scholarly journals PP2A is a therapeutically targetable driver of cell fate decisions via a c-Myc/p21 axis in Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Author(s):  
Swagata Goswami ◽  
Rajeswaran Mani ◽  
Jessica Nunes ◽  
Chi-ling Chiang ◽  
Kevan Zapolnik ◽  
...  

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. Herein, we identified that the silencing of Protein Phosphatase 2A (PP2A) directly contributes to differentiation block in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling reveal that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent OSU-2S in parallel with genetic approaches, we discovered that PP2A enforces c-Myc and p21 dependent terminal differentiation, proliferation arrest and apoptosis in AML. Finally, we demonstrate that PP2A activation decreases leukemia initiating stem cells, increases leukemic blast maturation, and improves overall survival in murine Tet2-/-Flt3ITD/WT and human AML models in-vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2669-2669
Author(s):  
Nunki Hassan ◽  
Basit Salik ◽  
Alastair Duly ◽  
Jenny Yingzi Wang

Acute myeloid leukemia (AML) is associated with high relapse rates and poor survival, with limited response to conventional cancer therapy and lacking effective targeting of highly self-renewing leukemic stem cells (LSCs). The mechanism underlying the high self-renewal activity of LSCs that determines the aggressiveness of disease remains poorly understood. Although we and others have previously demonstrated the clinical significance of aberrant WNT/β-catenin signaling in AML (Science, 327:1650-1653, 2010; Cancer Cell, 18:606-618, 2010), its pharmacologically tractable components essential for the regulation of LSC self-renewal have not yet been determined. Our studies discover, for the first time, a critical link between R-spondin (RSPO)-LGR4/HOXA9 and WNT/β-catenin pathways in AML LSCs. Microarray data analysis of 183 AML patient samples showed a significant positive correlation between expression of LGR4 and HOXA9 (r=0.546, P<0.0001). LGR4 exerted a cell-of-origin-specific function in promoting aberrant self-renewal and AML progression in vivo through cooperating with HOXA9, a poor prognostic predictor. We observed that LGR4 itself was not able to fully transform normal hematopoietic stem/progenitor cells (HSPCs), but instead cooperated with HOXA9 in HSPCs to accelerate disease onset producing a highly aggressive short latency AML in vivo. LGR4 and HOXA9 were epigenetically upregulated and their coexpression was an essential determinant of RSPO-LGR4 oncogenic activity. RSPO/WNT3 ligands could serve as stem cell growth factors to sustain myeloid differentiation block and to promote proliferation of CD34+ LSC-enriched subpopulations in primary AML patient specimens co-expressing LGR4 and HOXA9. Conversely, CRISPR/Cas9-mediated knockout of LGR4 not only suppressed RSPO/WNT3 signals and markedly decreased nuclear active β-catenin, but also reduced tumor burden in a patient-derived xenograft (PDX) mouse model of relapsed AML. Importantly, this study is the first to demonstrate that pharmacological inhibition of RSPO3-LGR4 signaling by a clinical-grade anti-RSPO3 monoclonal antibody induced LSC differentiation and consequently prevented tumor growth in AML PDX mice but did not affect normal human stem cell compartment in NSG mice. Together, our findings support a critical role for RSPO-LGR4 in the Wnt/β-catenin signaling pathway to promote AML leukemogenesis. Aberrant activation of RSPO-LGR4 is crucial for enhancing the self-renewal potential and myeloid differentiation block, which contribute to an aggressive leukemia phenotype through cooperating with HOXA9. Genetic and pharmacological targeting of this pathway impairs LSC self-renewal and survival and impedes AML development in murine models and patient-derived xenografts, highlighting the therapeutic value of targeting RSPO-LGR4 signaling in AML. References: Wang Y, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650-1653. Yeung J, et al. Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606-618. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (13) ◽  
pp. 6857
Author(s):  
Samantha Bruno ◽  
Manuela Mancini ◽  
Sara De Santis ◽  
Cecilia Monaldi ◽  
Michele Cavo ◽  
...  

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4201-4201
Author(s):  
Ashley Pandolfi ◽  
Boris Bartholdy ◽  
Britta Will ◽  
Robert Stanley ◽  
Tihomira I Todorova ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive disease associated with poor clinical outcome. Less than one third of patients achieve durable remission with current treatment regimens, and prognostication and risk stratification are challenging. We have recently reported that the non-clustered homeobox gene, H2.0-like homeobox (HLX), is 2 to 16 fold overexpressed in more than 80% of patients with AML, across all major disease subtypes, and higher levels of HLX are associated with poor overall survival in AML. Inhibition of HLX in both murine and human AML cells has a significant anti-leukemic and differentiation-inducing effect suggesting HLX and its downstream targets as novel therapeutic targets in AML. In order to better understand the role of Hlx at the stem cell level and in myeloid differentiation in vivo, we generated knock-in mice conditionally overexpressing Hlx from the Rosa26 locus and bred them to mice that bear Cre recombinase under the control of the pIpC-inducible, hematopoietic specific promoter, Mx1. Animals overexpressing HLX exhibit elevated WBC counts and abnormal myeloid cells in the peripheral blood. Analysis of the bone marrow reveals expansion of the granulocyte-macrophage progenitor population (lin- ckit+ cd34+ CD16/32high) and expansion of immature myelocytes (ckit+ cd34+ CD16/32high Gr1int). Hlx knock-in bone marrow cells, and specifically immature granulocyte precursors, exhibit enhanced serial clonogenicity in methylcellulose colony assays, and a differentiation block and maintenance of immaturity in response to GM-CSF. Internal tandem duplications of FLT3 (FLT3-ITD) are seen in approximately 30% of all AML patients, and frequently co-occur with elevated HLX levels. Correlative analyses showed that AML patients with mutant FLT3 and low HLX have overall survival similar to WT FLT3 patients, and survive significantly longer than patients with mutant FLT3 and high HLX (p=0.005), demonstrating that FLT3 mutations confer poor prognosis only if HLX is highly expressed, and suggesting that HLX and mutant FLT3 functionally cooperate. We retrovirally co-expressed HLX and FLT3-ITD, or FLT3-ITD alone (plus an empty control), in primary Lin-Kit+cells and transplanted them into congenic recipient animals. Four weeks after transplantation, donor chimerism was 4-fold increased on average in the peripheral blood (PB) and bone marrow (BM), and by 12 weeks post-transplantation mice expressing FLT3-ITD and HLX developed AML with large numbers of leukemic blasts in the peripheral blood and bone marrow. We then crossed our new Hlx knock-in mouse model with previously generated FLT3-ITD knock-in mice. Strikingly, heterozygous double-transgenic mice expressing both the knock-in FLT3-ITD mutation and HLX develop acute myeloid leukemia after a latency of 2 months. Morphological and flow cytometric analysis revealed large numbers of blasts circulating in the peripheral blood and replacing the marrow, as well as substantial leukemic infiltrates in the spleen and liver. Our studies reveal a critical role for HLX in conferring a differentiation block and increased clonogenicity at the pre-leukemic stem and progenitor cell level in a genetic in vivo model. Furthermore, a novel compound knock-in mouse model of Hlx overexpression and FLT3-ITD demonstrates that Hlx can initiate AML in cooperation with FLT3-ITD in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Yonghui Li ◽  
Li Gao ◽  
Xufeng Luo ◽  
Lili Wang ◽  
Xiaoning Gao ◽  
...  

Abstract t(8;21) is one of the most frequent chromosomal translocations occurring in acute myeloid leukemia (AML) and is considered the leukemia-initiating event. The biologic and clinical significance of microRNA dysregulation associated with AML1/ETO expressed in t(8;21) AML is unknown. Here, we show that AML1/ETO triggers the heterochromatic silencing of microRNA-193a (miR-193a) by binding at AML1-binding sites and recruiting chromatin-remodeling enzymes. Suppression of miR-193a expands the oncogenic activity of the fusion protein AML-ETO, because miR-193a represses the expression of multiple target genes, such as AML1/ETO, DNMT3a, HDAC3, KIT, CCND1, and MDM2 directly, and increases PTEN indirectly. Enhanced miR-193a levels induce G1 arrest, apoptosis, and restore leukemic cell differentiation. Our study identifies miR-193a and PTEN as targets for AML1/ETO and provides evidence that links the epigenetic silencing of tumor suppressor genes miR-193a and PTEN to differentiation block of myeloid precursors. Our results indicated a feedback circuitry involving miR-193a and AML1/ETO/DNMTs/HDACs, cooperating with the PTEN/PI3K signaling pathway and contributing to leukemogenesis in vitro and in vivo, which can be successfully targeted by pharmacologic disruption of the AML1/ETO/DNMTs/HDACs complex or enhancement of miR-193a in t(8;21)–leukemias.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3930-3930
Author(s):  
Mark D McKenzie ◽  
Margherita Ghisi ◽  
Luisa Cimmino ◽  
Michael Erlichster ◽  
Ethan P Oxley ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal expansion of transformed myeloid precursors that fail to differentiate into mature cells. Since myeloid lineage maturation curbs self-renewal and is considered irreversible, engaging this process in AML is an attractive therapeutic strategy. Results: Normal myeloid differentiation requires the transcription factor PU.1 (SPI1), which is functionally compromised in several AML subtypes and is directly inhibited by the recurrent fusion oncoproteins AML1-ETO and PML-RARA. To examine the importance of PU.1 suppression in AML maintenance in vivo, we have combined RNAi-mediated PU.1 inhibition with p53 deficiency to drive highly aggressive AML in mice. Using these models we find that restoring endogenous PU.1 activity in established AML in vivo is sufficient to trigger robust transcriptional, immunophenotypic, and morphological differentiation of leukemic blasts, yielding polymorphonuclear, neutrophil-like cells. Maturation of AML is associated with significant loss of cell viability and yields sustained disease clearance in vivo. Although PU.1 restoration is potently anti-leukemic, remarkably we find that subsequent suppression of PU.1 in mature neutrophil-like cells reverts them to a transformed state within several days. While mature AML-derived cells are slower to form blast colonies in methylcellulose cultures, their clonogenic frequency is only reduced four-fold relative to AML blasts suggesting highly efficient de-differentiation. Conclusions: These results demonstrate that triggering myeloid differentiation can effectively resolve a p53-deficient model of treatment resistant AML, but also identify a previously unrecognised ability of AML cells to bidirectionally transition between transformed and differentiated states based on the activity of a single transcription factor. Our findings challenge the concept of 'terminal differentiation' in AML and highlight the importance of therapeutically eradicating leukemia cells at all stages of myeloid lineage maturation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3762-3762
Author(s):  
Edurne San Jose ◽  
Naroa Gimenez-Camino ◽  
Obdulia Rabal ◽  
Estibaliz Miranda ◽  
Leire Garate ◽  
...  

Acute myeloid leukemia (AML) is a malignant disease characterized by uncontrolled proliferation, differentiation arrest and accumulation of immature myeloid progenitors. Despite recent developments and the approval of new therapeutic agents in the last few years, long term survival of AML, particularly in elderly patients remains an unmet medical need.The use of all-trans retinoic acid (ATRA) in Acute Promyelocytic Leukemia has proven that differentiation therapy may significantly change the survival of AML patients, however the success in APL has not been translated to other groups of AML. Therefore, the identification of new therapeutic agents that may induce the differentiation of AML blasts represents an attractive new target. Furthermore, it is well known that epigenetic alterations have an important role in the development and maintenance of cancer and AML in particular. Thus, our aim was to develop new small molecules targeting epigenetic modifying enzymes like DNA methyltransferases (DNMT), histone methyltransferases or histone deacetylase (HDAC) with the aim of inducing differentiation in AML. We performed a screening of over 50 small molecules synthesized by our group. The design was performed in-house using a knowledge and structure based strategy and the read out of the screening was based on changes in expression of CD11b (a well described marker of myeloid differentiation) after in vitro treatment of AML cells lines. Interestingly, we found several compounds with high capacity to promote the differentiation of leukemic cells in AML cells lines at low non-cytotoxic doses, selecting CM-444 and CM-1758 as our lead compounds (Figure 1a).A complete biochemical characterization showed that both compounds are specific pan-HDACs inhibitors (HDACi). CM-444 and CM-1758 induced in vitro cell differentiation in all subtypes of AML, independently of the AML genetic subgroups or the presence of mutations, which was significantly more pronounced that differentiation induced by reference compounds such as Panobinostat, Vorinostat, Entinostat, Tubastatin or Quisinostat, previously described HDACi. CM-444 and CM-1758 also induced in vivo differentiation in xenogeneic models of AML. AML differentiation was associated with induction of CD11b, downregulation of c-MYC, overexpression of transcription factors that govern the myeloid differentiation and morphologic changes. In addition, these compounds promoted in vitro differentiation of patient-derived AML blasts. The complete transcriptome analysis by RNA-Seq carried out in AML cell lines after CM-444, CM-1758, Panobinostat or Vorinostat treatment showed changes in genes implicated in differentiation, but without explaining the differences among the different HDACi. Analysis of the complete acetylome and proteome before and after treatment with CM-444 and CM-1758 in comparison with other HDACi showed differential acetylation of non-histone proteins included in the GO categories of Zn binding proteins and nucleic acid binding proteins (Figure 1b). Most of these proteins are epigenetic enzymes and have been related to AML and myeloid differentiation, such as MLL2, EP300 or BRD4. In summary, we have developed and characterized novel epigenetic small molecules with a high in vitro and in vivo capacity of differentiating AML cells. These compounds might be an effective differentiation-based therapy to be tested in AML. Besides, the mechanism of differentiation of these compounds is due, at least in part, to the acetylation of non-histone epigenetic proteins, which are key in the myeloid differentiation. Disclosures Paiva: Celgene, Janssen, Sanofi and Takeda: Consultancy; Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche and Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria.


Author(s):  
Lianzhong Zhao ◽  
Pengcheng Zhang ◽  
Phillip M Galbo ◽  
Xinyue Zhou ◽  
Sajesan Aryal ◽  
...  

Acute myeloid leukemia (AML) with MLL-rearrangement (MLL-r) comprises approximately 10% of all AML cases and portends poor outcomes. Much remains uncovered on how MLL-r AML drives leukemia development while preventing cells from normal myeloid differentiation. Here, we identified that transcription factor MEF2D is a super-enhancer-associated, highly expressed gene in MLL-r AML. Knockout of MEF2D profoundly impaired leukemia growth, induced myeloid differentiation, and delayed oncogenic progression in vivo. Mechanistically, MEF2D loss led to robust activation of a CEBPE-centered myeloid differentiation program in AML cells. Chromatin profiling revealed that MEF2D binds to and suppresses the chromatin accessibility of CEBPE cis-regulatory regions. In human acute leukemia samples, MEF2D expression showed a strong negative correlation with the expression of CEBPE. Depletion of CEBPE partially rescued the cell growth defect and myeloid cell differentiation induced by the loss of MEF2D. Lastly, we show that MEF2D is positively regulated by HOXA9, and downregulation of MEF2D is an important mechanism for DOT1L inhibitor-induced anti-leukemia effects. Collectively, our findings suggest that MEF2D plays a critical role in human MLL-r AML and uncover the MEF2D-CEBPE axis as a crucial transcriptional mechanism regulating leukemia cell self-renewal and differentiation block.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1353-1353
Author(s):  
Christian Bach ◽  
Philipp B. Staber ◽  
Min Ye ◽  
Pu Zhang ◽  
Alan D. Friedman ◽  
...  

Abstract Abstract 1353 The transcription factors PU.1 and C/EBPα are key regulators of hematopoietic cell differentiation. Tight and coordinated regulation of these factors is essential for normal hematopoiesis and even moderate alterations can lead to acute myeloid leukemia (AML). Previous studies established that in PU.1 knockout mice myeloid differentiation is blocked at an earlier stage compared to C/EBPα knockouts, consistent with PU.1 acting upstream of C/EBPα during hematopoietic differentiation. Recently, however, we and others identified a PU.1 upstream regulatory element (URE) which contains potential C/EBP binding sites. C/EBPα binds to the PU.1 URE in vitro and in vivo. Furthermore, C/EBPα transactivated the PU.1 proximal promoter in a URE dependent manner. We, therefore, hypothesized that PU.1 is a target gene of C/EBPα in hematopoietic cells. To assess the role of PU.1 as a downstream target of C/EBPα in normal hematopoiesis we performed gene expression analysis in immature hematopoietic cells of conditional C/EBPα knockout mice (Mx1-Cre). Of note, we observed a strong reduction of PU.1 expression in hematopoietic stem cells (HSCs: CD150+CD48-LSK) after excision of C/EBPα, corroborating that PU.1 is a target of C/EBPα in murine HSCs in vivo. Moreover, lentiviral PU.1 expression alleviated the myeloid differentiation block of C/EBPα−/− KSL cells as evidenced by the differentiation to Gr-1 and Mac1 positive myeloid cells. Targeted deletion of the PU.1 URE reduces PU.1 expression and induces myeloid leukemia. Additionally, inactivation of C/EBPα by various mechanisms is a common observation in many AML subtypes. Therefore, we tested if dysregulation of C/EBPα is associated with decreased PU.1 expression. Gene expression studies in several human AML cell lines revealed a positive correlation between C/EBPα and PU.1 expression. Furthermore, we analyzed expression of C/EBPα and PU.1 in a well characterized cohort of 285 AML patients. Importantly, PU.1 expression was strongly reduced in cases with either C/EBPα mutations or C/EBPα promoter silencing compared to other AML subtypes. Taken together, our data support that PU.1 is a downstream target gene of C/EBPα in normal hematopoiesis as well as human leukemia. We currently develop a mouse model containing targeted mutations of three C/EBP binding sites in the PU.1 URE. This model will help to further pinpoint the functional impact of C/EBPα mediated regulation of PU.1 in different hematopoietic populations and to determine how this regulation may contribute to leukemia development in vivo. The first two authors contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 889-889
Author(s):  
Tim D D Somerville ◽  
Xu Huang ◽  
James T Lynch ◽  
Gary J Spencer ◽  
Tim C P Somervaille

Abstract The identification of genes and cellular pathways that are active in acute myeloid leukemia stem cells (AML LSC) but not normal hematopoietic stem and progenitor cells (HSPC) is essential, both for the understanding of disease biology and also for their evaluation as candidate therapeutic targets. Through in silico analysis, we identified FOXC1 as expressed in approximately 15-30% of cases of human AML in both LSCs and bulk cell populations. FOXC1 is a member of the forkhead box family of transcription factors and has essential roles in mesenchymal differentiation. Reflecting murine knockout phenotypes, in patients with Axenfeld-Rieger syndrome haploinsufficiency of FOXC1due to mutation or deletion causes developmental anterior segment abnormalities of the eye. By quantitative PCR we confirmed high level expression of FOXC1 in 17% of blast cell samples from patients with AML, and medium level expression of FOXC1 in 24% of samples (cohort size n=29). Critically, FOXC1 expression was not detected in any normal human hematopoietic cell population (including prospectively FACS-purified HSC, MPP, GMP, MEP, as well as defined mature cell populations, all from normal human bone marrow). Thus while FOXC1 is not expressed in normal human hematopoiesis, it is expressed in human leukemic hematopoiesis. To investigate whether FOXC1 derepression in AML makes a functional contribution to transformation, we initially performed knockdown (KD) experiments in human THP1 AML cells (which exhibit high level FOXC1 expression). FOXC1 KD led to loss of clonogenic potential and induction of morphological and immunophenotypic differentiation and this phenotype could be rescued by forced expression of a KD-resistant version of the gene. By contrast, FOXC1 KD in normal HSPC had no effect. Thus, FOXC1 contributes to the differentiation block in human AML cells. Forced expression of FOXC1 alone in normal murine HSPC induced a transient enhancement of clonogenic potential and myeloid differentiation block in serial replating assays, and myeloid skewing in in vivotransplantation assays. It did not however result in acute leukemia. Further quantitative PCR analyses demonstrated that high level FOXC1 expression associated strongly with high level HOXA9 expression in human AML. To determine whether co-expression of HOXA9 and FOXC1 is of functional significance, murine KIT+ HSPC were retrovirally infected with either Hoxa9 alone (with empty vector, MTV) or in pairwise combinations with FOXC1 or Meis1 (hereafter referred to as Hoxa9/MTV, Hoxa9/FOXC1 and Hoxa9/Meis1 cells, respectively) and their clonogenic potential was assessed in serial replating assays. As expected, Hoxa9 overexpression strongly augmented the clonogenic potential of BM HSPC, an effect which was enhanced by co-expression of Meis1. Importantly, the co-expression of Hoxa9 and FOXC1 also significantly enhanced the clonogenic potential and myeloid differentiation block of BM HSPC versus cells overexpressing Hoxa9 alone, as determined by immunophenotyping and colony morphology. Thus, FOXC1 and HOXA9 collaborate to enhance clonogenic potential and differentiation block in HSPC. To determine whether HOXA9 and FOXC1 collaborate to initiate leukemia, Hoxa9/MTV, Hoxa9/FOXC1 and Hoxa9/Meis1 double transduced HSPC were transplanted into irradiated congenic recipients. As expected, recipients of Hoxa9/Meis1 cells developed AML more rapidly than recipients of Hoxa9 cells (median latency 57 days versus 125 days). Strikingly, despite reduced initial engraftment levels, recipients of Hoxa9/FOXC1 cells succumbed to AML significantly earlier than mice receiving Hoxa9cells (median latency 83 days versus 125 days). In every case and in each cohort, autopsy demonstrated splenomegaly and pale BM due to infiltration of donor-derived cells of myeloid immunophenotype, confirming that these animals died from AML. These data demonstrate that FOXC1 functions to accelerate and enhance the development of AML in collaboration with HOXA9. Our functional studies are consistent with a model whereby lineage-inappropriate derepression of FOXC1 in human AML contributes to oncogenic transformation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2466-2466
Author(s):  
Aubrey A Hunt ◽  
Melissa Ann Steapleton ◽  
Isabel Moreno ◽  
Scott Hiebert

Abstract The Myeloid Translocation Gene (MTG) family was first discovered through the (8;21) translocation that leads to acute myeloid leukemia. This translocation fuses nearly all of Myeloid Translocation Gene 8 (MTG8) to an N-terminal portion of Acute Myeloid Leukemia 1 (AML1), thus disrupting the normal function of MTG8 as a transcriptional co-repressor. Two other family members have since been identified: Myeloid Translocation Gene 16 (MTG16) and Myeloid Tumor Gene Related-1 (MTGR1), both of which are implicated in leukemogenesis. To examine the physiological roles of Mtg16, a target of the t(16;21) that produces Acute Myeloid Leukemia, we deleted it in mice. We found that deletion of Mtg16 perturbs both B-and T-cell development, resulting in a reduced number of peripheral lymphocytes confirmed by complete blood counts and flow cytometry analysis of spleen and lymph node populations. These mice also display a dramatic two-to-three fold decrease in thymic cellularity. Analysis of the bone marrow indicated that there was also loss of B220+ cells, suggesting that there was a general deficit in lymphopoiesis in the absence of Mtg16. Upon closer examination, we find several significant changes throughout the development of both B and T cells. B-cells accumulate in the earliest stages of development, with Pre-pro B increasing in proportion of total B cells after inactivation of Mtg16. This change occurs at the expense of more mature populations, as immature and mature B-cells decrease in percentage significantly. Mtg16 (−/−) thymocytes show slight but statistically significant decreases in Double Negative 1 (DN1) and Double Negative 2 (DN2) subpopulations. Thymocytes also accumulate in the most mature CD4+ and CD8+ subsets in the absence of Mtg16. Mtg16 thus regulates lymphopoiesis at multiple steps, but the most intriguing changes occur in stem and progenitor populations. In fact, the deletion of Mtg16 also results in an increase in myeloid lineages, particularly granulocytes and macrophages, suggesting that Mtg16 plays a role in myeloid vs. lymphoid lineage decisions. Indeed, the deficit in lymphopoiesis appears to be due to increased myeloid commitment and/or expansion of myeloid progenitor cells. Even when cultured in conditions favoring lymphopoiesis, Mtg16-null lineage-/Sca1+/c-Kit+ cells displayed a predisposition towards myeloid development. Because of its ability to interact with a number of different transcription factors that participate in lymphoid and myeloid cell fate decisions, Mtg16 may provide a key piece of the transcriptional machinery that regulates lineage commitment.


Sign in / Sign up

Export Citation Format

Share Document