Myeloid Translocation Gene 16 (MTG16) Regulates Lymphopoiesis

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2466-2466
Author(s):  
Aubrey A Hunt ◽  
Melissa Ann Steapleton ◽  
Isabel Moreno ◽  
Scott Hiebert

Abstract The Myeloid Translocation Gene (MTG) family was first discovered through the (8;21) translocation that leads to acute myeloid leukemia. This translocation fuses nearly all of Myeloid Translocation Gene 8 (MTG8) to an N-terminal portion of Acute Myeloid Leukemia 1 (AML1), thus disrupting the normal function of MTG8 as a transcriptional co-repressor. Two other family members have since been identified: Myeloid Translocation Gene 16 (MTG16) and Myeloid Tumor Gene Related-1 (MTGR1), both of which are implicated in leukemogenesis. To examine the physiological roles of Mtg16, a target of the t(16;21) that produces Acute Myeloid Leukemia, we deleted it in mice. We found that deletion of Mtg16 perturbs both B-and T-cell development, resulting in a reduced number of peripheral lymphocytes confirmed by complete blood counts and flow cytometry analysis of spleen and lymph node populations. These mice also display a dramatic two-to-three fold decrease in thymic cellularity. Analysis of the bone marrow indicated that there was also loss of B220+ cells, suggesting that there was a general deficit in lymphopoiesis in the absence of Mtg16. Upon closer examination, we find several significant changes throughout the development of both B and T cells. B-cells accumulate in the earliest stages of development, with Pre-pro B increasing in proportion of total B cells after inactivation of Mtg16. This change occurs at the expense of more mature populations, as immature and mature B-cells decrease in percentage significantly. Mtg16 (−/−) thymocytes show slight but statistically significant decreases in Double Negative 1 (DN1) and Double Negative 2 (DN2) subpopulations. Thymocytes also accumulate in the most mature CD4+ and CD8+ subsets in the absence of Mtg16. Mtg16 thus regulates lymphopoiesis at multiple steps, but the most intriguing changes occur in stem and progenitor populations. In fact, the deletion of Mtg16 also results in an increase in myeloid lineages, particularly granulocytes and macrophages, suggesting that Mtg16 plays a role in myeloid vs. lymphoid lineage decisions. Indeed, the deficit in lymphopoiesis appears to be due to increased myeloid commitment and/or expansion of myeloid progenitor cells. Even when cultured in conditions favoring lymphopoiesis, Mtg16-null lineage-/Sca1+/c-Kit+ cells displayed a predisposition towards myeloid development. Because of its ability to interact with a number of different transcription factors that participate in lymphoid and myeloid cell fate decisions, Mtg16 may provide a key piece of the transcriptional machinery that regulates lineage commitment.

2021 ◽  
Vol 22 (13) ◽  
pp. 6857
Author(s):  
Samantha Bruno ◽  
Manuela Mancini ◽  
Sara De Santis ◽  
Cecilia Monaldi ◽  
Michele Cavo ◽  
...  

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


Blood ◽  
2021 ◽  
Author(s):  
Swagata Goswami ◽  
Rajeswaran Mani ◽  
Jessica Nunes ◽  
Chi-ling Chiang ◽  
Kevan Zapolnik ◽  
...  

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. Herein, we identified that the silencing of Protein Phosphatase 2A (PP2A) directly contributes to differentiation block in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling reveal that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent OSU-2S in parallel with genetic approaches, we discovered that PP2A enforces c-Myc and p21 dependent terminal differentiation, proliferation arrest and apoptosis in AML. Finally, we demonstrate that PP2A activation decreases leukemia initiating stem cells, increases leukemic blast maturation, and improves overall survival in murine Tet2-/-Flt3ITD/WT and human AML models in-vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.


Author(s):  
Joseph G. Jurcic ◽  
Todd L. Rosenblat

Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 (213Bi)-labeled lintuzumab. In a subsequent study, 213Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of 213Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 (225Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that 225Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose 225Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using 213Bi- and astatine-211 (211At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4457-4457
Author(s):  
Hideki Uchiumi ◽  
Takafumi Matsushima ◽  
Arito Yamane ◽  
Hiroshi Handa ◽  
Hiroyuki Irisawa ◽  
...  

Abstract Background: HLA-DR antigen is present on hematopoietic progenitors and granulocyte/monocyte, erythrocyte and megakaryocytic precursors but absent at the promyelocytic stage during myeloid cell maturation. In accordance with this, majority of promyelocytic leukemia (APL) cells were negative for HLA-DR. Meanwhile, some of non-APL acute myeloid leukemia (AML) cells is found to express HLA-DR. However, the clinical significance of HLA-DR antigen on AML cells is currently unclear. Purpose: We sought to determine the prevalence and clinical characteristics of negativity in HLA-DR expression by retrospectively analyzing 181 consecutive patients with de novo adult AML. Patients and Methods: AML patients examined in the current study (aged 15–86 years) had been diagnosed between August 1995 and July 2004, and categorized to M0 (8 patients), M1 (35), M2 (74), M3 (20), M4 (25), M5 (15), and M6 (4), based on the FAB classification. Median follow-up time was 19.3 months. Phenotypic analyses of leukemic cells were performed using CD45 gating methods. HLA-DR-negative AML was defined as HLA-DR expression less than 20% of cells in the CD45 leukemic cell gate. Results: Among 181 patients, HLA-DR antigens were not detected on AML cells from 46 patients; 20 with APL and 26 with non-APL (non-APL/DR(−)), the latter of which included M0 (2 patients), M1 (15), M2 (7), M4 (2). Leukemic cells from other non-APL patients were HLA-DR-positive (non-APL/DR(+)). None of non-APL/DR(−) patients had t(15;17) nor PML/RARa rearrangement on cytogenetic analysis. Twenty out of 26 patients with non-APL/DR(−) had normal chromosome, and 6 had abnormal karyotypes. In the non-APL/DR(−) group, various degrees of nuclear folding, convolution, or lobulation were observed in 9 patients. Although treatment response and overall survival rate were similar in the three groups (APL, non-APL/DR(−), and non-APL/DR(+)), both FDP levels at diagnosis (57.3 vs 13.2, p<0.05) and maximal FDP levels (232.6 vs 43.8, p<0.01) were significantly higher in non-APL/DR(−) compared with non-APL/DR(+). The maximal FDP levels in the non-APL/DR(−) patients were comparable to those in the APL patients. FDP levels greater than 40 mg/ml were significantly more prevalent in the non-APL/DR(−) than in the the non-APL/DR(−) group. Logistic regression analysis demonstrated that low HLA-DR expression was an independent risk factor for FDP > 40 mg/ml. Conclusion: Our study suggests that AML with negative HLA-DR antigen tend to be associated with abnormality in coagulation and fibrinolysis even if they are genetically non-APL. We propose that more attention should be paied for HLA-DR expression to avoid a devastating coagulopathy which carries a high risk of mortality unless specifically addressed.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4255-4262 ◽  
Author(s):  
Carsten Müller ◽  
Rong Yang ◽  
Gregory Idos ◽  
Nicola Tidow ◽  
Sven Diederichs ◽  
...  

Cyclin A1 differs from other cyclins in its highly restricted expression pattern. Besides its expression during spermatogenesis, cyclin A1 is also expressed in hematopoietic progenitor cells and in acute myeloid leukemia. We investigated mechanisms that might contribute to cyclin A1 expression in hematopoietic cells. Comparison of cyclin A1 and cyclin A promoter activity in adherent and myeloid leukemia cell lines showed that the cyclin A1 promoter is preferentially active in myeloid cell lines. This preferential activity was present in a small, 335-bp cyclin A1 promoter fragment that contained several potential c-myb binding sites. Coexpression of a c-myb expression vector with the cyclin A1 promoter constructs significantly increased the reporter activity in adherent CV-1 as well as in myeloid U937 cells. Gel-shift assays demonstrated that c-myb could bind to the cyclin A1 promoter at a binding site located near the transcription start site. Site-directed mutagenesis of this site decreased promoter transactivation by 50% in both KCL22 cells that express high levels of c-myb and in CV-1 cells that were transfected with c-myb. In addition, transfection of primary human embryonic fibroblasts with a c-myb expression vector led to induction of the endogenous cyclin A1 gene. Taken together, c-myb can directly transactivate the promoter of cyclin A1, and c-myb might be involved in the high-level expression of cyclin A1 observed in acute myeloid leukemia. These findings suggest that c-myb induces hematopoiesis-specific mechanisms of cell cycle regulation.


2017 ◽  
Vol 24 (2) ◽  
pp. 370-382 ◽  
Author(s):  
JongBok Lee ◽  
Mark D. Minden ◽  
Weihsu C. Chen ◽  
Elena Streck ◽  
Branson Chen ◽  
...  

2021 ◽  
Author(s):  
Qiaoli Li

Abstract Background: Acute myeloid leukemia (AML) is one of the most common hematologic malignances with an ever-increasing incidence and high mortality. TFE3 and TFEB, two transcription factors that mediate cellular adaptation to stress by simultaneously promoting lysosomal biogenesis, autophagy induction, as well as expression of critical mitochondrial and metabolic regulators, which are substantial contributors to cell fate and cancer progress. However, the expression and prognostic values of TFE3/TFEB in AML have not been clarified.Objective: To explore the expression and role of TFE3/TFEB in AML and thus to find potential therapy. Methods: RNA sequence data from AML patients and healthy donors were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) analysis were performed by GEO2R. TFE3/TFEB related genes were obtained from UALCAN. Gene ontology (GO) and KEGG pathway were analyzed by WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) and DAVID. Protein-protein interactions (PPIs) network construction and module analysis were performed by STRING and Cytoscape. The Kaplan-Meier survival curves were drawn in TCGA portal. Results: We found TFE3 and TFEB can be used prognostic factors for AML, and most of their positively related genes were worse prognostic factors too. ITGB2, FGR, ITGAM, ITGAX and SELPLG were identified as the most significant genes in survival-related genes contributed by TFE3 and TFEB.Conclusions: In this study, we performed a comprehensive analysis of gene expression and gene function to identify key prognostic biomarkers in AML.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiayi Cai ◽  
Honghui Huang ◽  
Xiaoli Hu ◽  
Wenjing Lang ◽  
Wanbin Fu ◽  
...  

FMS-like tyrosine kinase 3 (FLT3) mutant acute myeloid leukemia (AML) occurs in approximately 30% of all AML patients and still has a poor prognosis. This study is directed to investigate gilteritinib in combination with homoharringtonine (HHT) on FLT3-ITD-mutant AML cell lines. In our study, we found that cell proliferation was dramatically suppressed by the combination of gilteritinib and HHT. This combination therapy decreased the mitochondrial membrane potential, finally inducing apoptosis. We demonstrated that gilteritinib downregulated the expression of FLT3 and downstream signaling, further decreased the mRNA level of myeloid cell leukemia-1 (Mcl-1). HHT and combination therapy could upregulate UBE2L6, which induced the degradation of Mcl-1 via ubiquitin-proteasome system. Knockdown of UBE2L6 could protect Mcl-1 from deprivation through the ubiquitin-proteasome system. These findings may provide a novel theoretical basis for the treatment of AML patients with FLT3-ITD mutations.


Sign in / Sign up

Export Citation Format

Share Document