scholarly journals CD18 Antibody Application Blocks Unwanted Off-Target T Cell Activation Caused by Bispecific Antibodies

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4596
Author(s):  
Joseph Kauer ◽  
Fabian Vogt ◽  
Ilona Hagelstein ◽  
Sebastian Hörner ◽  
Melanie Märklin ◽  
...  

T cell-recruiting bispecific antibodies (bsAbs) are successfully used for the treatment of cancer. However, effective treatment with bsAbs is so far hampered by severe side effects, i.e., potentially life-threatening cytokine release syndrome. Off-target T cell activation due to binding of bispecific CD3 antibodies to T cells in the absence of target cells may contribute to excessive cytokine release. We report here, in an in vitro setting, that off-target T cell activation is induced by bsAbs with high CD3 binding affinity and increased by endothelial- or lymphoid cells that act as stimulating bystander cells. Blocking antibodies directed against the adhesion molecules CD18/CD54 or CD2/CD58 markedly reduced this type of off-target T cell activation. CD18 blockade—in contrast to CD2—did not affect the therapeutic activity of various bsAbs. Since CD18 antibodies have been shown to be safely applicable in patients, blockade of this integrin holds promise as a potential target for the prevention of unwanted off-target T cell activation and allows the application of truly effective bsAb doses.

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 399
Author(s):  
Aerin Yoon ◽  
Shinai Lee ◽  
Sua Lee ◽  
Sojung Lim ◽  
Yong-Yea Park ◽  
...  

As mesothelin is overexpressed in various types of cancer, it is an attractive target for therapeutic antibodies. T-cell bispecific antibodies bind to target cells and engage T cells via binding to CD3, resulting in target cell killing by T-cell activation. However, the affinity of the CD3-binding arm may influence CD3-mediated plasma clearance or antibody trapping in T-cell-containing tissues. This may then affect the biodistribution of bispecific antibodies. In this study, we used scFab and knob-into-hole technologies to construct novel IgG-based 1 + 1 MG1122-A and 2 + 1 MG1122-B bispecific antibodies against mesothelin and CD3ε. MG1122-B was designed to be bivalent to mesothelin and monovalent to CD3ε, using a 2 + 1 head-to-tail format. Activities of the two antibodies were evaluated in mesothelin-positive tumor cells in vitro and xenograft models in vivo. Although both antibodies exhibited target cell killing efficacy and produced regression of xenograft tumors with CD8+ T-cell infiltration, the antitumor efficacy of MG1122-B was significantly higher. MG1122-B may improve tumor targeting because of its bivalency for tumor antigen. It may also reduce systemic toxicity by limiting the activation of circulating T cells. Thus, MG1122-B may be useful for treating mesothelin-positive solid tumors.


2021 ◽  
Vol 9 (11) ◽  
pp. e003616
Author(s):  
Nadine Aschmoneit ◽  
Lennart Kühl ◽  
Oliver Seifert ◽  
Roland E Kontermann

BackgroundBispecific T-cell engagers are an established therapeutic strategy for the treatment of hematologic malignancies but face several challenges when it comes to their application for the treatment of solid tumors, including on-target off-tumor adverse events. Employing an avidity-mediated specificity gain by introducing an additional binding moiety for the tumor-associated antigen can be achieved using formats with a 2+1 stoichiometry.MethodsBesides biochemical characterization and validation of target cell binding to cancer cells with different HER3 expression, we used in vitro co-culture assays with human peripheral blood mononuclear cells (PBMCs) and HER3-expressing target cells to determine T-cell activation, T-cell proliferation and PBMC-mediated cancer cell lysis of HER3-positive cell lines by the trivalent, bispecific antibodies.ResultsIn this study, we developed trivalent, bispecific antibodies comprising a silenced Fc region for T-cell retargeting to HER3-expressing tumor cells, combining a bivalent single-chain diabody (scDb) fused to a first heterodimerizing Fc chain with either an Fab or scFv fused to a second heterodimerizing Fc chain. All these HER3-targeting T-cell engagers comprising two binding sites for HER3 and one binding site for CD3 mediated target cell killing. However, format and orientation of binding sites influenced efficacy of target cell binding, target cell-dependent T-cell activation and T-cell-mediated target cell killing. Beneficial effects were seen when the CD3 binding site was located in the scDb moiety. These molecules showed efficient killing of medium HER3-expressing cancer cells with very low induction of cytokine release, while sparing target cells with low or undetectable HER3 expression.ConclusionOur study demonstrates that these trivalent, bispecific antibodies represent formats with superior interdomain spacing resulting in efficient target cell killing and a potential advantageous safety profile due to very low cytokine release.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauric Haber ◽  
Kara Olson ◽  
Marcus P. Kelly ◽  
Alison Crawford ◽  
David J. DiLillo ◽  
...  

AbstractT-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadine Aschmoneit ◽  
Sophia Steinlein ◽  
Lennart Kühl ◽  
Oliver Seifert ◽  
Roland E. Kontermann

AbstractHER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.


2015 ◽  
Vol 33 (3_suppl) ◽  
pp. 262-262
Author(s):  
David M. Goldenberg ◽  
Edmund A. Rossi ◽  
Diane L Rossi ◽  
Thomas M. Cardillo ◽  
Chien-Hsing Chang

262 Background: Trop-2 [also called tumor-associated calcium signal transducer 2 (TACSTD2), EGP-1 (epithelial glycoprotein-1), GA733-1, or M1S1]is a 35 kDa transmembrane glycoprotein that is overexpressed relative to normal tissues in a variety of human cancers, including pancreatic and gastric carcinomas, where increased expression correlates with poor prognosis. Trop-2 appears to be more tumor-specific than the related molecule, EpCAM (Trop-1). MT110, the EpCAM antibody x CD3 bispecific T-cell engager (BiTE), is currently undergoing a Phase I study in various solid tumors, including lung, gastric, colorectal, breast, prostate, and ovarian cancers. We produced a similar T-cell redirecting bispecific tandem scFv, E1-3, using the variable domains of hRS7 (humanized anti-Trop-2 mAb) and Okt-3 (anti-CD3 mAb). Methods: T-cell activation, cytokine induction and cytotoxicity were evaluated ex vivo using PBMCs or purified T cells with human pancreatic (Capan-1 and BxPC3) and gastric (NCI-N87) cancer cell lines as target cells. In vivo activity was assayed with NCI-N87 xenografts that were inoculated s.c. in a mixture with twice the number of human PBMCs and matrigel. Results: In the presence of target cells and PBMCs, E1-3 potently induced T-cell activation, proliferation, and dose-dependent cytokine production of IL-2 (>2 ng/mL), IL-6 (>1 ng/mL), IL-10 (>7 ng/mL), TNF-α (>1 ng/mL) and IFN-γ (>50 ng/mL). In vitro, E1-3 mediated a highly potent T-cell lysis of BxPC3 [IC50=0.09(±0.04) pM], Capan-1 [IC50=1.2(±1.1) pM] and NCI-N87 [IC50=1.2(±1.2) pM] target cells. In vivo, two 50-µg doses of E1-3 given three days apart cured all of the mice (N=8) bearing NCI-N87 xenografts (P=0.0005; Log-Rank). Tumors in the control group (PBMCs only) reached the endpoint (TV>1 cm3) with a median of 39.5 days. All mice remained tumor-free in the E1-3 group at 78 days. Conclusions: Trop-2 is an attractive target for T-cell-mediated killing of pancreatic, gastric and other epithelial cancers.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3721-3721
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract Abstract 3721 Background: CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. T cells are potent tumor-killing effector cells that cannot be recruited by native antibodies. The CD3 RECRUIT-TandAb AFM11, a humanized bispecific tetravalent antibody with two binding sites for both CD3 and CD19, is a novel therapeutic for the treatment of NHL that harnesses the cytotoxic nature of T cells. Methods: We engineered a bispecific anti-CD19/anti-CD3e tetravalent TandAb with humanized and affinity-matured variable domains. The TandAb's binding properties, T cell-mediated cytotoxic activity, and target-mediated T cell activation were characterized in a panel of in vitro assays. In vivo efficacy was evaluated in a murine NOD/scid xenograft model reconstituted with human PBMC. Results: AFM11 mediates highly potent CD19+ tumor cell lysis in cytotoxicity assays performed on a panel of cell lines (JOK-1, Raji, Nalm-6, MEC-1, VAL, Daudi) and primary B-CLL tumors: EC50 values are in the low- to sub-picomolar range and do not correlate with the expression density of CD19 on the target cell lines. The cytotoxic activity of tetravalent AFM11 is superior to that of alternative bivalent antibody formats possessing only a single binding site for both CD19 and CD3. High affinity binding of AFM11 to CD19 and to CD3 is essential for efficacious T cell recruitment. Both CD8+ and CD4+ T cells mediate cytotoxicity however the former exhibit much faster killing. We observe that AFM11 displays similar cytotoxic efficacy at different effector to target ratios (from 5:1 to 1:5) in cytotoxicity assays; this suggests that T cells are engaged in the serial killing of CD19+ target cells. In the absence of CD19+ target cells in vitro, AFM11 does not elicit T cell activation as manifested by cytokine release (from a panel of ten cytokines associated with T cell activation), their proliferation, or their expression of activation markers. AFM11 activates T cells exclusively in the presence of its targets and mediates lysis of CD19+ cells while sparing antigen-negative bystanders. In the absence of CD19+ target cells, AFM11 concentrations in excess of 500-fold over EC50 induce down-modulation of the CD3/TCR complex. Yet, AFM11-treated T cells can be re-engaged for target cell lysis. All of these features of AFM11-induced T cell activation may contribute additional safety without compromising its efficacy. In vivo AFM11 demonstrates a robust dose-dependent inhibition of subcutaneous Raji tumors in mice. At 5 mg/kg AFM11 demonstrates a complete suppression of tumor growth, and even at 5 ug/kg tumor growth is reduced by 60%. Moreover, we observe that a single administration of AFM11 produces inhibition of tumor growth similar to that of 5 consecutive administrations. Conclusions: In summary, our in vitro and in vivo experiments with AFM11 demonstrate the high potency and efficacy of its anti-tumor cytotoxicity. Thus, AFM11 is a novel highly efficacious drug candidate for the treatment of B cell malignancies with an advantageous safety profile. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment.


1994 ◽  
Vol 14 (8) ◽  
pp. 5249-5258 ◽  
Author(s):  
C Couture ◽  
G Baier ◽  
C Oetken ◽  
S Williams ◽  
D Telford ◽  
...  

The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A21.2-A22
Author(s):  
M Schwerdtfeger ◽  
M Benmebarek ◽  
F Märkl ◽  
CH Karches ◽  
A Öner ◽  
...  

BackgroundChimeric antigen receptor therapy – although very efficacious in B cell malignancies – is facing many challenges which limit its success in solid tumors, e.g. on-target off-tumor toxicities, antigen heterogeneity, lack of T cell migration into tumors and an immunosuppressive tumor microenvironment. To better control on-target off-tumor effects and address antigen heterogeneity we developed a modular approach where we equipped T cells with a synthetic agonistic receptor (SAR). The SAR is only activated in the presence of a bispecific antibody (BiAb) cross-linking the receptor with a tumor-associated antigen. While we could show efficacy of the SAR platform in different models, limited infiltration and immune suppression still hamper its function. We could previously demonstrate that T cell infiltration can be enhanced by transduction with carefully chosen chemokine receptors like CXCR6, CCR4 and CCR8. At the same time, gene silencing of checkpoint molecules like PD-1 can make T cells more resistant to immunosuppression, thus we assumed that combining these approaches might generate a desired T cell product.Materials and MethodsAll constructs had been generated previously by overlap-extension cloning. The EGFRvIII (E3) SAR consists of extracellular EGFRvIII, transmembrane CD28 and intracellular CD28 and CD3ζ. Human CXCR6-GFP, CCR4-GFP and CCR8-GFP are composed of the chemokine receptors fused to GFP via a 2A sequence. Primary human T cells were retrovirally transduced to stably express the SAR and chemokine receptors. We analyzed migration, cytotoxicity and activation of the single and double (E3 SAR and chemokine receptor) transduced T cells. In addition, PD-1 was knocked out using CRISPR-Cas9 and killing kinetics of target cells and T cell activation were assessed.ResultsCo-transduction with chemokine receptors significantly increased migration of E3 SAR T cells to their respective ligand while lysis of target-expressing tumor cell and T cell activation in the presence of BiAb were not affected in vitro. Additionally knocking out PD-1 enhanced killing kinetics and activation of E3 SAR and E3 SAR + CXCR6-GFP transduced T cells compared to corresponding mock electroporated T cells.ConclusionsUsing the controllable and modular SAR – BiAb platform SAR T cell activation can be limited by stopping BiAb dosing if adverse events occur. In addition, SAR T cells can be redirected to an alternative tumor-associated antigen by exchanging the BiAb in the case of antigen escape. Here we present add-ons to this approach for increased tumor infiltration and resistance to immunosuppression. Since migration is enhanced upon co-transduction with chemokine receptors and target cell lysis is accelerated upon PD-1 knockout in vitro these two additional modifications seem very promising options to further improve tumor control in vivo.Disclosure InformationM. Schwerdtfeger: None. M. Benmebarek: None. F. Märkl: None. C.H. Karches: A. Employment (full or part-time); Significant; Daiichi Sankyo Deutschland GmbH. A. Öner: None. M. Geiger: A. Employment (full or part-time); Significant; Roche. B. Cadilha: None. S. Endres: None. V. Desiderio: None. C. Klein: A. Employment (full or part-time); Significant; Roche. S. Kobold: None.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 930-930 ◽  
Author(s):  
Claudia Arndt ◽  
Marc Cartellieri ◽  
Roberta Aliperta ◽  
Stefanie Koristka ◽  
Irene Michalk ◽  
...  

Abstract New promising candidates for cancer immunotherapy are bispecific antibodies (bsAbs) which have already shown a convincing anti-tumor effect in first clinical trials. BsAbs are composed of two single-chain fragments variable (scFvs), derived from the variable heavy and light chain of a monoclonal Ab (mAb), which bind to the activating CD3-complex on T cells and a tumor-associated antigen (TAA) on cancer cells. Consequently, the cross-linkage of effector and target cells by bsAbs results in an efficient T cell-mediated cancer cell killing. However, several serious adverse effects were observed in patients after application of Ab constructs. Most critical is an overall activation of T cells which bears the risk of a systemic release of pro-inflammatory cytokines. With respect to the idea that the CD3 binding of an Ab construct is critical for T cell activation, the CD3 domain has to be optimized in order to prevent or even reduce unspecific T cell responses. For this reason, we cloned several anti-CD3 scFvs derived from different anti-CD3 mAb clones and compared their functionality and safety. The anti-CD3 scFv with lowest risk of side effects was introduced in different anti-TAA bsAbs. Functional and safety studies in vitro revealed that development of each bsAb requires extensive and time-consuming optimization steps to gain high efficacy but low risk of side effects. To improve the process of Ab engineering, we recently introduced a novel modular Ab platform that can be rapidly and cost-effectively adapted for redirection of T cells to any TAA (Arndt and Feldmann et al. accepted for publication in Leukemia 2013). In this novel modular system the dual specificity of a conventional bsAb is distributed to two separate Ab modules, (i) the effector module and (ii) the target module. Only the complex of both Ab modules mediates the cross-linkage of effector and target cells resulting in T cell activation and redirected cancer cell lysis similar to conventional T cell engaging bsAbs. The universal effector module is a well optimized bsAb balancing efficacy and safety. It binds CD3 on T cells and the E5B9 tag of the target module. The individual target module comprises an anti-TAA scFv and the peptide epitope E5B9. For treatment of lymphoid or myeloid malignancies a series of different target modules were designed. In vitro and in vivo data clearly underline that the combination of the established effector module with different target modules efficiently activated T cells against hematological malignancies. Both CD4+ and CD8+ T cells from healthy donors were efficiently activated to kill TAA-positive tumor cell lines at low effector to target cell ratios and Ab concentrations in a tumor-specific manner. Most importantly, we could demonstrate that patient-derived T cells were able to kill autologous malignant cells upon Ab-mediated cross-linkage. Another unique feature of the modular system is that multispecific or multifunctional target modules could be easily included to further improve the therapeutic effect. In order to increase anti-tumor specificity and reduce the risk of tumor escape variants, bispecific target modules that recognize different TAAs at the same time, were constructed. Cytotoxicity assays investigating dual targeting of double-positive tumor cells via the modular system demonstrated that target cell lysis can be considerably improved in comparison to single targeting modules. Moreover, proliferation and cytokine release of redirected T cells could be enhanced by supplying costimulatory immunoligands (e.g. 4-1BBL and Ox40L) via target modules. In summary, we developed a multifunctional and highly flexible modular system based on an anti-CD3 domain with lowest risk of side effects. In contrast to conventional anti-TAA-anti-CD3 bsAbs, the development of a novel modular system for different clinical indications is much easier and less time-consuming. Once the effector module containing the critical CD3 domain is optimized, the modular system can be flexibly applied to target any TAA simply by replacing the target module. Application of bispecific target modules or providing costimulatory signals via the modular system might prolong immune responses and further increase anti-tumor specificity and activity. Finally, the novel modular platform represents a valuable and promising tool for cancer immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document