 (PD1) ligand 1 (PD-L1, CD274) siRNA treatment significantly enhanced (P < .01) subsequent T cell synapse formation events with APCs (comparable to positive control experiments blocking tumor cell:T cell direct contact with ICAM-1 siRNA, or primary coculture of T cells with allogeneic healthy donor B cells). Primary CLL patient cells (n=10) were treated with individual or pooled neutralizing antibodies, or siRNA, targeting PD-L1, CD200, or cytokines. This analysis revealed that counteracting the combined activity of PD-L1, CD200 and TGFβ exhibited the most pronounced repair of subsequent T cell synapse function compared to control treated tumor cells (P < .01). These data suggest that CLL-released cytokines such as TGFβ contribute to, but are not essential for the T cell synapse defect. We also identified that blocking the T cell receptors PD-1, CD200-R and TGFβ-R1 with neutralizing antibodies prevents CLL inhibitory signaling (P < .01) compared to isotype control IgG treated T cells in contact with tumor cells. We further show that knock-down of PD-L1, CD200 and TGFβ on ex vivo CLL cells prevents inhibitory CD4 and CD8 T cell synapse function compared to control siRNA (P < .01) using the Eμ-TCL1 mouse model of CLL. The addition of lenalidomide (1μM) in ex vivo CLL cell:T cell coculture assays significantly increased (P < .01) subsequent T cell synapse function compared to untreated vehicle control experiments. Flow cytometric analysis identified that lenalidomide down-regulates both CLL expressed PD-L1 and CD200 ligands, and T cell cognate receptor PD1 and CD200R expression during intercellular contact interactions. Moreover, subsequent effector T cell killing function was significantly enhanced (P < .05) following antibody blockade of CLL cell PD-L1 and CD200 with or without lenalidomide treatment during primary coculture with CD8 T cells. We are currently investigating the expression and activity of PD-L1, CD200, and other co-inhibitory molecules in CLL and other haematological and solid malignancies, using patient tissue microarray analysis and confocal co-localization analysis. This work is identifying common inhibitory ligands utilized by tumor cells to suppress T cell synapse function. These results provide important mechanistic insight into immune suppression in CLL and the action of lenalidomide, and identify co-inhibitory ligands as potential immunotherapeutic targets to repair T cell function. Disclosures: Gribben: Roche: Consultancy; Celgene: Consultancy; GSK: Honoraria; Napp: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 679-679
Author(s):  
Michelle J. Cox ◽  
Fabrice Lucien-Matteoni ◽  
Reona Sakemura ◽  
Justin C. Boysen ◽  
Yohan Kim ◽  
...  

Treatment with CD19-directed chimeric antigen receptor T cell (CART19) therapy has resulted in unprecedented clinical outcomes and was FDA-approved in acute lymphoblastic leukemia and non-Hodgkin B-cell lymphoma. However, its success in chronic lymphocytic leukemia (CLL) has been modest to date. An increasing body of evidence indicates that impaired CART cell fitness is the predominant mechanism of the relative dysfunction in CLL. The immunosuppressive microenvironment in CLL is well known and in part may be related to the abundance of circulating extracellular vesicles (EVs) bearing immunomodulatory properties. We hypothesized that CLL-derived EVs contribute to CART cell dysfunction. In this study, we aimed to investigate the interaction between circulating EVs isolated from CLL patient plasma (designated as CLL-derived EVs) and CART19 cells. We enumerated and immunophenotyped circulating EVs from platelet free plasma in untreated patients with CLL. We determined their interaction with CART19 cells using second generation, 41BB co-stimulated, lentiviral transduced CART19 cells generated in the laboratory from normal donors (FMC63-41BBζ CART cells). Our findings indicate that CLL-derived EVs impair normal donor CART19 antigen-specific proliferation against the CD19+ mantle cell lymphoma cell line Jeko-1 (Figure 1A). Next, we characterized CLL-derived EVs using nanoscale flow cytometric analysis of surface proteins and compared to healthy controls. Although the total EV particle count was not different between CLL and healthy controls (Figure 1B), there were significantly higher PD-L1+ EVs in patients with CLL (Figure 1C). Based on these results, we sought to assess the physical interaction between CLL-derived EVs and CART cells from normal individuals. When CLL-derived EVs were co-cultured with CART19 and CLL B cells and imaged with super-resolution microscopy, EVs were localized at the T cell-tumor junction (Figure 1D). Furthermore, CLL-derived EVs are captured by T cells as indicated by a significant reduction in the absolute count of EVs when co-cultured with resting T cells (Figure 1E). Having demonstrated that 1) there is an excess of PD-L1+ EVs in patients with CLL (Figure 1C) and 2) CLL-derived EVs physically interact with CART cells (Figures 1D-E), we sought to establish their functional impact on CART19 cells. Here, CART19 cells were stimulated with irradiated CD19+ JeKo-1 cells at a 1:1 ratio in the presence of increasing concentrations of CLL-derived EVs. There was a significant upregulation of inhibitory receptors such as PD-1 and CTLA-4 on the T cells (Figure 1F). This is associated with a reduction in CART effector cytokines (i.e., TNFβ) at higher concentrations of EVs (Figure 1G), suggesting a state of exhaustion in activated CART19 cells in the presence of CLL-derived EVs. This was further supported by transcriptome interrogation of CART19 cells. Here, CART19 cells were stimulated via 24-hour co-culture with the irradiated CD19+ cell line JeKo-1, in the presence of CLL-derived EVs at ratios of 10:1 and 1:1 EV:CART19 and then isolated by magnetic sorting. RNA sequencing of these activated CART19 cells indicated a significant upregulation of AP-1 (FOS-JUN) and YY1 (Figures 1H), known critical pathways in inducing T cell exhaustion. Finally, to confirm the impact of CLL-derived EVs on CART19 functions in vivo, we used our xenograft model for relapsed mantle cell lymphoma. Here, immunocompromised NOD-SCID-ɣ-/- mice were engrafted with the CD19+ luciferase+ cell line JeKo-1 (1x106 cells I.V. via tail vein injection). Engraftment was confirmed through bioluminescent imaging and mice were randomized to treatment with 1) untreated, 2) CART19 cells, or 3) CART19 cells co-cultured ex vivo with CLL-derived EVs for six hours prior to injection. A single low dose of CAR19 (2.5x105) was injected, to induce relapse. Treatment with CART19 cells that were co-cultured ex vivo with CLL-derived EVs resulted in reduced anti-tumor activity compared to treatment with CART19 alone (Figure 1I). Our results indicate that CLL-derived EVs induce significant CART19 cell dysfunction in vitro and in vivo, through a direct interaction with CART cells resulting in a downstream alteration of their exhaustion pathways. These studies illuminate a novel way through which circulating and potentially systemic EVs can lead to CART cell dysfunction in CLL patients. Disclosures Cox: Humanigen: Patents & Royalties. Sakemura:Humanigen: Patents & Royalties. Parikh:Ascentage Pharma: Research Funding; Janssen: Research Funding; AstraZeneca: Honoraria, Research Funding; Genentech: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; AbbVie: Honoraria, Research Funding; Acerta Pharma: Research Funding. Kay:Agios: Other: DSMB; Celgene: Other: Data Safety Monitoring Board; Infinity Pharmaceuticals: Other: DSMB; MorphoSys: Other: Data Safety Monitoring Board. Kenderian:Humanigen: Other: Scientific advisory board , Patents & Royalties, Research Funding; Lentigen: Research Funding; Novartis: Patents & Royalties, Research Funding; Tolero: Research Funding; Morphosys: Research Funding; Kite/Gilead: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 816-816 ◽  
Author(s):  
Mauro P. Avanzi ◽  
Dayenne G. van Leeuwen ◽  
Xinghuo Li ◽  
Kenneth Cheung ◽  
Hyebin Park ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cell therapy has consistently shown significant results against acute lymphoblastic leukemia (ALL) in clinical trials1. However, results with other hematological or solid malignancies have been far more modest2. These disparate outcomes could be partially due to an inhibitory tumor microenvironment that suppresses CAR T cell function3. Thus, in order to expand the anti-tumor CAR T cell applications, a novel strategy in which these cells are capable of overcoming the hostile tumor microenvironment is needed. The cytokine interleukin-18 (IL-18) induces IFN-γ secretion, enhances the Th1 immune response and activates natural killer and cytotoxic T cells4. Early phase clinical trials that utilized systemic administration of recombinant IL-18 for the treatment of both solid and hematological malignancies have demonstrated the safety of this therapy5. We hypothesize that CAR T cells that constitutively secrete IL-18 could enhance CAR T cell survival and anti-tumor activity, and also activate cells from the endogenous immune system. To generate CAR T cells that constitutively secrete IL-18, we modified SFG-1928z and SFG-19m28mz CAR T cell constructs and engineered bicistronic human and murine vectors with a P2A element to actively secrete the IL-18 protein (1928z-P2A-hIL18 and 19m28mz-P2A-mIL18, respectively). Human and mouse T cells were transduced with these constructs and in vitro CAR T cell function was validated by coculturing the CAR T cells with CD19+ tumor cells and collecting supernatant for cytokine analysis. Both human and mouse CAR T cells secreted increased levels of IL-18, IFN-γ and IL-2. Proliferation and anti-tumor cytotoxic experiments were conducted with human T cells by coculturing CAR T cells with hCD19+ expressing tumor cells. 1928z-P2A-hIL18 CAR T cells had enhanced proliferation over 7 days and enhanced anti-tumor cytotoxicity over 72 hours when compared to 1928z CAR T cells (p=0.03 and 0.01, respectively) Next, the in vivo anti-tumor efficacy of the IL-18 secreting CAR T cell was tested in xenograft and syngeneic mouse models. Experiments were conducted without any prior lympho-depleting regimen. In the human CAR T cell experiments, Scid-Beige mice were injected with 1x106 NALM-6 tumor cells on day 0 and 5x106 CAR T cells on day 1. Survival curves showed a significant improvement in mouse survival with the 1928z-P2A-hIL18 CAR T cell treatment when compared to 1928z CAR T cell (p=0.006). Subsequently, to determine if IL-18 secreting CAR T cells could also improve anti-tumor efficacy in immunocompetent mice, we tested the murine 19m28mz-P2A-mIL18 CAR T cells in a syngeneic mouse model. The C57BL/6 hCD19+/- mCD19+/- mouse model was utilized and injected with 1x106 EL4 hCD19+ tumor cells on day 0 and 2.5 x106 CAR T cells on day 1. Mice treated with 19m28mz-P2A-mIL18 CAR T cells had 100% long-term survival, when compared to 19m28mz (p<0.0001). 19m28mz-P2A-mIL18 CAR T cells were detected in peripheral blood for up to 30 days after injection, whereas the 19m28mz CAR T cells were not detectable at any time point. In addition, 19m28mz-P2A-mIL18 CAR T cells were capable of inducing B cell aplasia for greater than 70 days, whereas 19m28mz treatment was not capable of inducing B cell aplasia. In vivo serum cytokine analysis demonstrated that 19m28mz-P2A-mIL18 CAR T cells, as compared to 19m28mz, significantly increased the levels of IFN-γ and TNF-α in the peripheral blood for up to 14 days after injection (p<0.0001 and 0.01, respectively). Despite the increase in IFN-γ and TNF-α cytokines, there was no increase in IL-6 levels. Our findings demonstrate that anti-CD19 CAR T cells that constitutively secrete IL-18 significantly increase serum cytokine secretion, enhance CAR T cell persistence, induce long-term B cell aplasia and improve mouse survival, even without any prior preconditioning. To our knowledge, this is the first description of an anti-CD19 CAR T cell that constitutively secretes IL-18 and that induces such high levels of T cell proliferation, persistence and anti-tumor cytotoxicity. We are currently investigating other mechanisms by which this novel CAR T cell functions, its interactions with the endogenous immune system, as well as testing its applicability in other tumor types. We anticipate that the advances presented by this new technology will expand the applicability of CAR T cells to a wider array of malignancies. Disclosures Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Author(s):  
Xiang Li ◽  
Liang Dong ◽  
Jiejie Liu ◽  
Chunmeng Wang ◽  
Yan Zhang ◽  
...  

BackgroundCD4+ T cells play multiple roles in controlling tumor growth and increasing IFN-γ+ T-helper 1 cell population could promote cell-mediated anti-tumor immune response. We have previously showed that low-dose DNA demethylating agent decitabine therapy promotes CD3+ T-cell proliferation and cytotoxicity; however, direct regulation of purified CD4+ T cells and the underlying mechanisms remain unclear.MethodsThe effects of low-dose decitabine on sorted CD4+ T cells were detected both in vitro and in vivo. The activation, proliferation, intracellular cytokine production and cytolysis activity of CD4+ T cells were analyzed by FACS and DELFIA time-resolved fluorescence assays. In vivo ubiquitination assay was performed to assess protein degradation. Moreover, phosphor-p65 and IκBα levels were detected in sorted CD4+ T cells from solid tumor patients with decitabine-based therapy.ResultsLow-dose decitabine treatment promoted the proliferation and activation of sorted CD4+ T cells, with increased frequency of IFN-γ+ Th1 subset and enhanced cytolytic activity in vitro and in vivo. NF-κB inhibitor, BAY 11-7082, suppressed decitabine-induced CD4+ T cell proliferation and IFN-γ production. In terms of mechanism, low-dose decitabine augmented the expression of E3 ligase β-TrCP, promoted the ubiquitination and degradation of IκBα and resulted in NF-κB activation. Notably, we observed that in vitro low-dose decitabine treatment induced NF-κB activation in CD4+ T cells from patients with a response to decitabine-primed chemotherapy rather than those without a response.ConclusionThese data suggest that low-dose decitabine potentiates CD4+ T cell anti-tumor immunity through enhancing IκBα degradation and therefore NF-κB activation and IFN-γ production.


Sign in / Sign up

Export Citation Format

Share Document