Regulatory T Cells Prevent Effector T Cell Infiltration Into GvHD Target Tissue by Affecting Chemokine Signaling.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1341-1341 ◽  
Author(s):  
Brie Turner ◽  
Shaheda Ahmed ◽  
Sarah Pagan ◽  
Jean Norden ◽  
Matthew Collin ◽  
...  

Abstract Abstract 1341 Poster Board I-363 Introduction Graft versus host disease (GVHD) following haematopoietic stem cell transplantation is often first observed in the skin; a primary target organ of GVHD. GVH related tissue damage in the skin is mainly driven by infiltrating alloreactive cytotoxic effector T cells, facilitated by a cascade of cytokines and chemokines. Our recently published observations showed that addition of regulatory T cells (Treg) suppressed skin GVH tissue damage mediated by alloreactive CD8+ T cells in an in vitro human GVHD skin explant model [1]. The current study investigated the role of Treg in modulating effector T cell infiltration into skin, it's consequence on the severity of skin GVH histopathology and the possible changes of effector T cell production and expression of chemokines and chemokine receptors. Methods CD8+ T cells, monocyte derived dendritic cells (mDC) and natural Treg (CD4+CD2highFOXP3+) were generated as previously described [1]. In an in vitro human GVHD skin explant model, CD8+ T cells and ex vivo expanded Treg obtained from buffy coats were used as “donor” cells. mDC and skin biopsies obtained from HLA unmatched unrelated normal volunteers acted as “recipient” tissues. “Donor” CD8+ T cells primed with “recipient” mDC in the presence or absence of Treg were co-cultured with “recipient” skin. The severity of histopathological GVH skin damage was scored as grade 0 to grade IV using a clinically validated scoring system. The number of infiltrating CD8+ T cells in skin was evaluated using immunohistochemistry then correlated to the severity of skin GVH histopathology. The gene expression of selected chemokines and chemokine receptors in alloreactive CD8+ effector T cells was analysed using quantitative RT-PCR. The effector T cell expression of chemokine receptors was assessed using flow cytometry. The secretion of selected chemokines into the culture supernatants was quantified using BD cytometric bead array kit. Results The percentage of infiltrating effector T cells in skin was significantly associated with the severity of skin GVH histopathology (2.6±0.8, 12.6±3.1 and 27.2±2.7 for skin sections with GVH histopathology grade I, II and III-IV; p=0.017 and 0.021 respectively). The percentage of skin infiltrating CD8+ T cells was significantly reduced by the presence of Treg (24.8±3.7 vs 11.58±1.8, p=0.011, n=13) which correlated with Treg mediated suppression of skin GVH histopathology (p<0.0001, n=13). The presence of Treg also down-regulated effector T cell expression of chemokine/chemokine receptor genes (CCL3, CCL5, CCR4, CCR5, CXCL10 and CXCL11) that are involved in the recruitment of effector T cells to GVH target tissues. Further analysis indicated a trend toward reduced effector T cell surface expression of CCR4 and CCR5 (31.9±4.3 vs 12.5±2.7; 13.7±1.8 vs 8.8±4.1 respectively, n=3) in the presence of Treg. There was also a reduction in CX3CR1 and cutaneous lymphocyte associated antigen (CLA) (11.1±1.9 vs 2.2±0.6; 34.6%±7.0 vs 11.6±2.2 respectively, n=3). The effector T cell surface expression of CXCR3, CCR2 and CCR10 was very low regardless of the presence or absence of Treg. Release of CCL3, CCL5, CXCL9 and CXCL10 into the culture supernatant was strongly suppressed by the presence of Treg (813±122 vs 77±30; 816±248 vs 405±148; 5517±967 vs 974±540 and 858±209 vs 195±57, p=0.001, 0.065, 0.002 and 0.015 respectively, n=8). However, CXCL11 and CX3CL1 levels were below detectable limits regardless of the presence or absence of Treg. Conclusions Ex vivo expanded natural Treg can inhibit CD8+ effector T cell infiltration into skin which correlated with Treg suppression of cytotoxic T cell mediated skin GVH histopathology in an in vitro human GVHD model. This effect may be attributed to a decrease in chemokine and chemokine receptor interactions mediated by Treg. These observations indicate a potential mechanism for Treg mediated GVHD suppression. [1] X N Wang et al., Transplantation 2009 Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 316 (6) ◽  
pp. H1480-H1494 ◽  
Author(s):  
Maria M. Xu ◽  
Antoine Ménoret ◽  
Sarah-Anne E. Nicholas ◽  
Sebastian Günther ◽  
Eric J. Sundberg ◽  
...  

Effector CD8 T cells infiltrate atherosclerotic lesions and are correlated with cardiovascular events, but the mechanisms regulating their recruitment and retention are not well understood. CD137 (4–1BB) is a costimulatory receptor induced on immune cells and expressed at sites of human atherosclerotic plaque. Genetic variants associated with decreased CD137 expression correlate with carotid-intimal thickness and its deficiency in animal models attenuates atherosclerosis. These effects have been attributed in part to endothelial responses to low and disturbed flow (LDF), but CD137 also generates robust effector CD8 T cells as a costimulatory signal. Thus, we asked whether CD8 T cell-specific CD137 stimulation contributes to their infiltration, retention, and IFNγ production in early atherogenesis. We tested this through adoptive transfer of CD8 T cells into recipient C57BL/6J mice that were then antigen primed and CD137 costimulated. We analyzed atherogenic LDF vessels in normolipidemic and PCSK9-mediated hyperlipidemic models and utilized a digestion protocol that allowed for lesional T-cell characterization via flow cytometry and in vitro stimulation. We found that CD137 activation, specifically of effector CD8 T cells, triggers their intimal infiltration into LDF vessels and promotes a persistent innate-like proinflammatory program. Residence of CD137+ effector CD8 T cells further promoted infiltration of endogenous CD8 T cells with IFNγ-producing potential, whereas CD137-deficient CD8 T cells exhibited impaired vessel infiltration, minimal IFNγ production, and reduced infiltration of endogenous CD8 T cells. Our studies thus provide novel insight into how CD137 costimulation of effector T cells, independent of plaque-antigen recognition, instigates their retention and promotes innate-like responses from immune infiltrates within atherogenic foci. NEW & NOTEWORTHY Our studies identify CD137 costimulation as a stimulus for effector CD8 T-cell infiltration and persistence within atherogenic foci, regardless of atherosclerotic-antigen recognition. These costimulated effector cells, which are generated in pathological states such as viral infection and autoimmunity, have innate-like proinflammatory programs in circulation and within the atherosclerotic microenvironment, providing mechanistic context for clinical correlations of cardiovascular morbidity with increased CD8 T-cell infiltration and markers of activation in the absence of established antigen specificity. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/effector-cd8-t-cells-seed-atherogenic-foci/ .


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3061-3061 ◽  
Author(s):  
Mark Selby ◽  
John Engelhardt ◽  
Li-Sheng Lu ◽  
Michael Quigley ◽  
Changyu Wang ◽  
...  

3061 Background: Interaction of immune checkpoint molecules PD-1 and CTLA-4 and their respective ligands attenuates antitumor T cell responses. In clinical studies, PD-1 blocking antibody (Ab) nivolumab (BMS-936558) or the CTLA-4 blocking Ab ipilimumab result in durable responses in multiple human malignancies. We describe the evaluation of concurrent treatment with anti-PD-1 and anti-CTLA-4 mAbs in preclinical models. Methods: Antitumor activity of treatment with murine homologs of anti-PD-1 (4H2-mIgG1) and anti-CTLA-4 (9D9-mIgG2b) was evaluated in MC38, a murine colon adenocarcinoma model. The effects of concurrent treatment on T cell infiltration of tumors, tumoral expression of PD-L1 and cytokine levels were explored. The preclinical safety profile of concurrent nivolumab + ipilimumab was assessed in a cynomolgus macaque model. Results: Concurrent treatment of MC38 tumors with 4H2-mIgG1 + 9D9-mIgG2b (10 mg/kg Q3d x 3) results in synergistic antitumor activity whereas efficacy with sequential dosing was similar to either agent alone. With concurrent treatment, dose reductions of one Ab relative to a fixed dose of the other resulted in retention of some antitumor activity. Anti-PD-1 enhanced CD8+ T cell infiltration of MC38 tumors and increased tumor PD-L1 expression. Anti-CTLA-4 treatment increased intratumoral CD8+ T cells and reduced intratumoral T regulatory cells. While concurrent treatment did not result in further increases in T cell infiltration, it increased expression of intratumoral cytokines. Anti-PD-1 resulted in down regulation of cell surface and intracellular levels of PD-1 in CD8+ T cells. In cynomolgus macaques, concurrent nivolumab + ipilimumab resulted in dose-dependent gastrointestinal toxicities (diarrhea; body weight loss) not observed in earlier cynomolgus studies with nivolumab and rarely with ipilimumab. These preclinical observations provided the rationale for a dose escalation trial (NCT01024231) of combined nivolumab + ipilimumab in advanced melanoma. Conclusions: Concurrent treatment with anti-PD-1/anti-CTLA-4 resulted in synergistic antitumor activity in preclinical models and supports the evaluation of the combination in clinical studies.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16578-e16578
Author(s):  
Yu Chen ◽  
Gang Chen ◽  
Jia-ni Xiong ◽  
Bin Lan ◽  
Xuan Gao ◽  
...  

e16578 Background: Previous data has shown that a positive response to immunotherapy usually relies on active interactions between tumor cells and immunomodulators inside the tumor microenvironment (TME). The aim of this study was to classify gastric cancer (GC) subsets based on the TME immune status according to the expression of PD-L1 and infiltration of CD8+ T cells. Methods: One hundred and eighty-six tumor tissue from gastric cancer patients with a curative D2 gastrectomy were examined for evaluating PD-L1 and CD8+ T cells status using histopathologic analysis. The molecular characteristics of 289 GC samples in TCGA network were further analyzed to distinguish the genetic features of four immune subtypes depending on the presence of PD-L1/CD8+T cell. Results: GC samples were categorized into four types, type I (CD8+/PD-L1+, 60.3%), II (CD8-/PD-L1-, 11.8%), III (CD8-/PD-L1+, 0%), and IV (CD8+/PD-L1-, 27.9%), basing on PD-L1/CD8 expression. The PD-L1 expressing level was geographically associated with the intensity of CD8+ T cell infiltration which was significantly associated with disease-free survival (DFS) and overall survival (OS) (p = 0.003 and p = 0.006). Distinct patterns of genetic profile were described in four types of GC from TCGA database. Type I and III which PD-L1 were overly expressed had comparatively higher MSI and TMB, with EBV mainly enriched in Type I, whereas CIN was more likely to occur in PD-L1 aberrant types II and IV. SNV analysis illustrated higher gene mutations in oncogenes (PIK3CA and ERBB2), and in DNA damage repair related pathway, such as PRKDC, ATM, and SWI/SNF complexes (e.g. ARID1A) in Type I. However, TP53 mutations tend to enrich in Type II and IV. Similar results were obtained by transcriptome analysis. Conclusions: The genetic features of four immune subtypes proof that PD-L1 and CD8+ T cells status are reasonable immunogenomic classification of gastric cancer. SNV analysis prompts a potential mechanism for effectiveness of immunotherapy in Type I patients. Overall, the results may be useful for the development of clinical treatments for the blockade of immune checkpoints.


Author(s):  
Joost Dejaegher ◽  
Lien Solie ◽  
Zoé Hunin ◽  
Raf Sciot ◽  
David Capper ◽  
...  

Abstract Background Histologically classified Glioblastomas (GBM) can have different clinical behavior and response to therapy, for which molecular subclassifications have been proposed. We evaluated the relationship of epigenetic GBM subgroups with immune cell infiltrations, systemic immune changes during radiochemotherapy and clinical outcome. Methods 450K genome-wide DNA methylation was assessed on tumor tissue from 93 patients with newly diagnosed GBM, treated with standard radiochemotherapy and experimental immunotherapy. Tumor infiltration of T cells, myeloid cells and PD-1 expression were evaluated. Circulating immune cell populations and selected cytokines were assessed on blood samples taken before and after radiochemotherapy. Results Forty-two tumors had a mesenchymal, 27 a RTK II, 17 a RTK I and 7 an IDH DNA methylation pattern Mesenchymal tumors had the highest amount of tumor-infiltrating CD3+ and CD8+ T cells and IDH tumors the lowest. There were no significant differences for CD68+ cells, FoxP3+ cells and PD-1 expression between groups. Systemically, there was a relative increase of CD8+ T cells and CD8+ PD-1 expression and a relative decrease of CD4+ T cells after radiochemotherapy in all subgroups except IDH tumors. Overall survival was the longest in the IDH group (median 36 months), intermediate in RTK II tumors (27 months) and significantly lower in mesenchymal and RTK I groups (15.5 and 16 months respectively). Conclusions Methylation based stratification of GBM is related to T cell infiltration and survival, with IDH and mesenchymal tumors representing both ends of a spectrum. DNA methylation profiles could be useful in stratifying patients for immunotherapy trials.


2020 ◽  
Vol 8 (1) ◽  
pp. e000432 ◽  
Author(s):  
Lorena Carmona-Rodríguez ◽  
Diego Martínez-Rey ◽  
Maria Jesús Fernández-Aceñero ◽  
Alicia González-Martín ◽  
Mateo Paz-Cabezas ◽  
...  

BackgroundTumor-infiltrating lymphocytes (TILs), mainly CD8+ cytotoxic T lymphocytes (CTL), are linked to immune-mediated control of human cancers and response to immunotherapy. Tumors have nonetheless developed specific mechanisms that selectively restrict T cell entry into the tumor microenvironment. The extracellular superoxide dismutase (SOD3) is an anti-oxidant enzyme usually downregulated in tumors. We hypothesize that upregulation of SOD3 in the tumor microenvironment might be a mechanism to boost T cell infiltration by normalizing the tumor-associated endothelium.ResultsHere we show that SOD3 overexpression in endothelial cells increased in vitro transmigration of naïve and activated CD4+ and CD8+ T cells, but not of myeloid cells. Perivascular expression of SOD3 also specifically increased CD4+ and CD8+ effector T cell infiltration into tumors and improved the effectiveness of adoptively transferred tumor-specific CD8+ T cells. SOD3-induced enhanced transmigration in vitro and tumor infiltration in vivo were not associated to upregulation of T cell chemokines such as CXCL9 or CXCL10, nor to changes in the levels of endothelial adhesion receptors such as intercellular adhesion molecule-1 (ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1). Instead, SOD3 enhanced T cell infiltration via HIF-2α-dependent induction of specific WNT ligands in endothelial cells; this led to WNT signaling pathway activation in the endothelium, FOXM1 stabilization, and transcriptional induction of laminin-α4 (LAMA4), an endothelial basement membrane component permissive for T cell infiltration. In patients with stage II colorectal cancer, SOD3 was associated with increased CD8+ TIL density and disease-free survival. SOD3 expression was also linked to a T cell–inflamed gene signature using the COAD cohort from The Cancer Genome Atlas program.ConclusionOur findings suggest that SOD3-induced upregulation of LAMA4 in endothelial cells boosts selective tumor infiltration by T lymphocytes, thus transforming immunologically “cold” into “hot” tumors. High SOD3 levels are associated with human colon cancer infiltration by CD8+ T cells, with potential consequences for the clinical outcome of these patients. Our results also uncover a cell type–specific, distinct activity of the WNT pathway for the regulation of T cell infiltration into tumors.


2021 ◽  
Vol 21 ◽  
Author(s):  
Lei Wang ◽  
Xue Liang ◽  
Mi Liang ◽  
Dang Li ◽  
Jia Gu ◽  
...  

Aims: To investigate the effects of PAXT mutations on tumor immunity. Background: Loss of function of PAX5 plays a key role in PAX5 mutation tumor. Objective: PAX5 haploinsufficiency promoting tumorigenesis is related to immune escape, but there was no report about mechanisms of PAX5 mutation inducing tumor immunological escape. Method: We constructed the PAX5 haplodeletion A20 cell lines using gene-editing technology, built allografted A20 tumor models and evaluated the effect of PAX5 haplodeletion on T cells and chemokines in the tumor microenvironment (TME). Result: Our results from different methods indicated percentages of CD3+ CD4+ T cells and CD3+ CD8+ T cells in TME of PAX5 haplodeletion clones decreased significantly compared with that of PAX5 wild type control. Several chemokines, such as Ccl2, Ccl4, Cxcl9 and Cxcl10, in TME of PAX5. Conclusion: Our study showed that PAX5 haploinsufficiency induced low T cell infiltration in TME using decreased chemokines.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14532-e14532
Author(s):  
Joerg Wischhusen ◽  
Markus Haake ◽  
Neha Vashist ◽  
Sabrina Genßler ◽  
Kilian Wistuba-Hamprecht ◽  
...  

e14532 Background: Growth and differentiation factor 15 (GDF-15) is a divergent member of the TGF-β superfamily with low to absent expression in healthy tissue. GDF-15 has been linked to feto-maternal immune tolerance, to prevention of excessive immune cell infiltration during tissue damage, and to anorexia. Various major tumor types secrete high levels of GDF-15. In cancer patients, elevated GDF-15 serum levels correlate with poor prognosis and reduced overall survival (OS). Methods: Impact of a proprietary GDF-15 neutralizing antibody (CTL-002) regarding T cell trafficking was analyzed by whole blood adhesion assays, a HV18-MK melanoma-bearing humanized mouse model and a GDF-15-transgenic MC38 model. Additionally, patient GDF-15 serum levels were correlated with clinical response and overall survival in oropharyngeal squamous cell carcinoma (OPSCC) and melanoma brain metastases. Results: In whole blood cell adhesion assays GDF-15 impairs adhesion of T and NK cells to activated endothelial cells. Neutralization of GDF-15 by CTL-002 rescued T cell adhesion. In HV18-MK-bearing humanized mice CTL-002 induced a strong increase in TIL numbers. Subset analysis revealed an overproportional enrichment of T cells, in particular CD8+ T cells. As immune cell exclusion is detrimental for checkpoint inhibitor (CPI) therapy, a GDF-15-transgenic MC38 model was tested for anti-PD-1 therapy efficacy. In GDF-15 overexpressing MC38 tumors response to anti PD-1 therapy was reduced by 90% compared to wtMC38 tumors. Combining aPD-1 with CTL-002 resulted in 50% of the mice rejecting their GDF-15 overexpressing tumors. Clinically, inverse correlations of GDF-15 levels with CD8+ T cell infiltration were shown for HPV+ OPSCC and for melanoma brain metastases. GDF-15 serum levels were significantly higher in HPV- than in HPV+ OPSCC patient (p < 0.0001). Low GDF-15 levels corresponded to longer OS in both HPV- and HPV+ OPSCC. In two independent melanoma patient cohorts treated with nivolumab or pembrolizumab low baseline serum GDF-15 levels were predictive for clinical response to anti-PD1 treatment and superior OS. Bivariate analysis including LDH indicates that GDF-15 independently predicts poor survival in aPD-1 treated melanoma patients. Conclusions: Taken together our in vitro and in vivo data show that elevated GDF-15 levels block T-cell infiltration into tumor tissues. Neutralizing GDF-15 with CTL-002 restores the ability of T cells to extravasate blood vessels and enter tumor tissue both in vitro and in vivo. In melanoma, patients with higher GDF-15 levels have significantly shorter survival and are less likely to respond to anti-PD1 therapy. GDF-15 may thus serve as a new predictive biomarker for anti-PD1 response, but most importantly also represents a novel target for cancer immunotherapy to improve tumor immune cell infiltration and response to anti-PD1 therapy.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii90-ii90
Author(s):  
Alexander Haddad ◽  
Jordan Spatz ◽  
Sara Collins ◽  
Matheus Pereira ◽  
Sabraj Gill ◽  
...  

Abstract BACKGROUND Severe local and systemic immune suppression in glioblastoma (GBM) contributes to the failure of single-agent immunotherapies in clinical trials. In this study, we evaluated the efficacy of locally delivered combination immunotherapy in a poorly immunogenic murine GBM model. METHODS Immunomodulators used in these studies included: IL-15 and IL-7 (T cell activation), LIGHT (T cell tumor infiltration), FLT3L (dendritic cell maturation/proliferation), a surface T cell engager (T cell killing of tumor cells), and a bispecific PD-L1/T cell engager (T cell killing targeted to PD-L1-expressing cells). We first assessed T cell-mediated cytotoxicity in vitro against SB28, a poorly immunogenic murine GBM cell line, after expressing these immunomodulators in combination. Next, tumor growth inhibition in vivo was evaluated in syngeneic C57BL/6 mice, initially by establishment of intracranial tumors with pre-transduced SB28 cells, and subsequently by delivering these immunomodulators to pre-established naïve SB28 tumors using neural stem cells (NSCs) and retroviral replicating vectors (RRV). RESULTS SB28 cells transduced with immunomodulators activated dose-dependent T cell-mediated cytotoxicity in vitro. Mice with pre-transduced intracranial SB28 gliomas showed significantly longer survival (minimum survival: 60 days, long-term survival in 57% of mice) vs. control mice (median survival: 20 days) (p&lt; 0.001), and significantly increased tumor infiltration of CD4+ and CD8+ T cells. NSC- and RRV-mediated immunomodulator delivery to pre-established SB28 gliomas also resulted in significantly increased survival of treated mice vs. controls (median survival: 31 days vs. 22 days, p&lt; 0.001). Immunomodulator-treated tumors again showed significantly increased infiltration of CD4+ and CD8+ T cells, along with decreased CD11b+ cell infiltration. CONCLUSIONS A novel combination therapy for GBM immunotherapy activated T cell killing of SB28 GBM cells in vitro and achieved a significant survival benefit in vivo, associated with anti-tumor alterations to the GBM tumor microenvironment. Further studies to optimize the efficiency of combinatorial immunomodulator delivery are currently underway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruocong Zhao ◽  
Yuanbin Cui ◽  
Yongfang Zheng ◽  
Shanglin Li ◽  
Jiang Lv ◽  
...  

T cell infiltration into tumors is essential for successful immunotherapy against solid tumors. Herein, we found that the expression of hyaluronic acid synthases (HAS) was negatively correlated with patient survival in multiple types of solid tumors including gastric cancer. HA impeded in vitro anti-tumor activities of anti-mesothelin (MSLN) chimeric antigen receptor T cells (CAR-T cells) against gastric cancer cells by restricting CAR-T cell mobility in vitro. We then constructed a secreted form of the human hyaluronidase PH20 (termed sPH20-IgG2) by replacing the PH20 signal peptide with a tPA signal peptide and attached with IgG2 Fc fragments. We found that overexpression of sPH20-IgG2 promoted CAR-T cell transmigration through an HA-containing matrix but did not affect the cytotoxicity or cytokine secretion of the CAR-T cells. In BGC823 and MKN28 gastric cancer cell xenografts, sPH20-IgG2 promoted anti-mesothelin CAR-T cell infiltration into tumors. Furthermore, mice infused with sPH20-IgG2 overexpressing anti-MSLN CAR-T cells had smaller tumors than mice injected with anti-MSLN CAR-T cells. Thus, we demonstrated that sPH20-IgG2 can enhance the antitumor activity of CAR-T cells against solid tumors by promoting CAR-T cell infiltration.


Sign in / Sign up

Export Citation Format

Share Document