Potent Anti-Cancer Activity of Anti-NTB-a Monoclonal Antibodies in Preclinical Leukemia and Lymphoma Models

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4975-4975
Author(s):  
Wouter Korver ◽  
Xiaoxian Zhao ◽  
Shweta Singh ◽  
Cecile Pardoux ◽  
Ishita Barman ◽  
...  

Abstract NTB-A is a CD2-related cell surface protein expressed on lymphoid cells including B-lymphocytes from Chronic Lymphocytic Leukemia (CLL) and lymphoma patients. We have generated a series of mAbs against NTB-A and assessed their therapeutic potential in preclinical models. Selected mAbs to NTB-A were further tested in functional Complement Dependent Cytotoxicity (CDC) and Antibody Dependent Cellular Cytotoxicty (ADCC) assays in cell lines and B lymphocytes freshly isolated from CLL and lymphoma patients. Potent cytotoxic activity was demonstrated against B cells isolated from CLL patients and B lymphoma cell lines. Chimeric anti-NTB-A mAbs demonstrated anti-tumor activity equal to rituximab against CA46 human lymphoma xenografts in nude mice at a low dose. In a chimpanzee safety study, a single dose of lead anti-NTB-A mAb 994.1 resulted in near-complete depletion of peripheral lymphocytes while having a minimal effect on T cell activation. Taken together, these results demonstrate NTB-A as a promising target with an acceptable safety profile for immunotherapy of leukemia and lymphomas.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4511-4511
Author(s):  
Wouter Korver ◽  
Shweta Singh ◽  
Xiaoxian Zhao ◽  
Eric D. Hsi ◽  
Arie Abo

Abstract NTB-A is a CD2-related cell surface protein expressed primarily on lymphoid cells including B-lymphocytes from Chronic Lymphocytic Leukemia (CLL) and lymphoma patients. We have generated a series of murine and chimeric mAbs against NTB-A and assessed their therapeutic potential for CLL. Selective mAbs to NTB-A were further tested in functional Complement Dependent Cytotoxicity (CDC) and Antibody Dependent Cellular Cytotoxicty (ADCC) assays in cell lines and B lymphocytes freshly isolated from CLL patients. While lower levels of NTB-A were detected in T and NK cells, CDC and ADCC activity was demonstrated primarily in B cells isolated from CLL patients and B lymphoma cell lines. Knockdown of NTB-A by siRNA in target cells results in lower cytotoxicity, demonstrating the specificity of the mAbs. Furthermore, anti-NTB-A mAbs demonstrated anti-tumor activity against CA46 human lymphoma xenografts in nude mice and against systemically disseminated Raji human lymphoma cells in SCID mice. Taken together, these results demonstrate NTB-A as a potential new target for immunotherapy of leukemia and lymphomas.


2020 ◽  
Vol 8 (1) ◽  
pp. e000218 ◽  
Author(s):  
Anne W J Martens ◽  
Susanne R Janssen ◽  
Ingrid A M Derks ◽  
Homer C Adams III ◽  
Liat Izhak ◽  
...  

BackgroundBispecific antibodies are promising new therapeutics in B cell malignancies. Whether they lead to potent T cell activation despite described T cell dysfunction in chronic lymphocytic leukemia (CLL), and are able to effectively target high-risk or venetoclax-resistant samples, is currently unknown.MethodsCD19+ cell lines or primary (high-risk) CLL were cocultured in vitro with healthy donor (HD) or CLL-derived T cells in the presence of a CD3xCD19 dual affinity retargeting molecule (CD3xCD19 DART). Cell cytotoxicity, T cell activation, proliferation and effector molecule production were analyzed using flow cytometry.ResultsHere, we report that a bispecific CD3xCD19 DART mediates efficient killing by HD T cells of CD19+ cell-lines and primary CLL cells, regardless of immunoglobulin heavy chain variable region (IGHV) mutational status TP53 status or chemotherapy, ibrutinib or venetoclax sensitivity. Whereas TCR stimulation of CLL-derived T cells resulted in dysfunctional T cell activation and proliferation, treatment with CD3xCD19 DART led to a similar activation profile in CLL-derived and HD-derived T cells. Consistently, co-culture of CLL derived T cells with JeKo-1 or CLL cells in the presence of CD3xCD19 DART resulted in significant cytotoxicity by both CD4+ and CD8+ T cells. On stimulation of CLL cells with CD40L, CLL cells become resistant to the specific inhibitor of anti-apoptotic Bcl-2 protein venetoclax, due to upregulation of Bcl-2 family members such as Bcl-XL. Nevertheless, CD40L stimulated CLL cells were as efficiently lysed on CD3xCD19 DART treatment as unstimulated CLL cells. Further examination of the mechanism of CD3xCD19 DART mediated killing showed that lysis was dependent on granules, but was independent of BAX/BAK or caspase activity, indicating non-apoptotic cell death.ConclusionsThese data show that CD3xCD19 DART in CLL leads to robust T cell activation and lysis of high-risk venetoclax resistant CLL cells through a non-apoptotic mechanism.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3538-3538
Author(s):  
Greta Maria Paola Giordano Attianese ◽  
Valentina Hoyos ◽  
Barbara Savoldo ◽  
Virna Marin ◽  
Malika Brandi ◽  
...  

Abstract B-Chronic lymphocytic leukemia (B-CLL) is characterized by a progressive accumulation of mature B-lymphocytes expressing CD19, CD20dim and aberrantly expressing the CD5 T-cell marker. Moreover, they over-express the B-cell activation marker CD23. Chimeric Antigen Receptors (CAR) are engineered molecules able to redirect T-cell killing/effector activity towards a selected target in a non MHC-restricted manner. First trials targeting B-CLL were based on both monoclonal antibodies and anti-CD19/anti-CD20 CAR-transduced T cells. However, this approach causes the elimination of normal B-lymphocytes and B-precursors with consequent impairment of humoral responses. Selective CD23 expression on B-CLL cells renders it an optimal target to design a specific CAR. A new CD23-targeting CAR to redirect T cells against CD23+ B-CLL has been generated. After transduction, modified T cells were tested for cytotoxicity against different CD23+-targets, using a classic chromium release assay and for specific cytokine release by multiplex flow cytomix assay. The anti-CD23 CAR was stably expressed by healthy donor-derived primary T cells after transduction (average expression,20%;range,10%–60%;n=10) and conferred them a strong cytotoxicity against CD23+ tumor cell lines: Epstein Barr Virus transformed lymphoblastoid cell line (EBV-LCL) (average lysis, 50%; range 15%–70%, at 40:1 Effector:Target (E:T) ratio; n=5); Bjab and Jeko cell lines transduced with human CD23 antigen (average lysis, 60%; range, 20%–75%, at 40:1 E:T ratio; n=3). On the contrary, anti-CD23 transduced T-cells displayed no relevant killing versus normal B cells (average lysis, 8%; range, 1%–15% at 40:1 E:T ratio; n=3), differently from anti-CD19 CAR redirected T-cells, which killed tumor and normal B cells in an indistinct manner. T cells from B-CLL patients were also efficiently transduced with the anti-CD23 CAR (average expression, 80%; range, 70%–90%; n=3) and redirected specifically toward autologous blasts (average lysis, 29%; range, 21%–35% at 20:1 E:T ratio; n=3), without being inhibited by soluble CD23-enriched autologous plasma. Moreover, we demonstrated that expression of the anti-CD23 CAR caused a significant increase in cytokine release from transduced in vitro activated T cells after 48h stimulation with irradiated EBV-LCL at 1:1 ratio, both in healthy donors (n=3) and B-CLL patients (n=2). Anti-CD23 CAR expressing T cells from healthy donors secreted 5.5-fold more INF-gamma (3079 pg/ml vs 561pg/mL, p=0.05) and 11-fold more TNF-alpha (187.17 pg/ml vs 16.53 pg/mL, p=0.05), 147-fold more IL-5 (147 pg/ml vs 0 pg/mL, p=0.05) and 13-fold more IL-8 (590 pg/ml vs 43.24pg/mL, p=0.05), compared to non transduced T cells (n=3). In line with these findings, T cells expressing anti-CD23 CAR from B-CLL donors secreted 8.8-fold more INF-gamma (2988 pg/ml vs 337pg/mL, p=0.05) and 17-fold more TNF-gamma (187.17 pg/ml vs 17.34 pg/mL, p=0.05); 25.8-fold more IL-5 (3483.14 pg/ml vs 134.785 pg/mL, p=0.05), 173-fold more IL-8 (2154 pg/ml vs 12.415 pg/mL, p=0.05), compared to non transduced T cells. Altogether these results suggest that for the potentiality to get selective and potent killing of tumor cells, while sparing normal B cells, and for the capability to induce the selective release of immunostimulatory cytokines, CD23-targeting through a specific CAR holds great promises for adoptive immunotherapy of B-CLL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


1991 ◽  
Vol 173 (2) ◽  
pp. 343-347 ◽  
Author(s):  
K Moulder ◽  
K Roberts ◽  
E M Shevach ◽  
J E Coligan

In this report, we demonstrate that the T cell activation antigen, recognized by monoclonal antibody H9.2B8, is the murine homologue of the vitronectin receptor (VNR) and, thereby, we provide initial evidence that VNR is expressed on lymphoid cells. VNR is expressed on a variety of T cell lines, tumors, and Con A-activated splenocytes, but not resting T cells, and is capable of binding to the extracellular matrix proteins fibronectin, fibrinogen, and vitronectin, via the tripeptide sequence RGD. There was no evidence of novel beta chains pairing with the VNR alpha chain, as has been demonstrated in some human cells. In view of recent studies demonstrating that this molecule functions as an accessory molecule in T cell activation, the VNR may play an important role in mouse T cell functions.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4596
Author(s):  
Joseph Kauer ◽  
Fabian Vogt ◽  
Ilona Hagelstein ◽  
Sebastian Hörner ◽  
Melanie Märklin ◽  
...  

T cell-recruiting bispecific antibodies (bsAbs) are successfully used for the treatment of cancer. However, effective treatment with bsAbs is so far hampered by severe side effects, i.e., potentially life-threatening cytokine release syndrome. Off-target T cell activation due to binding of bispecific CD3 antibodies to T cells in the absence of target cells may contribute to excessive cytokine release. We report here, in an in vitro setting, that off-target T cell activation is induced by bsAbs with high CD3 binding affinity and increased by endothelial- or lymphoid cells that act as stimulating bystander cells. Blocking antibodies directed against the adhesion molecules CD18/CD54 or CD2/CD58 markedly reduced this type of off-target T cell activation. CD18 blockade—in contrast to CD2—did not affect the therapeutic activity of various bsAbs. Since CD18 antibodies have been shown to be safely applicable in patients, blockade of this integrin holds promise as a potential target for the prevention of unwanted off-target T cell activation and allows the application of truly effective bsAb doses.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2833-2841 ◽  
Author(s):  
Lyda M. Osorio ◽  
Angelina De Santiago ◽  
Miguel Aguilar-SantelisesHå ◽  
kan Mellstedt ◽  
Mikael Jondal

Abstract CD6 and CD5 belong to a scavenger-receptor cysteine-rich (SRCR) super family of membrane glycoproteins that are expressed on chronic lymphocytic leukemia B (B-CLL) cells, normal T cells, and a small subset of normal B cells. CD6 configures in the membrane in relation to the cellular activation level and can act as a coreceptor for T-cell activation. We have examined a group of progressive and nonprogressive B-CLL cells. Most B-CLL cells were positive for CD6 and the expression of CD6 was increased after activation with Staphylococcus aureus Cowan I plus interleukin-2 or 12-O-tetradecanoylphorbol 13-acetate, although anti-CD6 antibodies did not increase proliferative responses to these stimuli. However, anti-CD6 stimulation was found to protect against anti-IgM–induced apoptosis in B-CLL. baxα upregulation and bcl-2 downregulation were found in anti-IgM– and glucocorticoid (GCC)-induced apoptotic cells, respectively. Furthermore, CD6 cross-linking downregulated baxα mRNA levels in anti-IgM–treated cells, resulting in an increased bcl-2/baxα ratio. CD6 activation also prevented bcl-2 mRNA downregulation and apoptosis induced by GCC in one of six GCC-sensitive patients. These data suggest that an interaction between CD6 and its ligand might contribute to B-CLL survival through the modulation of the Bcl-2/Bax ratio.


Sign in / Sign up

Export Citation Format

Share Document