MicroRNA signatures in Genetic Subtypes of T-Cell Acute Lymphoblastic Leukemia.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3360-3360
Author(s):  
Pieter Van Vlierberghe ◽  
Bruce Poppe ◽  
Nadine Van Roy ◽  
Tom Taghon ◽  
Jean Plum ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that accounts for about 15 percent of ALL cases. Leukemic transformation of immature thymocytes is caused by a multistep pathogenesis involving numerous genetic abnormalities providing uncontrolled cell growth. Accumulating evidence suggests the presence of at least 5 different molecular-cytogenetic subgroups in T-ALL, ie. TAL/LMO, TLX1, TLX3, HOXA and MYB. Recently, non coding microRNAs were discovered as important regulators of gene and/or protein expression and subsequently shown to be directly implicated in cancer. Nevertheless, it is currently unclear in which way deregulated miRNA expression may contribute to the pathogenesis of T-cell acute leukemia. In this study, we investigated whether different genetic subgroups in T-ALL are characterized by distinct miRNA expression patterns. Therefore, we profiled a total of 360 miRNAs through automated qRT-PCR using high-throughput quantitative stem-loop RT-PCR in a genetically well characterized T-ALL patient cohort (n=52), including 11 HOXA (3 MLL rearranged, 5 inv(7)(p15q35) and 3 CALM-AF10), 16 TAL/LMO (7 LMO2 rearranged, 8 TAL1 rearranged, 1 LMO2/TAL1 rearranged), 11 TLX3 and 5 TLX1 rearranged patient samples. Since T-ALL blasts originate from maturating T lymphocytes, we also profiled different subsets of sorted T-cell populations (CD34+, CD4+/CD8+/CD3−, CD4+/CD8+/CD3+, CD4+ SP and CD8+ SP). These miRNA profiles of normal T-cells served as a negative control for the identification of deregulated miRNA expression that may be truly leukemia associated. SAM analysis (t-test and wilcoxon, FDR=0) identified significant and differentially expressed miRNAs between the HOXA, TLX3 and TAL/LMO subgroups. No significant and differentially expressed miRNAs were obtained for the TLX1 subgroup, probably due to the limited number of patient samples. The HOXA subgroup showed specific up-regulation of miR-196a and miR-196b, which are encoded at the HOXB and HOXA cluster, respectively, but no significantly down-regulated miRNAs could be identified in this subgroup. The TLX3 subgroup was uniquely characterized by the up-regulation of miR-99a, miR-125b, let-7c, miR-508 and miR-509, and down-regulation of miR-127 and miR-182. Finally, specific up-regulation of miR-424, miR-148a, miR-422, miR-362, miR-148a, miR-502, miR-10a, miR-200c, miR-31, miR-660 and miR-15b, was identified in the TAL/LMO rearranged subgroup, which was also characterized by the specific down-regulation of miR-99b, miR-155, miR-125a, miR-153, miR-135a, miR-34a and miR-193b. Next, we evaluated the expression pattern of all significant and differentially expressed miRNAs in the different subsets of sorted T-cell populations. The expression patterns of these miRNAs could be classified into consistently active, completely absent or temporally regulated during T-cell development. For the miRNAs showing a temporal regulation during T-cell maturation, their differential expression in T-ALL subtypes may reflect differences in the maturation arrest of the T-cell of origin, rather than pointing to an oncogenic event. Nevertheless, their constitutive (in)activation in primary T-ALL patients could still be of oncogenic relevance, similar to transcription factors like TAL1 or LMO2 which also show a temporal regulation during T-cell maturation. In contrast, some other miRNAs showed no expression in any of the T-cell populations, providing stronger evidence that their activation in specific T-ALL subtypes may contribute to T-ALL pathogenesis. In conclusion, this study shows that molecular-cytogenetic subgroups in T-ALL are characterized by a specific miRNA expression signature. In addition, correlation of our findings to the expression of these miRNAs in normal T-cell subsets may guide us to the miRNAs with true oncogenic potential. This report paves the way for further investigation directed at the role of these miRNAs in the pathogenesis of T-ALL, which may provide us with further insight in the oncogenic pathways that are (in)activated in different T-ALL subgroups. Ultimately, these deregulated miRNAs may offer new targets for therapeutic intervention.

Leukemia ◽  
2011 ◽  
Vol 25 (8) ◽  
pp. 1249-1258 ◽  
Author(s):  
B Gerby ◽  
E Clappier ◽  
F Armstrong ◽  
C Deswarte ◽  
J Calvo ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 474-474
Author(s):  
Alfons Navarro ◽  
Anna Gaya ◽  
Aina Pons ◽  
Pau Abrisqueta ◽  
Bernat Gel ◽  
...  

Abstract Mature microRNAs (miRNA) are recently discovered small RNA molecules of 21–25 nucleotides in length. They act as negative regulators of expression of important genes like those participating in cellular proliferation or apoptosis. There is evidence that miRNA play an important role in carcinogenesis. The objective of this study was to compare the miRNA expression patterns in normal lymph nodes and in lymph nodes from patients with HL. Moreover, we investigated the miRNA pattern of HL depending on Epstein-Barr Virus (EBV) expression. We assessed 156 mature miRNAs by Stem-loop RT-PCR and Real time PCR in ABI PRISM 7500 in 9 normal lymph nodes and 39 patients diagnosed with HL nodular sclerosis subtype (15 EBV+ and 24 EBV-)at a single institution. Patients median age was 27 years (range, 15–52), and clinical stage was I (n=1); II (n=22); III (n=8) and IV (n=8); 41% of the patients reported B symptoms. RNA was obtained in all cases from formalin fixed paraffin embedded tissues. miRNA expression data was normalized to let-7a miRNA and to global median. Relative quantification of miRNA expression was calculated with the 2−ΔΔCt method. The data were presented as log10 of relative quantity of target miRNA. Normal human lymph node tissue was used as calibrator for all samples. Data were analyzed by means of Significant Analysis of Microarrays (SAM), Student’s t-test (with random variance model) and Class prediction methods using BRB Array Tools version 3.4.0 and TIGR Multiexperiment Viewer version 3.1. Of the 156 miRNAs analyzed, 35 were differentially expressed between normal lymph nodes and HL (12 miRNAs were upregulated and 23 downregulated). The most differentially overexpressed miRNAs was miR-216, which inhibits apoptosis pathway. Other differentially expressed miRNAs were miR-140, 204, 19a, 20, 191 and 142-3p, which have been associated to the genesis of hematological and non-hematological malignances. With respect to EBV+ vs. EBV− cases, we found that miR-96 and miR-335 were underexpressed in the EBV+ cases as compared to EBV− (p=0.001). These miRNAs have RNF34 and BIRC2 genes as targets, which have an antiapoptotic function. We also found that miR-138 was more frequently overexpressed in clinical stages I–II versus clinical stages III–IV (p=0.004), and that miR-328 was more frequently overexpressed in stages III–IV (p=0.004). In conclusion, miRNAs might have a role in the pathogenesis of HL. The miRNA pattern is different between the EBV+ and EBV− cases, and the differentially expressed miRNAs seems to be related to the apoptotic pathway.


2014 ◽  
Vol 170 (4) ◽  
pp. 583-591 ◽  
Author(s):  
David Velázquez-Fernández ◽  
Stefano Caramuta ◽  
Deniz M Özata ◽  
Ming Lu ◽  
Anders Höög ◽  
...  

BackgroundThe adrenocortical adenoma (ACA) entity includes aldosterone-producing adenoma (APA), cortisol-producing adenoma (CPA), and non-hyperfunctioning adenoma (NHFA) phenotypes. While gene mutations and mRNA expression profiles have been partly characterized, less is known about the alterations involving microRNA (miRNA) expression.AimTo characterize miRNA expression profile in relation to the subtypes of ACAs.Subjects and methodsmiRNA expression profiles were determined in 26 ACAs (nine APAs, ten CPAs, and seven NHFAs) and four adrenal references using microarray-based screening. Significance analysis of microarrays (SAM) was carried out to identify differentially expressed miRNAs between ACA and adrenal cortices or between tumor subtypes. Selected differentially expressed miRNAs were validated in an extended series of 43 ACAs and ten adrenal references by quantitative RT-PCR.ResultsAn hierarchical clustering revealed separate clusters for APAs and CPAs, while the NHFAs were found spread out within the APA/CPA clusters. When NHFA was excluded, the clustering analysis showed a better separation between APA and CPA. SAM analysis identified 40 over-expressed and three under-expressed miRNAs in the adenomas as compared with adrenal references. Fourteen miRNAs were common among the three ACA subtypes. Furthermore, we found specific miRNAs associated with different tumor phenotypes.ConclusionThe results suggest that miRNA expression profiles can distinguish different subtypes of ACA, which may contribute to a deeper understanding of ACA development and potential therapeutics.


2019 ◽  
Author(s):  
Shahan Mamoor

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia with inferior treatment outcomes. The T-cell receptor (TCR) exists in two major forms: the 𝛂βTCR or the γδTCR, and 20-35% of T-ALL cases express either the 𝛂βTCR or the γδTCR (T-ALL𝛂β or T-ALLγδ). Using a published dataset from a cohort of 14 TCR+ T-ALL patients, I found a series of genes that are differentially expressed among patients T-ALL𝛂β or T-ALLγδ. Any number of these differentially expressed genes may be a scientifically and/or clinically actionable target in TCR+ T-ALL.


2020 ◽  
Vol 32 (12) ◽  
pp. 1067
Author(s):  
Wangsheng Zhao ◽  
Eugene Quansah ◽  
Meng Yuan ◽  
Pengcheng Li ◽  
Chuanping Yi ◽  
...  

MicroRNAs (miRNAs) have emerged as potent regulators of gene expression and are widely expressed in biological systems. In reproduction, they have been shown to have a significant role in the acquisition and maintenance of male fertility, whereby deletion of Dicer in mouse germ cells leads to infertility. Evidence indicates that this role of miRNAs extends from the testis into the epididymis, controlling gene expression and contributing to regional variations in gene expression. In this study, RNA sequencing technology was used to investigate miRNA expression patterns in the yak epididymis. Region-specific miRNA expression was found in the yak epididymis. In all, 683 differentially expressed known miRNAs were obtained; 190, 186 and 307 differentially expressed miRNAs were identified for caput versus corpus, corpus versus cauda and caput versus cauda region pairs respectively. Kyoto Encyclopedia of Genes and Genomes results showed endocytosis as the most enriched pathway across region pairs, followed by protein processing in the endoplasmic reticulum, phagosome, spliceosome and biosynthesis of amino acids in region pair-specific hierarchical order. Gene ontology results showed varied enrichment in terms including cell, biogenesis, localisation, binding and locomotion across region pairs. In addition, significantly higher miR-34c expression was seen in the yak caput epididymidis relative to the corpus and cauda epididymidis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1439-1439 ◽  
Author(s):  
Hamilton L. Gimenes-Teixeira ◽  
Guilherme A. dos Santos ◽  
Dalila L. Zanette ◽  
Priscila S Scheucher ◽  
Luciana Correa Oliveira de Oliveira ◽  
...  

Abstract Abstract 1439 T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of immature T cells that accounts about 15% of pediatric and 25% of adult ALL cases. In the last years, several clinical and laboratory features have been described as prognostic markers; nevertheless, with intensification of therapy most of them have lost their predictive value. MicroRNA (miRNA) expression analysis has proved to be an useful tool for identifying specific subsets of cancer patients with relevant cytogenetic, laboratorial and clinical features. The aim of the present study was to determine if miRNAs may be useful markers in T-ALL. First, we performed a supervised analysis comparing the miRNA expression profile of T-ALL blasts from 36 T-ALL/CD56− and 12 T-ALL/CD56+. We selected CD56 as prognostic marker based on our previous report showing that the disease-free survival (DFS) of T-ALL/CD56+ patients was of 28.5 months compared to 69.8 in the CD56− group. Also patients tended to be older and to present normal platelet counts in the T-LLA/CD56+ group. We used the Taqman MicroRNA Assay Human Panel (Applied Biosystems) to perform a screening of 164 knowledge mature miRNA sequences using specific primers and probes according to manufacturer instructions. Total RNA input was normalized based on the geometric means of Ct values obtained from four endogenous RNAs. All reactions were run in duplicate and a coefficient of variation greater than 5% was used as an exclusion factor (seven miRNAs were excluded). The fold change was calculated using comparative 2−δCt method. We have identified a set of 14 miRNAs differentially expressed, of which miR-374 and miR-221 best distinguished T-ALL/CD56+ from T-ALL/CD56− blasts. Based on this profile, we selected miR-221 and miR-374 as potential markers and quantified their expression in the same samples using RQ-PCR. Patients were stratified as high and low expression using the median value as cut off. We detected a significant association between the miR-221 high expression and poorer treatment outcome. On the contrary, miR-374 expression levels were not associated with treatment outcome. We evaluate the impact of age, white blood cell counts, CD56 and miR221 expression on overall survival (OS). Age and miR-221 were the only ones found to be significant. The estimate 5-year OS (mean and confidence interval 95%) was of 67.0 ± 10.3% in the group of patients expressing miR-221 below the cut-off value, whereas this value was of 28.5 ± 14.5% in the alternative group. Even among T-ALL/CD56− patients, the higher expression of miR-221 was significantly associated with poorer outcome. Our data suggest that miR-221 play an important role in T-ALL and its regulation may represent a potential therapeutic intervention. Disclosures: No relevant conflicts of interest to declare.


Reproduction ◽  
2019 ◽  
Vol 157 (6) ◽  
pp. 525-534 ◽  
Author(s):  
Hang Qi ◽  
Guiling Liang ◽  
Jin Yu ◽  
Xiaofeng Wang ◽  
Yan Liang ◽  
...  

MicroRNA (miRNA) expression profiles in tubal endometriosis (EM) are still poorly understood. In this study, we analyzed the differential expression of miRNAs and the related gene networks and signaling pathways in tubal EM. Four tubal epithelium samples from tubal EM patients and five normal tubal epithelium samples from uterine leiomyoma patients were collected for miRNA microarray. Bioinformatics analyses, including Ingenuity Pathway Analysis (IPA), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of five miRNAs was performed in six tubal epithelium samples from tubal EM and six from control. A total of 17 significantly differentially expressed miRNAs and 4343 potential miRNA-target genes involved in tubal EM were identified (fold change >1.5 and FDR-adjustedPvalue <0.05). IPA indicated connections between miRNAs, target genes and other gynecological diseases like endometrial carcinoma. GO and KEGG analysis revealed that most of the identified genes were involved in the mTOR signaling pathway, SNARE interactions in vesicular transport and endocytosis. We constructed an miRNA-gene-disease network using target gene prediction. Functional analysis showed that the mTOR pathway was connected closely to tubal EM. Our results demonstrate for the first time the differentially expressed miRNAs and the related signal pathways involved in the pathogenesis of tubal EM which contribute to elucidating the pathogenic mechanism of tubal EM-related infertility.


2011 ◽  
Vol 300 (6) ◽  
pp. R1363-R1372 ◽  
Author(s):  
Nathanael Raschzok ◽  
Wiebke Werner ◽  
Hannes Sallmon ◽  
Nils Billecke ◽  
Christof Dame ◽  
...  

The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12–48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.


Sign in / Sign up

Export Citation Format

Share Document