Next-generation sequencing analysis reveals segmental patterns of microRNA expression in yak epididymis

2020 ◽  
Vol 32 (12) ◽  
pp. 1067
Author(s):  
Wangsheng Zhao ◽  
Eugene Quansah ◽  
Meng Yuan ◽  
Pengcheng Li ◽  
Chuanping Yi ◽  
...  

MicroRNAs (miRNAs) have emerged as potent regulators of gene expression and are widely expressed in biological systems. In reproduction, they have been shown to have a significant role in the acquisition and maintenance of male fertility, whereby deletion of Dicer in mouse germ cells leads to infertility. Evidence indicates that this role of miRNAs extends from the testis into the epididymis, controlling gene expression and contributing to regional variations in gene expression. In this study, RNA sequencing technology was used to investigate miRNA expression patterns in the yak epididymis. Region-specific miRNA expression was found in the yak epididymis. In all, 683 differentially expressed known miRNAs were obtained; 190, 186 and 307 differentially expressed miRNAs were identified for caput versus corpus, corpus versus cauda and caput versus cauda region pairs respectively. Kyoto Encyclopedia of Genes and Genomes results showed endocytosis as the most enriched pathway across region pairs, followed by protein processing in the endoplasmic reticulum, phagosome, spliceosome and biosynthesis of amino acids in region pair-specific hierarchical order. Gene ontology results showed varied enrichment in terms including cell, biogenesis, localisation, binding and locomotion across region pairs. In addition, significantly higher miR-34c expression was seen in the yak caput epididymidis relative to the corpus and cauda epididymidis.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2397-2397
Author(s):  
Ran Weissman ◽  
Nir Pilar ◽  
Benjamin H Durham ◽  
Michelle Ki ◽  
Roei D Mazor ◽  
...  

Abstract Background: Erdheim-Chester disease (ECD) is a rare hematological malignancy, belonging to the L-group histiocytoses. ECD is characterized by multi-systemic proliferations of mature histiocytes in a background of inflammatory stroma. The inflammatory and neoplastic characteristics of the disease comprise a complex medical challenge for its diagnosis and treatment. MicroRNAs (miRNAs/miRs) are short non-coding RNAs (~22 nucleotides) that regulate gene expression in a sequence specific manner and play an important role in cancer development and progression. Since miRNAs are released into the blood by tumor cells, they may be used as biomarkers to distinguish between cancer patients and healthy individuals and to assist in determining treatment response. Moreover, miRNA-mRNA interactions can determine the molecular mechanism by which miRNAs and their target genes are involved in ECD and may suggest novel therapeutic options for these patients. To date, this is the first study elucidating the role of miRNA in ECD. Aims: The main focus of this study is to identify miRNAs that are differentially expressed in ECD patients compared to healthy controls and any clinical utility they have as potential biomarkers in ECD diagnosis, as well as to investigate their role in ECD pathogenesis, which may lead to new therapeutic options. Preliminary results: Using the nCounter Human miRNA Expression Assay (NanoString Technologies), we analyzed the plasma miRNA expression profiles of 6 ECD patients (BRAF V600E) compared to 6 healthy individuals. Of the 800 mature miRNAs analyzed, 234 miRNAs showed different expression levels in these samples. Principal component analysis (PCA) was applied to experimental quality control. The miRNAs from healthy donors were clustered separately from the ECD samples indicating a distinct miRNA expression pattern between these groups (Fig. 1A, 1B). Among the 131 miRNAs remaining in the final analysis (FDR<0.05),110 miRNAs were downregulated in ECD patients compared to those of healthy controls, and 21 miRNAs were upregulated in ECD samples compared to those of the controls. We validated the analysis method by quantitative real-time polymerase chain reaction (qRT-PCR) and found a positive correlation between miRs-15a, 16, 125a, 223, 21, 34a, 155 and miR-630 expression obtained by the NanoString array. This may indicate the potential use of miRNAs as biomarkers in ECD. To determine potential target genes and signaling pathways implicated in ECD, we analyzed the predicted pathways of the top 30 downregulated miRNAs that were differentially expressed between the two groups using the Ingenuity® Pathway Analysis (IPA) and DIANA-miRPath v3.0 database. Reassuringly, the analysis identified cancer, inflammatory disease, and inflammatory response (p<0.01) as the main disease and disorder related with the miRNA expression pattern, as well as oncogenic pathways such as MAPK, PI3K-AKT, RAS, ErbB, Hippo, and mTOR as the main molecular pathways related to the differentially-expressed miRNAs (p<0.009). This finding suggests that low expression of miRNAs results in up regulation of target genes that participate in cell survival signaling. These augmented pathways may be inhibited by novel therapeutic treatments such as PI3K inhibitors, mTOR pathway inhibitors, and MEK inhibitors in ECD patients. Next, we examined if there is any correlation between the predicted target genes of the miRNAs (obtained by IPA) and the experimentally validated gene expression pattern in ECD patients. To that end, we downloaded RNA-seq results of ECD patients from the GEO database (GSE74442 deposited by Diamond et al) and compared this list to our predicted miRNA targets in ECD patients, using Gene Set Enrichment Analysis (GSEA). We found a positive correlation between the gene expression reported in the literature and the predicted target of our deregulated miRNAs (Fig. 2), indicating that the predicted target genes are enriched in this data set, suggesting that the differentially expressed miRNAs might have a crucial role in the pathogenesis of ECD. Conclusions: Our preliminary data highlight the unique inflammatory and neoplastic features characteristic of ECD. These deregulated miRNAs may highlight new candidate gene targets allowing for a better understanding of the molecular mechanisms underlying the development of ECD and propose novel therapeutic treatments for these patients. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Aydos ◽  
O S Aydos ◽  
Y Yukselten ◽  
A Sunguroglu ◽  
K Aydos

Abstract Study question Could Nrf2 polymorphism (-617C&gt;A; rs6721961) and oxidative stress (OS)-induced changes of signature seminal plasma (SP) miRNAs related to Nrf2 provide possible biomarkers of male infertility? Summary answer -617C&gt;A SNP is associated with infertility through sperm OS DNA damage and miR-582-5p and miR-20a-5p, differentially represented between spermatozoa of smokers-non-smokers, might regulate Nrf2/ARE axis. What is known already As an extrinsic factor causing OS, smoking decreases male infertility by causing sperm membrane damage and DNA fragmentation. Expression of proteins related to the antioxidant defense system and phase 2 detoxifying enzymes controlled mainly by Nrf2/ARE pathway components is vital in managing OS-induced DNA damage. miRNAs, which multiple of are produced abundantly in male germ cells throughout spermatogenesis, have been detected in SP and contribute to multiple biological processes related to male reproductive events. miRNA-expression alterations may be induced in response to OS and without involving DNA sequence changes, miRNAs can provide additional mechanism of regulating the Nrf2 gene expression. Study design, size, duration Wild-type (WT) and SNP (-617) alleles in the Nrf2 gene were studied in 100 infertile cases and 100 controls and their associations with seminal parameters in relation to smoking status were assessed. In infertile cases, sperm DNA damage level was determined and compared among Nrf2 genotypes. Interactions between differentially expressed miRNAs (DEMIs) in response to smoking and Nrf2/ARE pathway components were visualized on a miRNA-mRNA regulatory network using CluePedia (v1.5.7) plugin of Cytoscape software (v3.8.2). Participants/materials, setting, methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was utilized to genotype the Nrf2 SNP (-617). DNA damages were analyzed by Comet assay. DEMIs were identified by a comprehensive bioinformatics analysis using the miRNA expression dataset GSE44134 downloaded from the GEO database. Predicted targets of DEMIs in smokers were identified by mirDIP portal. Known interactions between Nrf2 and its first neighbors were visualized after selecting STRING-actions, miRTarBase and miRecords validated miRNA source files from CluePedia panel. Main results and the role of chance There was significant difference for Nrf2 polymorphism between fertile and infertile males. The A allele was detected more frequently in the patient group; (P = 0.001). The frequencies of the C and A alleles of the Nrf2 were 62% and 38% in patients, and 78% and 44% in control group. The AA genotype was higher in the infertiles; 14% vs. 3% (P = 0.001). In smokers, sperm quality decreased significantly in AA genotype. The risk of DNA damage was highest with 224.58 AU in the AA genotype group, whereas it is the lowest with 164.56 AU in those carrying the CC genotype (P &lt; 0.005). 21 differentially expressed miRNAs (including 7 downregulated and 14 upregulated in smokers) were identified. Among the upregulated DEMIs, miR-582-5p, miR-20a-5p, miR-573, miR-186-5p, miR-499a-5p were found to target the Nrf2 mRNA, suggesting their usage as biomarkers capable of indicating the antioxidant ability of the male reproductive system. The interrelations between Nrf2/Nrf2 direct interactors and DEMIs revealed the regulatory role of hsa-miR-20a-5p in SQSTM1/p62-Keap1-Nrf2 axis linked to selective autophagy. hsa-miR-582-5p was found to regulate the JNK/Jun/caspase-3 pathway, previously shown to be activated in response to OS, in which JUN can activate or suppress the Nrf2 expression. Limitations, reasons for caution Small number of cases while evaluating the effect of smoking weakens our ability to generalize the results. Including other coexisting factors and larger patient groups carrying other functional variants of Nrf2 as well as confirming the results at the protein level would further strengthen the results of the study. Wider implications of the findings This study is the first to report -617C&gt;A polymorphism in the Nrf2 gene in the Turkish population and such a SNP may cause impaired fertility in men, especially in smokers, through oxidative metabolism. Considering these data may be valuable in determining risk groups. Trial registration number N/A


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 624
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Yibing Liu ◽  
Fengxia Zhang ◽  
Zhen Tan ◽  
...  

Fatty traits are very important in pig production. However, the role of microRNAs (miRNAs) in fat deposition is not clearly understood. In this study, we compared adipose miRNAs from three full-sibling pairs of female Landrace pigs, with high and low backfat thickness, to investigate the associated regulatory network. We obtained an average of 17.29 million raw reads from six libraries, 62.27% of which mapped to the pig reference genome. A total of 318 pig miRNAs were detected among the samples. Among them, 18 miRNAs were differentially expressed (p-value < 0.05, |log2fold change| ≥ 1) between the high and low backfat groups; 6 were up-regulated and 12 were down-regulated. Functional enrichment of the predicted target genes of the differentially expressed miRNAs, indicated that these miRNAs were involved mainly in lipid and carbohydrate metabolism, and glycan biosynthesis and metabolism. Comprehensive analysis of the mRNA and miRNA transcriptomes revealed possible regulatory relationships for fat deposition. Negatively correlated mRNA–miRNA pairs included miR-137–PPARGC1A, miR-141–FASN, and miR-122-5p–PKM, indicating these interactions may be key regulators of fat deposition. Our findings provide important insights into miRNA expression patterns in the backfat tissue of pig and new insights into the regulatory mechanisms of fat deposition in pig.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 474-474
Author(s):  
Alfons Navarro ◽  
Anna Gaya ◽  
Aina Pons ◽  
Pau Abrisqueta ◽  
Bernat Gel ◽  
...  

Abstract Mature microRNAs (miRNA) are recently discovered small RNA molecules of 21–25 nucleotides in length. They act as negative regulators of expression of important genes like those participating in cellular proliferation or apoptosis. There is evidence that miRNA play an important role in carcinogenesis. The objective of this study was to compare the miRNA expression patterns in normal lymph nodes and in lymph nodes from patients with HL. Moreover, we investigated the miRNA pattern of HL depending on Epstein-Barr Virus (EBV) expression. We assessed 156 mature miRNAs by Stem-loop RT-PCR and Real time PCR in ABI PRISM 7500 in 9 normal lymph nodes and 39 patients diagnosed with HL nodular sclerosis subtype (15 EBV+ and 24 EBV-)at a single institution. Patients median age was 27 years (range, 15–52), and clinical stage was I (n=1); II (n=22); III (n=8) and IV (n=8); 41% of the patients reported B symptoms. RNA was obtained in all cases from formalin fixed paraffin embedded tissues. miRNA expression data was normalized to let-7a miRNA and to global median. Relative quantification of miRNA expression was calculated with the 2−ΔΔCt method. The data were presented as log10 of relative quantity of target miRNA. Normal human lymph node tissue was used as calibrator for all samples. Data were analyzed by means of Significant Analysis of Microarrays (SAM), Student’s t-test (with random variance model) and Class prediction methods using BRB Array Tools version 3.4.0 and TIGR Multiexperiment Viewer version 3.1. Of the 156 miRNAs analyzed, 35 were differentially expressed between normal lymph nodes and HL (12 miRNAs were upregulated and 23 downregulated). The most differentially overexpressed miRNAs was miR-216, which inhibits apoptosis pathway. Other differentially expressed miRNAs were miR-140, 204, 19a, 20, 191 and 142-3p, which have been associated to the genesis of hematological and non-hematological malignances. With respect to EBV+ vs. EBV− cases, we found that miR-96 and miR-335 were underexpressed in the EBV+ cases as compared to EBV− (p=0.001). These miRNAs have RNF34 and BIRC2 genes as targets, which have an antiapoptotic function. We also found that miR-138 was more frequently overexpressed in clinical stages I–II versus clinical stages III–IV (p=0.004), and that miR-328 was more frequently overexpressed in stages III–IV (p=0.004). In conclusion, miRNAs might have a role in the pathogenesis of HL. The miRNA pattern is different between the EBV+ and EBV− cases, and the differentially expressed miRNAs seems to be related to the apoptotic pathway.


2014 ◽  
Vol 170 (4) ◽  
pp. 583-591 ◽  
Author(s):  
David Velázquez-Fernández ◽  
Stefano Caramuta ◽  
Deniz M Özata ◽  
Ming Lu ◽  
Anders Höög ◽  
...  

BackgroundThe adrenocortical adenoma (ACA) entity includes aldosterone-producing adenoma (APA), cortisol-producing adenoma (CPA), and non-hyperfunctioning adenoma (NHFA) phenotypes. While gene mutations and mRNA expression profiles have been partly characterized, less is known about the alterations involving microRNA (miRNA) expression.AimTo characterize miRNA expression profile in relation to the subtypes of ACAs.Subjects and methodsmiRNA expression profiles were determined in 26 ACAs (nine APAs, ten CPAs, and seven NHFAs) and four adrenal references using microarray-based screening. Significance analysis of microarrays (SAM) was carried out to identify differentially expressed miRNAs between ACA and adrenal cortices or between tumor subtypes. Selected differentially expressed miRNAs were validated in an extended series of 43 ACAs and ten adrenal references by quantitative RT-PCR.ResultsAn hierarchical clustering revealed separate clusters for APAs and CPAs, while the NHFAs were found spread out within the APA/CPA clusters. When NHFA was excluded, the clustering analysis showed a better separation between APA and CPA. SAM analysis identified 40 over-expressed and three under-expressed miRNAs in the adenomas as compared with adrenal references. Fourteen miRNAs were common among the three ACA subtypes. Furthermore, we found specific miRNAs associated with different tumor phenotypes.ConclusionThe results suggest that miRNA expression profiles can distinguish different subtypes of ACA, which may contribute to a deeper understanding of ACA development and potential therapeutics.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Aydos ◽  
O S Aydos ◽  
Y Yukselten ◽  
A Sunguroglu ◽  
K Aydos

Abstract Study question Could Nrf2 polymorphism (–617C&gt;A; rs6721961) and oxidative stress (OS)-induced changes of signature seminal plasma (SP) miRNAs related to Nrf2 provide possible biomarkers of male infertility? Summary answer –617C&gt;A SNP is associated with infertility through sperm OS DNA damage and miR–582–5p and miR–20a–5p, differentially represented between spermatozoa of smokers-non-smokers, might regulate Nrf2/ARE axis. What is known already As an extrinsic factor causing OS, smoking decreases male infertility by causing sperm membrane damage and DNA fragmentation. Expression of proteins related to the antioxidant defense system and phase 2 detoxifying enzymes controlled mainly by Nrf2/ARE pathway components is vital in managing OS-induced DNA damage. miRNAs, which multiple of are produced abundantly in male germ cells throughout spermatogenesis, have been detected in SP and contribute to multiple biological processes related to male reproductive events. miRNA-expression alterations may be induced in response to OS and without involving DNA sequence changes, miRNAs can provide additional mechanism of regulating the Nrf2 gene expression. Study design, size, duration Wild-type (WT) and SNP (–617) alleles in the Nrf2 gene were studied in 100 infertile cases and 100 controls and their associations with seminal parameters in relation to smoking status were assessed. In infertile cases, sperm DNA damage level was determined and compared among Nrf2 genotypes. Interactions between differentially expressed miRNAs (DEMIs) in response to smoking and Nrf2/ARE pathway components were visualized on a miRNA-mRNA regulatory network using CluePedia (v1.5.7) plugin of Cytoscape software (v3.8.2). Participants/materials, setting, methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was utilized to genotype the Nrf2 SNP (–617). DNA damages were analyzed by Comet assay. DEMIs were identified by a comprehensive bioinformatics analysis using the miRNA expression dataset GSE44134 downloaded from the GEO database. Predicted targets of DEMIs in smokers were identified by mirDIP portal. Known interactions between Nrf2 and its first neighbors were visualized after selecting STRING-actions, miRTarBase and miRecords validated miRNA source files from CluePedia panel. Main results and the role of chance There was significant difference for Nrf2 polymorphism between fertile and infertile males. The A allele was detected more frequently in the patient group; (P = 0.001). The frequencies of the C and A alleles of the Nrf2 were 62% and 38% in patients, and 78% and 44% in control group. The AA genotype was higher in the infertiles; 14% vs. 3% (P = 0.001). In smokers, sperm quality decreased significantly in AA genotype. The risk of DNA damage was highest with 224.58 AU in the AA genotype group, whereas it is the lowest with 164.56 AU in those carrying the CC genotype (P &lt; 0.005). 21 differentially expressed miRNAs (including 7 downregulated and 14 upregulated in smokers) were identified. Among the upregulated DEMIs, miR–582–5p, miR–20a–5p, miR–573, miR–186–5p, miR–499a–5p were found to target the Nrf2 mRNA, suggesting their usage as biomarkers capable of indicating the antioxidant ability of the male reproductive system. The interrelations between Nrf2/Nrf2 direct interactors and DEMIs revealed the regulatory role of hsa-miR–20a–5p in SQSTM1/p62-Keap1-Nrf2 axis linked to selective autophagy. hsa-miR–582–5p was found to regulate the JNK/Jun/caspase–3 pathway, previously shown to be activated in response to OS, in which JUN can activate or suppress the Nrf2 expression. Limitations, reasons for caution Small number of cases while evaluating the effect of smoking weakens our ability to generalize the results. Including other coexisting factors and larger patient groups carrying other functional variants of Nrf2 as well as confirming the results at the protein level would further strengthen the results of the study. Wider implications of the findings: This study is the first to report –617C&gt;A polymorphism in the Nrf2 gene in the Turkish population and such a SNP may cause impaired fertility in men, especially in smokers, through oxidative metabolism. Considering these data may be valuable in determining risk groups. Trial registration number N/A


Reproduction ◽  
2019 ◽  
Vol 157 (6) ◽  
pp. 525-534 ◽  
Author(s):  
Hang Qi ◽  
Guiling Liang ◽  
Jin Yu ◽  
Xiaofeng Wang ◽  
Yan Liang ◽  
...  

MicroRNA (miRNA) expression profiles in tubal endometriosis (EM) are still poorly understood. In this study, we analyzed the differential expression of miRNAs and the related gene networks and signaling pathways in tubal EM. Four tubal epithelium samples from tubal EM patients and five normal tubal epithelium samples from uterine leiomyoma patients were collected for miRNA microarray. Bioinformatics analyses, including Ingenuity Pathway Analysis (IPA), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of five miRNAs was performed in six tubal epithelium samples from tubal EM and six from control. A total of 17 significantly differentially expressed miRNAs and 4343 potential miRNA-target genes involved in tubal EM were identified (fold change >1.5 and FDR-adjustedPvalue <0.05). IPA indicated connections between miRNAs, target genes and other gynecological diseases like endometrial carcinoma. GO and KEGG analysis revealed that most of the identified genes were involved in the mTOR signaling pathway, SNARE interactions in vesicular transport and endocytosis. We constructed an miRNA-gene-disease network using target gene prediction. Functional analysis showed that the mTOR pathway was connected closely to tubal EM. Our results demonstrate for the first time the differentially expressed miRNAs and the related signal pathways involved in the pathogenesis of tubal EM which contribute to elucidating the pathogenic mechanism of tubal EM-related infertility.


2018 ◽  
Author(s):  
Sorena Rahmanian ◽  
Rabi Murad ◽  
Alessandra Breschi ◽  
Weihua Zeng ◽  
Mark Mackiewicz ◽  
...  

ABSTRACTMicroRNAs (miRNAs) play a critical role as post-transcriptional regulators of gene expression. The ENCODE project profiled the expression of miRNAs in a comprehensive set of tissues during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct tissue and developmental stage specific miRNA expression clusters, with an overall pattern of increasing tissue specific expression as development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by tissue types rather than by species. An analysis of messenger RNA gene expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the tissue where these microRNAs are expressed during embryonic development. Our results provide the most comprehensive timecourse of miRNA expression as an integrated part of the ENCODE reference dataset for mouse embryonic development.


Author(s):  
Priscila Santos ◽  
Jesse Starkey ◽  
David Galbraith ◽  
Etya Amsalem

Worker reproduction in social insects is often regulated by the queen, but can be regulated by the brood and nestmates, who may use different mechanisms to induce the same outcomes in subordinates. Analysis of brain gene expression patterns in bumble bee workers (Bombus impatiens) in response to the presence of the queen, the brood, both or neither, identified 18 differentially expressed genes, 17 of them are regulated by the queen and none are regulated by the brood. Overall, brain gene expression differences in workers were driven by the queen’s presence, despite recent studies showing that brood reduces worker egg laying and provides context to the queen pheromones. The queen affected important regulators of reproduction and brood care across insects, such as neuroparsin and vitellogenin, and a comparison with similar datasets in the honey bee and the clonal raider ant revealed that neuroparsin is differentially expressed in all species. These data emphasize the prominent role of the queen in regulating worker physiology and behavior. Genes that serve as key regulators of workers’ reproduction are likely to play an important role in the evolution of sociality.


2011 ◽  
Vol 300 (6) ◽  
pp. R1363-R1372 ◽  
Author(s):  
Nathanael Raschzok ◽  
Wiebke Werner ◽  
Hannes Sallmon ◽  
Nils Billecke ◽  
Christof Dame ◽  
...  

The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12–48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.


Sign in / Sign up

Export Citation Format

Share Document