The Side Population Contains Functionally Distinct Hematopoietic Stem Cell Subpopulations

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2464-2464
Author(s):  
Grant Anthony Challen ◽  
Margaret A Goodell

Abstract Over the decades since hematopoietic stem cells (HSCs) were first identified, the traditional view has been that the hematopoietic system is regenerated by a single pool of multipotent, quiescent HSCs that are sequentially recruited into cell cycle and which then progressively divide and differentiate until they are exhausted and ultimately replaced by the next cohort of stem cells. However, recent evidence has challenged this classical clonal succession model of HSC hierarchy by suggesting that the hematopoietic system is maintained by a pool of different HSC subtypes, with distinct self-renewal and differentiation potentials (the clonal diversity model, Figure 1). The side population (SP), characterized by Hoechst dye efflux, has been used as a method for isolating HSCs for over a decade and the SP has been shown to be highly enriched for HSC activity. While the entire SP is strikingly homogeneous with respect to expression of canonical stem cell markers such as Sca-1 and c-Kit, we recently observed heterogeneous expression for the SLAM family molecule CD150 within the SP, with CD150+ cells more prevalent in the lower SP and CD150− cell more prevalent in the upper SP. We decided to examine this observation further by investigating the properties of cells from different regions of the SP. Functional capacity was assessed by competitive bone marrow transplantation of upper SP cells, lower SP cells, and a combination of the two populations. Lower SP cells showed better engraftment than upper SP cells in recipient mice, a trend that continued when donor HSCs were isolated from primary recipients and re-transplanted into secondary hosts. Lower SP cells showed 3-fold better engraftment than upper SP cells in secondary transplants, suggesting better self-renewal capacity. However, analysis of the hematopoietic lineages formed by donor cells in recipient mice demonstrated that while both upper and lower SP cells were capable of forming all mature lineages, lower SP cells were biased towards myeloid differentiation while upper SP cells were biased towards lymphoid differentiation. The lineage biases observed from transplantation of one cell population alone were exacerbated when both upper and lower SP cells were co-transplanted into the same recipient mouse, suggesting that while both populations are capable of forming all hematopoietic lineages, in the presence of the other stem cell type (as would be the case in normal homeostasis) that the majority of the output from each HSC subtype is almost exclusively lymphoid or myeloid. The lineage contribution trends observed in the peripheral blood were also reproduced when bone marrow of transplanted mice was analyzed, including at the level of progenitors with lower SP cells showing greater ability to make myeloid progenitors (megakaryocyte-erythrocyte progenitors and granulocyte-macrophage progenitors) and upper SP cells producing proportionately more common lymphoid progenitors. Microarray analysis of upper and lower SP cells to determine the molecular signatures underlying these functional differences found many genes critical for long-term HSC self-renewal to be highly expressed in lower SP cells including Rb1, Meis1, Pbx1 and TGFbr2 while upper SP cells showed higher expression of cell cycle and activation genes. Cell cycle analysis showed upper SP cells to be approximately 2-fold more proliferative than lower SP cells (18.9% to 8.3% Ki-67+, 39.4% to 20.1% BrdU+ 3-days post-BrdU administration). The clonal diversity model which proposes the adult HSC compartment consists of a fixed number of different HSC subtypes each with pre-programmed behavior has important implications for using HSCs in experimental and clinical settings. While other studies have provided functional evidence for the clonal diversity model, this is the first study to prospectively isolate the functionally distinct HSC subtypes prior to transplantation. Figure Figure

2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


2008 ◽  
Vol 205 (4) ◽  
pp. 777-783 ◽  
Author(s):  
Yuchun Nie ◽  
Yoon-Chi Han ◽  
Yong-Rui Zou

The quiescence of hematopoietic stem cells (HSCs) is critical for preserving a lifelong steady pool of HSCs to sustain the highly regenerative hematopoietic system. It is thought that specialized niches in which HSCs reside control the balance between HSC quiescence and self-renewal, yet little is known about the extrinsic signals provided by the niche and how these niche signals regulate such a balance. We report that CXCL12 produced by bone marrow (BM) stromal cells is not only the major chemoattractant for HSCs but also a regulatory factor that controls the quiescence of primitive hematopoietic cells. Addition of CXCL12 into the culture inhibits entry of primitive hematopoietic cells into the cell cycle, and inactivation of its receptor CXCR4 in HSCs causes excessive HSC proliferation. Notably, the hyperproliferative Cxcr4−/− HSCs are able to maintain a stable stem cell compartment and sustain hematopoiesis. Thus, we propose that CXCR4/CXCL12 signaling is essential to confine HSCs in the proper niche and controls their proliferation.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2460-2460 ◽  
Author(s):  
Hairui Su ◽  
Szu-Mam Liu ◽  
Chiao-Wang Sun ◽  
Mark T. Bedford ◽  
Xinyang Zhao

Protein arginine methylation is a common type of post-translational modification. PRMT1, the major type I protein arginine methyltransferase, catalyzes the formation of asymmetric dimethyl-arginine and is implicated in various cellular processes, including hematopoiesis and tumorigenesis. We have shown that PRMT1 expression is naturally low in hematopoietic stem cells (HSCs). However, the functions of PRMT1 in hematopoietic stem cell self-renewal and differentiation are yet to be revealed. We have found a cyanine-based fluorescent probe (E84) that can specifically label PRMT1 protein. E84 staining dynamically captures intracellular PRMT1 level and was used to separate live HSC populations with differential PRMT1 expression by flow cytometry. Subsequent bone marrow transplantation of E84high or E84low Lin−Sca1+cKit+ (LSK) cells showed that E84low LSK cells were much more advantageous in reconstituting each blood cell lineages, compared to the E84high counterparts, meaning that the stem-ness of HSCs is negatively correlated with endogenous PRMT1. Therefore, inhibition of PRMT1 was expected to enhance the number and differentiation potential of functional HSCs. The treatment of a PRMT1-specific inhibitor (MS023) to mice resulted in an enlarged LT-HSC population in bone marrow and decreased frequency of granulocyte progenitor cells. In vitro colony formation assays further demonstrated that PRMT1 is required for GMP differentiation. Then we asked whether copious expression of PRMT1 promotes the differentiation of HSC. In this line, we made a LoxP-STOP-LoxP-PRMT1 transgenic mouse model, which induces PRMT1 overexpression upon the expression of Cre recombinase from tissue-specific promoters. We established Mx1-Cre-PRMT1 (Mx1-Tg) mice. Mx1-Tg mice were injected with poly(I:C) for PRMT1 induction and analyzed at four weeks after the last dose. We found that, as predicted, LT-HSC population was reduced and the Pre-GM population was raised. Accordingly, more CFU-Gs but less GEMMs were grown on CFU assays. We further utilized this animal model to compare the blood reconstitution capabilities of bone marrow cells from Mx1-Tg vs. WT mice in the same repopulating conditions. We performed competitive bone marrow transplantation by injecting Mx1-Tg/WT (CD45.2) bone marrow plus supporting cells (CD45.1) to irradiated mice, followed by 5 doses of poly(I:C) induction. Recipient mice were analyzed during a course of approximately 16 weeks. Mx1-Tg cells were outcompeted by WT cells in reconstituting every blood lineages. Taken together, we conclude that PRMT1 promotes HSC differentiation and accelerates HSC exhaustion during the stress caused by bone marrow irradiation. To understand the mechanism on PRMT1-mediated stress hematopoiesis, we also made Pf4-Cre PRMT1 transgenic mice. When PRMT1 is specifically expressed in MK cells, the number of LT-HSCs was also reduced, implying that PRMT1 affects the self-renewal of LT-HSCs via communication between MK cells and HSCs. Mechanistically, two PRMT1 substrates - RBM15 and DUSP4 - are critical for stem cell self-renewal. We further characterized how PRMT1 activates p38 kinase pathway via directly methylating DUSP4 thus induces ubiquitylation and degradation of DUSP4. The arginine methylation site on DUSP4 has been identified. Moreover, introducing methyl-R mutated DUSP4 back to PRMT1-overexpressing cells partially rescued the loss of HSC differentiation potential. This data adds a new link between arginine methylation and protein phosphorylation mediated by MAP kinases/phosphatases. In addition, we discovered that RBM15 controls alternative RNA splicing and RNA processing in a PRMT1-dosage dependent manner. In this report, we will further address how RBM15 target genes, such as enzymes involved in fatty acid metabolic pathways, affect HSC differentiation. In summary, we report that arginine methylation is a novel regulator for the HSC differentiation via controlling p38-regulated stress pathway and metabolic reprogramming. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3220-3220
Author(s):  
Matthew J. Greenwood ◽  
Peter M. Lansdorp

Abstract The mechanisms underlying the aging of the hematopoietic stem cell (HSC) compartment remain poorly understood. The ATP-binding cassette cell surface transport protein, ABCG2, has been identified as the transporter responsible for Hoechst 33342 (Hst) efflux in primitive stem cells and its expression is associated with the side population (SP) phenotype in both murine and human bone marrow (BM). ABCG2 expression and Hst efflux activity is highest in those cells with the greatest repopulating potential and is progressively downregulated during differentiation. The substrate profile of ABCG2, which includes a number of antineoplastic drugs, protoporphyrin IX and the chlorophyll breakdown product pheophorbide, suggest that ABCG2 transporters may function to protect stem cells from cytotoxic insults, a function which may be of great importance in stem cell maintenance. Amongst laboratory mice, the C57BL/6 strain is the longest lived and appears to accumulate HSC’s with age as assessed by both phenotype and colony forming assays. While the phenotypic features of the SP profile have been well characterized in both humans and young mice, little is known of the Hst efflux dynamics or phenotype of the SP profile in old and very old C57BL/6 mice. In order to further characterize the SP profile in old mice, whole BM was extracted from the femurs, tibiae, pelvis and thoracolumbar vertebral bodies of young (9–13 week) and old (95–108 week) C57BL/6 (Ly5.1) mice. Cells were stained with 5μg/ml Hst followed by staining with a combination of CD45.1 FITC, Sca1 PE, c-kit APC, CD34 FITC, biotinylated CD34 and lineage markers and strep PE-Texas Red. In addition, serial sampling of Hst incubated cells was performed to assess Hst efflux activity at 20 mins incubation through to 100mins. Six-color flow analysis was performed on a FACS Vantage™ (BD) cytometer and data analyzed using FlowJo™ software. Results show a marked increase in cells with an SP phenotype in old vs young mice (mean±SD 1.85%±0.88 vs 0.15%±0.09) which were more highly enriched for CD34-Sca1+ckit+ (22.2%±8.65 vs 8.89%±6.7) cells. Subdividing the SP profile into four regions (R1 to R4) from highest to lowest Hst efflux activity revealed that in old mice, SP cells with the highest Hst efflux activity were almost exclusively of a CD34-Sca1+ckit+ phenotype (82.3%±14.0 vs 11.5%±7.8), with a decreasing proportion of these cells represented throughout the remaining SP tail, though a significant proportion of cells within R4 remain CD34-Sca1+ckit+ (15.3%±7.83 vs 4.19±3.01). Similar patterns have been observed in both whole and lineage depleted BM. In addition, BM cells from old C57BL/6 mice show prolonged Hst efflux activity with an increase in cells in the SP gate at 100 mins (1.51%±0.50 vs 0.10%±0.06). We conclude that in old C57Bl/6 mice, cells accumulate which have the capacity to efflux Hst in agreement with previous reports of an increase in HSC number with age in this mouse strain.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1677-1677
Author(s):  
Toska J. Zomorodian ◽  
Debbie Greer ◽  
Kyle Wood ◽  
Bethany Foster ◽  
Delia Demers ◽  
...  

Abstract Transplanted bone marrow donor cells with tissue specific phenotypes have been found in the brain, liver, heart, skin, lung, kidney, and gut of transplanted humans and mice. Such observations have led to the controversial hypothesis that hematopoietic stem cells (HSC) might be intrinsically plastic, and through transdifferentiation or fusion lead to the repair of damaged tissues throughout the body. Alternately, it is suggested that fusion of macrophages to the recipient cells may explain this phenomenon. We have shown recently that purified HSC are the cells responsible for GFP positive donor-derived muscle fibers in the recipient mice post bone marrow transplantation. However, further studies sorting for macrophage markers Mac-1 and F4/80 also resulted in donor-derived muscle fibers in the host. To address this discrepancy, we investigated subpopulations of Mac-1 and F4/80 positive cells, in the presence or absence of stem cell markers (Sca-1 and C-kit). We demonstrate that only the subpopulations of Mac-1 and F4/80 positive cells harboring stem cell markers, Sca-1 or c-kit, were capable of contributing to the regenerating muscle post transplantation. Furthermore, these same subpopulations demonstrated single cell High Proliferative Potential (HPP) (6–26%) in a 7 factor cytokine cocktail, compared to the Mac-1 or F4/80 cells with no stem cell markers (0%). Additionally, they demonstrated long-term engraftment in all three lineages at 1-year (average chimerism of 55% versus 0% in stem cell marker negative groups). These subpopulations were also evaluated for morphology using Hematoxylin/Eosin (H/E), Wright-Giemsa, and Nonspecific Esterase staining. In the Mac-1 and F4/80 positive groups, those negative for stem cell markers resembled differentiated cells of the myeloid origin (macrophages, granulocytes), while those with positive stem cell markers demonstrated stem cell characteristics. We did not observe any engraftability, donor-derived muscle fibers, or HPP potential for CD14 or cfms positive cells coexpressing stem cell markers, indicating that these markers are more appropriate for identifying macrophages. In conclusion, our studies demonstrate that both Mac-1 and F4/80 surface markers are present on HSC and therefore caution must be taken in the interpretation of data using these macrophage markers. It is reasonable to believe that the use of Mac-1 and/or F4/80 surface markers in a lineage depletion process may result in the loss of a subpopulation of stem cells, and other markers such as CD14 or c-fms may be more appropriate for eliminating differentiated macrophages.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 861-861 ◽  
Author(s):  
Viktor Janzen ◽  
Heather E. Fleming ◽  
Michael T. Waring ◽  
Craig D. Milne ◽  
David T. Scadden

Abstract The processes of cell cycle control, differentiation and apoptosis are closely intertwined in controlling cell fate during development and in adult homeostasis. Molecular pathways connecting these events in stem cells are poorly defined and we were particularly interested in the cysteine-aspartic acid protease, Caspase-3, an ‘executioner’ caspase also implicated in the regulation of the cyclin dependent kinase inhibitors, p21Cip1 and p27Kip1. These latter proteins are known to participate in primitive hematopoietic cell cycling and self-renewal. We demonstrated high levels of Caspase-3 mRNA and protein in immunophenotypically defined mouse hematopoietic stem cells (HSC). Using mice engineered to be deficient in Caspase-3, we observed a consistent reduction of lymphocytes in peripheral blood counts and a slight reduction in bone marrow cellularity. Notably, knockout animals had an increase in the stem cell enriched Lin−cKit+Sca1+Flk2low (LKSFlk2lo) cell fraction. The apoptotic rates of LKS cells under homeostatic conditions as assayed by the Annexin V assay were not significantly different from controls. However, in-vitro analysis of sorted LKS cells revealed a reduced sensitivity to apoptotic cell death in absence of Caspase-3 under conditions of stress (cytokine withdrawal or gamma irradiation). Primitive hematopoietic cells displayed a higher proliferation rate as demonstrated by BrdU incorporation and a significant reduction in the percentage of cells in the quiescent stage of the cell cycle assessed by the Pyronin-Y/Hoechst staining. Upon transplantation, Caspase-3−/− stem cells demonstrated marked differentiation abnormalities with significantly reduced ability to differentiate into multiple hematopoietic lineages while maintaining an increased number of primitive cells. In a competitive bone marrow transplant using congenic mouse stains Capase-3 deficient HSC out-competed WT cells at the stem cell level, while giving rise to comparable number of peripheral blood cells as the WT controls. Transplant of WT BM cells into Caspase-3 deficient mice revealed no difference in reconstitution ability, suggesting negligible effect of the Caspase-3−/− niche microenvironment to stem cell function. These data indicate that Caspase-3 is involved in the regulation of differentiation and proliferation of HSC as a cell autonomous process. The molecular bases for these effects remain to be determined, but the multi-faceted nature of the changes seen suggest that Caspase-3 is central to multiple regulatory pathways in the stem cell compartment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1505-1505
Author(s):  
Wendy W. Pang ◽  
Elizabeth A. Price ◽  
Irving L. Weissman ◽  
Stanley L. Schrier

Abstract Abstract 1505 Poster Board I-528 Aging of the human hematopoietic system is associated with an increase in the development of anemia, myeloid malignancies, and decreased adaptive immune function. While the hematopoietic stem cell (HSC) population in mouse has been shown to change both quantitatively as well as functionally with age, age-associated alterations in the human HSC and progenitor cell populations have not been characterized. In order to elucidate the properties of an aged human hematopoietic system that may predispose to age-associated hematopoietic dysfunction, we evaluated and compared HSC and other hematopoietic progenitor populations prospectively isolated via fluorescence activated cell sorting (FACS) from 10 healthy young (20-35 years of age) and 8 healthy elderly (65+ years of age) human bone marrow samples. Bone marrow was obtained from hematologically normal young and old volunteers, under a protocol approved by the Stanford Institutional Review Board. We determined by flow cytometry the distribution frequencies and cell cycle status of HSC and progenitor populations. We also analyzed the in vitro function and generated gene expression profiles of the sorted HSC and progenitor populations. We found that bone marrow samples obtained from normal elderly adults contain ∼2-3 times the frequency of immunophenotypic HSC (Lin-CD34+CD38-CD90+) compared to bone marrow obtained from normal young adults (p < 0.02). Furthermore, upon evaluation of cell cycle status using RNA (Pyronin-Y) and DNA (Hoechst 33342) dyes, we observed that a greater percentage of HSC from young bone marrow are in the quiescent G0- phase of the cell cycle compared to elderly HSC, of which there is a greater percentage in G1-, S-, G2-, or M-phases of the cell cycle (2.5-fold difference; p < 0.03). In contrast to the increase in HSC frequency, we did not detect any significant differences in the frequency of the earliest immunophenotypic common myeloid progenitors (CMP; Lin-CD34+CD38+CD123+CD45RA-), granulocyte-macrophage progenitors (GMP; Lin-CD34+CD38+CD123+CD45RA+), and megakaryocytic-erythroid progenitors (MEP; Lin-CD34+CD38+CD123-CD45RA-) from young and elderly bone marrow. We next analyzed the ability of young and elderly HSC to differentiate into myeloid and lymphoid lineages in vitro. We found that elderly HSC exhibit diminished capacity to differentiate into lymphoid B-lineage cells in the AC6.21 culture environment. We did not, however, observe significant differences in the ability of young and elderly HSC to form myeloid and erythroid colonies in methylcellulose culture, indicating that myelo-erythroid differentiation capacity is preserved in elderly HSC. Correspondingly, gene expression profiling of young and elderly human HSC indicate that elderly HSC have up-regulation of genes that specify myelo-erythroid fate and function and down-regulation of genes associated with lymphopoiesis. Additionally, elderly HSC exhibit increased levels of transcripts associated with transcription, active cell-cycle, cell growth and proliferation, and cell death. These data suggest that hematopoietic aging is associated with intrinsic changes in the gene expression of human HSC that reflect the quantitative and functional alterations of HSC seen in elderly bone marrow. In aged individuals, HSC are more numerous and, as a population, are more myeloid biased than young HSC, which are more balanced in lymphoid and myeloid potential. We are currently investigating the causes of and mechanisms behind these highly specific age-associated changes in human HSC. Disclosures: Weissman: Amgen: Equity Ownership; Cellerant Inc.: ; Stem Cells Inc.: ; U.S. Patent Application 11/528,890 entitled “Methods for Diagnosing and Evaluating Treatment of Blood Disorders.”: Patents & Royalties.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2308-2308
Author(s):  
Laura R Goldberg ◽  
Mark S Dooner ◽  
Mandy Pereira ◽  
Michael DelTatto ◽  
Elaine Papa ◽  
...  

Abstract Abstract 2308 Hematopoietic stem cell biologists have amassed a tremendous depth of knowledge about the biology of the marrow stem cell over the past few decades, facilitating invaluable basic scientific and translational advances in the field. Most of the studies to date have focused on highly purified populations of marrow cells, with emphasis placed on the need to isolate increasingly restricted subsets of marrow cells within the larger population of resident bone marrow cells in order to get an accurate picture of the true stem cell phenotype. Such studies have led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to homogeneity. However, work from our laboratory, focusing on the stem cell potential in un-separated whole bone marrow (WBM), supports an alternate view of marrow stem cell biology in which a large population of marrow stem cells are actively cycling, continually changing phenotype with cell cycle transit, and therefore, cannot be purified to homogeneity. Our studies separating WBM into cell cycle-specific fractions using Hoechst 33342/Pyronin Y or exposing WBM to tritiated thymidine suicide followed by competitive engraftment into lethally irradiated mice revealed that over 50% of the long-term multi-lineage engraftment potential in un-separated marrow was due to cells in S/G2/M. This is in stark contrast to studies showing that highly purified stem cell populations such as LT-HSC (Lineage–c-kit+sca-1+flk2−) engraft predominantly when in G0. Additionally, by performing standard isolation of a highly purified population of stem cells, SLAM cells (Lineage–c-kit+sca-1+flk2−CD150+CD41−CD48−), and testing the engraftment potential of different cellular fractions created and routinely discarded during this purification process, we found that 90% of the potential engraftment capacity in WBM was lost during conventional SLAM cell purification. Incubation of the Lineage-positive and Lineage-negative fractions with tritiated thymidine, a DNA analogue which selectively kills cells traversing S-phase, led to dramatic reductions in long-term multi-lineage engraftment potential found within both cellular fractions (over 95% and 85% reduction, respectively). This indicates that the discarded population of stem cells during antibody-based stem cell purification is composed largely of cycling cells. In sum, these data strongly support that 1) whole bone marrow contains actively cycling stem cells capable of long-term multi-lineage engraftment, 2) these actively cycling marrow stem cells are lost during the standard stem cell purification strategies, and 3) the protean phenotype of actively cycling cells as they transit through cell cycle will render cycling marrow stem cells difficult to purify to homogeneity. Given the loss of a large pool of actively cycling HSC during standard stem cell isolation techniques, these data underscore the need to re-evaluate the total hematopoietic stem cell pool on a population level in addition to a clonal level in order to provide a more comprehensive study of HSC biology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Toshio Suda

Abstract Abstract SCI-42 Tissue homeostasis over the life of an organism relies on both self-renewal and multipotent differentiation of stem cells. Hematopoietic stem cells (HSCs) are sustained in a specific microenvironment known as the stem cell niche. Adult HSCs are kept quiescent during the cell cycle in the endosteal niche of the bone marrow. Normal HSCs maintain intracellular hypoxia, stabilize the hypoxia-inducible factor-1a (HIF-1a) protein, and generate ATP by anaerobic metabolism. In HIF-1a deficiency, HSCs became metabolically aerobic, lost cell cycle quiescence, and finally became exhausted. An increased dose of HIF-1a protein in VHL-mutated HSCs and their progenitors induced cell cycle quiescence and accumulation of HSCs in the bone marrow (BM), which were not transplantable. This metabolic balance promotes HSC maintenance by limiting the production of reactive oxygen species (ROS), but leaves HSCs susceptible to changes in redox status (1). We have performed the metabolomic analysis in HSCs. Upregulation of pyruvate dehydrogenase kinases enhanced the glycolytic pathway, cell cycle quiescence, and stem cell capacity. Thus, HSCs directly utilize the hypoxic microenvironment to maintain their slow cell cycle by HIF-1a-dependent metabolism. Downregulation of mitochondrial metabolism might be reasonable, since it reduces ROS generation. On the other hand, at the time of BM transplantation, HSCs activate oxidative phosphorylation to acquire more ATP for proliferation. Autophagy also energizes HSCs by providing amino acids during transplantation. ATG (autophagy-related) 7 is essential for transplantation and metabolic homeostasis. The relationship between mitochondrial heat shock protein, mortalin, and metabolism in HSCs will also be discussed. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document