Resistance to the Novel Translation Inhibitor Silvestrol Is Mediated by Elevated Mcl-1 Expression.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1737-1737
Author(s):  
David M. Lucas ◽  
Ellen J. Sass ◽  
Ryan B. Edwards ◽  
Li Pan ◽  
Gerard Lozanski ◽  
...  

Abstract Abstract 1737 Poster Board I-763 We previously reported the efficacy and B-cell selectivity of the natural product silvestrol in acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL), using both primary cells and B-cell lines. We also showed that silvestrol inhibits translation, resulting in rapid depletion of the short half-life protein Mcl-1 followed by mitochondrial damage and apoptosis. Cencic et al. reported that silvestrol directly blocks translation initiation by aberrantly promoting interaction of eIF4A with capped mRNA (PLoS One 2009; 4(4):e5223). However, the loss of Mcl-1 in breast and prostate cancer cell lines is delayed relative to what we observe in B-leukemias (48 hr vs. 4-6 hr in CLL and ALL cells). Additionally, silvestrol does not reduce Mcl-1 expression in normal T-cells to the same extent that it does in B-cells, potentially explaining in part the relative resistance of T-cells to this agent. We therefore investigated cell-type differences, as well as the importance of Mcl-1, in silvestrol-mediated cytotoxicity. We incubated the ALL cell line 697 with gradually increasing concentrations of silvestrol to generate a cell line (697-R) with resistance to 30 nM silvestrol (IC50 of parental 697 < 5 nM). No differences between 697-R and the parental line were detected upon detailed immunophenotyping. However, cytogenetic analysis revealed a balanced 7q;9p translocation in 697-R not present in the parental 697 cell line that may be related to the emergence of a resistant clone. We also detected no difference in expression of multi-drug resistance proteins MDR-1 and MRP, which can contribute to resistance to complex amphipathic molecules such as silvestrol. In contrast, we found that baseline Mcl-1 protein expression is strikingly increased in 697-R cells relative to the parental line, although these cells still show similar percent-wise reduction in Mcl-1 upon re-exposure to 80 nM silvestrol. To investigate whether this resistance to silvestrol is reversible, 697-R cells were maintained without silvestrol for 6 weeks (∼18 passages). During this time, viability remained near 99%. Cells were then treated with 30 nM silvestrol. Viability was 94% at 48 hr post-treatment and returned to 99% within a week, while parental 697 cells with the same treatment were completely dead. Baseline Mcl-1 levels remained elevated in 697-R even with prolonged silvestrol-free incubation. These results indicate that the resistance phenotype is not rapidly reversible, as is seen with transient upregulation of multi-drug resistance or stress-response proteins. Additionally, silvestrol moderately induces the transcription of several pro-apoptotic Bcl-2 family members and results in elevated levels of these proteins despite its translation inhibitory activity. Interestingly, no such activity is detected in silvestrol-treated normal T-cells. Together, these results support the hypothesis that in B-cells, silvestrol induces cell death by altering the balance of pro- and anti-apoptotic factors, and that increased Mcl-1 protein can force the balance back toward survival. This work further underscores the importance of Mcl-1 in silvestrol-mediated cytotoxicity. We are now investigating the mechanism of Mcl-1 upregulation in 697-R cells to identify a factor or pathway that can be targeted therapeutically to circumvent resistance. Silvestrol is currently undergoing preclinical pharmacology and toxicology investigation by the U.S. National Cancer Institute Drug Development Group at the Stage IIA level to facilitate its progression to Phase I clinical testing. Disclosures No relevant conflicts of interest to declare.

1983 ◽  
Vol 158 (6) ◽  
pp. 2024-2039 ◽  
Author(s):  
M Howard ◽  
L Matis ◽  
T R Malek ◽  
E Shevach ◽  
W Kell ◽  
...  

Antigen-activated T lymphocytes produce within 24 h of stimulation a factor that is indistinguishable biochemically and functionally from the B cell co-stimulating growth factor, BCGF-I, originally identified in induced EL4 supernatants: Supernatants from antigen-stimulated T cell lines are not directly mitogenic for resting B cells, but synergize in an H-2-unrestricted manner with anti-Ig activated B cells to produce polyclonal proliferation but not antibody-forming-cell development; biochemical studies reveal the B cell co-stimulating factor present in antigen-stimulated T cell line supernatants is identical by phenyl Sepharose chromatography and isoelectric focusing (IEF) to EL4 supernatant BCGF-I. We thus conclude that normal T cells produce BCGF-I in response to antigenic stimulation. Analysis of the mechanism of BCGF-I production by antigen-stimulated T cells showed that optimum amounts of BCGF-I were obtained as quickly as 24 h post-stimulation, and that the factor producing cells in the T cell line investigated bore the Lyt-1+2- phenotype. As few as 10(4) T cells produced sufficient BCGF-I to support the proliferation of 5 X 10(4) purified anti-Ig activated B cells. Finally, the activation of normal T cell lines to produce BCGF-I required either antigen presented in the context of syngeneic antigen-presenting cells (APC) or interleukin 2 (IL-2).


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3730-3730
Author(s):  
Norma Iris Rodriguez-Malave ◽  
Weihong Yan ◽  
Giuseppe Basso ◽  
Martina Pigazzi ◽  
Dinesh S. Rao

Abstract A new class of non-coding RNA, known as long intergenic non-coding RNAs (lincRNAs), has only recently been described. These lincRNAs have been found to play a role in various molecular processes within the cell including gene regulation, acting as sinks for microRNAs, and regulating splicing, implicating them in development and oncogenic processes. B lymphoblastic leukemia (B acute lymphoblastic leukemia; B-ALL), a malignancy of precursor B-cells, harbors mutations and translocations that result in a dysregulated gene expression. Interestingly, dysregulated expression of lincRNAs has been found in various cancers, but has not yet been described in B-ALL. Recently, we completed a gene expression profiling study in human B-ALL samples, which showed differential lincRNA expression in samples with particular cytogenetic abnormalities. This led us to hypothesize that lincRNAs may be related to disease pathogenesis. Here, we describe a promising lincRNA from our microarray data designated B-ALL associated long intergenic RNA 6 (BALIR-6). Expression of BALIR-6 is highest in patient samples carrying the MLL rearrangement (n=16; when compared to patients with TEL-AML1-translocated, n=39; E2A-PBX1-translocated, n=8; BCR-ABL-translocated, n=3; and cytogenetically normal cases, n=56; 1-way ANOVA p<0.0001) and showed significant variance in the expression level based on the immunophenotype (1-way ANOVA p=0.0004). BALIR-6 is located on chromosome 3p24.3 in humans, and exists in a syntenic gene block in with neighboring genes SATB1 and TBC1D5, and is conserved in mammals. Rapid Amplification of cDNA Ends (RACE) uncovered multiple transcript isoforms; from these, three were cloned out and sequenced, corresponding to the genomic locus as predicted. In B-ALL cell lines, BALIR-6 expression was highest in RS411 cells, which carry the MLL rearrangement, when compared to other B-ALL cell lines. This suggests that the cell lines may show a similar expression pattern to human B-ALL samples. To study the functional role of BALIR-6 we utilized siRNA in a mmu-miR-155 expression cassette to knockdown the transcript. In RS411 cells we observed a reduction in proliferation by MTS assay. Additionally, we observed an increase Sub-G0 cells and a decrease in G2-M phase cells by propidium iodide staining, suggesting an increase in apoptosis. Conversely, overexpression of BALIR-6 in a mouse pre-B cell line (70Z/3), leads to an increase in proliferation. Interestingly, during normal B cell development, BALIR-6 is dynamically expressed, with high expression in pre-B cells and subsequent downregulation, suggesting that a normal role during development is being hijacked in patients with B-ALL. Mechanistically, a few recent studies have described that lincRNAs can regulate gene expression in cis. To explore whether BALIR 6 regulates surrounding genes in cis, we analyzed microarray data of MLL rearranged B-ALL samples, finding that expression of BALIR-6 correlates with expression of surrounding genes SATB1 and TBC1D5. Interestingly for SATB1, this correlation is also seen in human B cell developmental stages. Altering BALIR-6 expression by siRNA mediated knockdown or overexpression causes an effect on the expression of surrounding genes SATB1 and TBC1D5. Previous findings have shown that dysregulated SATB1 has been seen in a variety of malignancies, suggesting a mechanism for how BALIR-6 may produce the changes in cell growth and apoptosis described above. Altogether, these results identify a novel and interesting RNA transcript with the potential to regulate gene expression and pathogenesis in B-ALL with MLL rearrangement, suggesting novel diagnostic, prognostic, and therapeutic implications. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3974-3974
Author(s):  
Koramit Suppipat ◽  
Xiao Zhu ◽  
Chun Shik Park ◽  
H. Daniel Lacorazza

Abstract Abstract 3974 Acute lymphoblastic leukemia (ALL) is the most common form of hematologic malignancy in children. In spite of significant advances achieved in the treatment of childhood ALL, one fifth of these patients still relapse after the standard treatment. Moreover, relapse ALL is the second most common cause of cancer-related deaths in children. The development of novel therapies is prevented by a limited understanding of the exact pathobiology. There are emerging evidences that the transcription factor KLF4 has a tumor suppressor property in ALL. Recently, a gene expression classifier study in pediatric precursor B-cell ALL (pre-B ALL) showed that KLF4 expression was significantly reduced in high risk ALL patients with positive MRD after induction. This finding suggests a possible role of this cell cycle inhibitor on the development, expansion and drug-resistant of leukemic cells. Several studies demonstrate that overexpression of KLF4 in normal B cells and BCR transformed B cells show increased apoptosis and reduced proliferation. Furthermore, we recently described that KLF4 inhibits proliferation of naïve lymphocytes by activating p21 (Yamada, et al, 2009). Sulphoraphane (SF; 4-methylsulfonylbutyl isothiocyanate) is a dietary compound derived from Cruciferae vegetables with anti-carcinogenic activity in colon cancer by upregulating KLF4 and p21 among other genes. Thus, we hypothesized that SF could also exhibit anti-leukemic activity in human-derived acute lymphoblastic leukemia cells via the activation of KLF4. The pre-B ALL cell lines (Nalm6, REH, RS-4, SUP-B15) and an EBV transformed B cell line were treated with different concentrations of SF (0-40 μM) for 24–48 hours. Then, cell number was estimated using an ATP-based viability method. Flow cytometric analysis of ANNEXIN-V/7-AAD binding as well as CFSE dilution was used to measure apoptosis and proliferation respectively. We found that SF induced cytotoxicity in Nalm-6, REH and RS-4 cell lines in a dose and time dependent manner. This cytotoxic effect was less pronounced in EBV-transformed B cell line. SF treatment led to increased ANNEXIN-V and 7-AAD positive cells (82% apoptotic cells in SF-treated versus 9% in DMSO control). Further, SF-treated cells displayed significantly less proliferation in comparison to DMSO controls thus suggesting that SF inhibits cellular proliferation. Preliminary data also suggest that SF-mediated apoptosis is caused by upregulation of KLF4. In conclusion, Sulphoraphane exhibits an anti-leukemic property by inducing apoptosis and abrogating proliferation in pre-B ALL cell lines. Thus, sulphoraphane could potentially be used as an adjunctive therapy in a subgroup of pre-B ALL patients who have decreased expression of KLF4. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4423-4423
Author(s):  
David A. Estes ◽  
Rahul Poria ◽  
Debbie M. Lovato ◽  
Hadya M. Khawaja ◽  
Claudia L. Quan ◽  
...  

Abstract Acquisition of drug resistance in tumor cells in children with T-cell acute lymphoblastic leukemia (T-ALL) during chemotherapy results in relapse and poor outcome. T-ALL cell lines that have acquired resistance to chemotherapeutics are therefore critical tools for the study of acquired resistance, yet there is a paucity of cell lines available for study. In this study, we hypothesize that drug resistant T-ALL cells can be produced by prolonged exposure to chemotherapeutics and that microarray analysis can be employed to identify the gene products responsible for acquired drug resistance. By incrementally increasing the drug concentration in growth media, we have produced T-ALL cell lines (Jurkat and Sup T1) that grow well in the presence of therapeutic concentrations of L-asparaginase (ASNase) and daunorubicin (DNR). The genetic profiles of the drug-resistant cell lines were compared to their parental progenitors using the Affymetrix HG-U133Plus2 GeneChip platform, capable of hybridizing ~54,000 genes and ESTs/chip. Signal intensity was normalized using the robust multi-array average (RMA) technique in GeneSpring 7.2. The Sup T1 and Jurkat ASNase-resistant cell lines increased their IC50s 26-fold (0.044 IU/mL to 1.14 IU/mL) and 320-fold (0.003 IU/mL to 0.96 IU/mL), respectively. The IC50 of the Jurkat DNR resistant cell line increased 77-fold (30 nM to 2300 nM), and 4.0-fold, (0.46 nM to 1.85 nM), respectively. Notably, DNR resistant Jurkat cells were also resistant to therapeutic concentrations of vincristine and prednisolone, but not ASNase. In contrast, the ASNase resistant cell lines remained sensitive to DNR, vincristine, and prednisolone. Microarray data comparing DNR-resistant and parental cell lines showed 288 genes upregulated >1.5-fold in the resistant line. Two sets of genes were the most upregulated in the drug resistant cells in comparison to parental cells. ABCB1 (ABC transporter P-glycoprotein) was upregulated ~940-fold and genes coding for 6 different killer-cell immunoglobulin-like receptors (KIRs) were upregulated >6-fold. In the case of the ASNase-resistant cell lines, 96 genes were found to be upregulated >1.5-fold in both Jurkat and Sup T1 lines. The most highly upregulated gene in both cell lines was argininosuccinate synthase (ASS), 32-fold upregulated in Jurkat and 6.5-fold in Sup T1. All expression results were confirmed by qRT-PCR. These genes have previously been implicated in the acquisition of drug resistance: ASS is critical for responding to asparagine depletion caused by ASNase. ABCB1 acts as a molecular pump capable of lowering intracellular concentrations of substrate chemotherapeutics such as DNR, vincristine, and prednisolone, consistent with our observation of multi-drug resistance in that cell line. To our knowledge, this is the first description of DNR and ASNase resistant Jurkat and Sup T1 T-ALL cell lines. In addition, our results suggest that microarray technology is a valid method for elucidating the genetic nature of drug resistance in T-ALL cell lines, making it a productive approach to identify mechanisms of chemotherapy resistance. Finally, these cell lines will serve as useful tools for studying mechanisms of chemotherapeutic resistance in T-ALL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1468-1468
Author(s):  
Amina Kariminia ◽  
Sabine M Ivison ◽  
Vivian Leung ◽  
Sandra E. Dunn ◽  
Aru Narendran ◽  
...  

Abstract Abstract 1468 Background: Increased YB-1 expression correlates with poor prognosis, drug resistance and metastasis in several different cancers including B cell lymphoma. Phosphorylation and nuclear localization of YB-1 in response to growth factors leads to increased survival through expression of proteins such as survivin and multidrug resistance protein 1. Until now, its role in leukemia has not been investigated. We hypothesized that YB-1 expression is aberrantly regulated in pediatric pre-B acute lymphoblastic leukemia (pre-B ALL), and that YB-1 may be activated downstream of IL-7. This cytokine facilitates the differentiation and survival of pre-B cells and has been implicated in the drug resistance of pre-B ALL. Methods: YB-1 and IL-7Ra protein expression was investigated by flow cytometry in normal pre-B cells (CD19+CD10+CD20−), and mature B cells (CD19+CD10−CD20+) as well as diagnostic and relapsed pre-B ALL (CD19+CD10+/−). Cell surface and cytoplasmic expression was quantified by mean fluorescent intensity (MFI). Bone marrow from healthy donors was used as a source of normal pre-B cells, while mature B cells were derived from PBMCs; leukemic cells at presentation and relapse were obtained following local IRB approval and informed consent. Activation of YB-1 downstream of IL-7 stimulation (25 ng/ml) was examined in pre-B ALL cell lines or NSG (NOD scid gamma) mice-expanded pre-B ALL by Western blotting using anti-phosphoYB-1(S012). Pre-B ALL cell lines used in these experiments were 697, 380, RCH and RS-4;11. Signaling pathways were investigated by pre-treatment of cells with pharmacological inhibitors followed by Western analyses. For the transient overexpression of YB-1, pEGFP or a pEGFP/YB-1 fusion protein was electroporated into freshly isolated mature B cells (which have a low basal expression of YB-1) and YB-1 and IL-7Ra expression was assessed by flow cytometry after 24 h. Results: While intracellular YB-1 expression was significantly higher in leukemia samples at presentation compared to normal pre-B cells, the highest YB-1 levels were found in relapsed pre-B ALL (see figure, part A). All examined pre-B ALL cell lines had levels comparable to those of the relapse samples. Similarly, surface IL-7Ra (CD127) levels (MFI medians; upper-lower range) were increased in onset (221; 150–286), and relapsed (1840; 651–2030) ALL compared to normal pre-B cells (528; 333–2673). (normal pre-B vs. leukemia at presentation, p<0.001, Mann-Whitney). Overexpression of YB-1-GFP in normal mature B cells resulted in increased expression of IL-7Ra (see figure, part B), suggesting an link between the YB-1 and IL-7 signaling pathways. Activated YB-1 is phosphorylated on S102 and relocated to the nucleus. Addition of IL-7 to pre-B ALL cell lines led to phosphorylation of YB-1 within 30 min. Similar results were shown for patient-derived, NSG mice-expanded pre-B ALL samples. Intracellular immunostaining using Imagestream technology (Amnis) showed that IL-7 treatment of pre-B ALL cell lines increased nuclear YB-1 levels 4-fold. As PI3K and MEK1 are involved in signaling downstream of IL-7, we investigated their role in YB-1 signaling in both pre-B ALL cell lines and NSG-mouse expanded pre-B ALL using pharmacological inhibitors. Western analyses showed that inhibition of PI3K using LY294002 did not prevent IL-7-mediated phosphorylation of YB-1 but the MEK1 inhibitor U0126 did, indicating the involvement of MAPK (see figure, part C). Conclusion: We show that YB-1, which is highly expressed in pediatric pre-B ALL compared to normal pre-B cells, is expressed at even higher levels after relapse. We demonstrate a link between the YB-1 and IL-7 signaling pathways which could offer a novel target for the treatment of refractory leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 633-633 ◽  
Author(s):  
Angela Schulz ◽  
Debra K Czerwinski ◽  
Ronald Levy

Abstract Follicular Lymphoma (FL) is the most common indolent lymphoma and is characterized by retained surface B-cell receptor (BCR) expression despite ongoing V region somatic mutation. Furthermore, every tumor has a unique BCR. Together, this suggests that the BCR is important for the survival of the malignant B cell. Recognition of a target antigen could lead to a constant stimulation of the malignant cells and serve as a driving force. Recombinant BCRs from a series of FL patients were expressed in the form of assembled proteins and all of IgG3 isotype. Recently we reported that 25% of these BCRs have binding activity against a human epithelial cell line1. In the current study we aimed to broaden the search for putative auto-antigens. As FL cells are in close contact with various peripheral blood cells (PBMC), an epitope on the surface of these cells might serve as a putative auto-antigen. Therefore, we incubated PBMCs from healthy donors with the lymphoma derived BCRs and quantified surface binding by FACS. We gated separately on B-cells, CD4 T-cells, CD8 T-cells, monocytes and natural killer (NK) cells. Thereby, we identified 7 out of 25 tumor-derived BCRs which bound to at least one cell type. Four of these strongly bound to NK, B-cells and monocytes from multiple different donors. None of the tested antibodies bound to T-cells. We tested the four reactive BCRs against B-cell lines (Daudi, Raji, Ramos, DHL-4, FL-18 and Reh) and one T-cell line (MOLT-4). We found that Daudi and to a lesser extent Raji but none of the other cell lines were positive for the same lymphoma derived BCRs as PBMCs. Because of the observed binding pattern we hypothesized that a common protein modification might be the target. We therefore treated the cell lines with tunicamycin, an inhibitor for N-linked glycosylation, in order to test if sugars might be the targets of the lymphoma derived BCRs. Surprisingly, this led to stronger binding of the same BCRs. it is known that de-glycosylation of Fc receptors increases Fc binding, suggesting that Fc receptors might be the target. In line with this hypothesis Daudi cells have Fc receptors but Ramos cells do not. Moreover, T-cells are the only PBMCs which do not express Fc receptors. Therefore, we tested Fc receptors directly as targets. Recombinant Fcγ1 (CD64) and Fcγ3 (CD16) were positive in ELISA tests with the four recombinant lymphoma-derived BCRs. In addition, blocking Fcγ2 (CD32) and Fcγ3 receptors on PBMCs before staining with lymphoma derived BCRs resulted in a signal reduction. In order to define if the Fc part of these BCRs is passively bound by Fc receptors or if the Fc receptor is recognized as specific target by the variable BCR regions we produced F(ab)2 fragments. Staining PBMCs with these abolished binding, suggesting that the Fc region of the lymphoma derived BCRs is bound necessary for cellular binding. As all BCRs have the same IgG3 constant region they should all bind to Fc receptors through their Fc regions with the same affinity. In vivo Fc receptor bearing cells are not activated by the binding of a single antibody but only when an antibody cluster is formed e.g. the antibody-coated surface of a pathogen. We therefore hypothesized that the BCRs which bound Fc receptors exist as clusters. This would be conceivable if the BCRs recognized a part of them-selves as target which subsequently would lead to dimer or oligomerization. Indeed, a Fc binding BCR which was coated on an ELISA plate could be detected with a biotinylated counterpart of itself. This same phenomenon was recently described to be the case for chronic lymphocytic leukemia2. Experiments are ongoing to elucidate which region of the BCRs are recognized as targets and for which percentage of them for which this is true. In conclusion these findings suggest a new target for the BCR of FL cells whose constant presence in its microenvironment might represent a novel mechanism of chronic BCR stimulation. 1Sachen KL et al., Blood 2012, 2Dühren von Minden M et al., Nature 2012 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5109-5109 ◽  
Author(s):  
Hilmar Quentmeier ◽  
Sonja Eberth ◽  
Roderick AF MacLeod ◽  
Stefan Nagel ◽  
Julia Romani ◽  
...  

Abstract Abstract 5109 Thymic stromal lymphopoietin (TSLP), a cytokine produced by epithelial cells promotes early B-cell development and activates dendritic cells. It has recently been reported that a subset of B-cell precursor acute lymphoblastic leukemia (pre-B ALL) overexpresses the TSLP receptor CRLF2. CRLF2 overexpression is linked to translocations between sex chromosomes – localizing CRLF2 – and the immunoglobulin heavy chain locus on chromosome 14, or to an interstitial deletion on the gonosomes. Both events, translocation and deletion juxtapose CRLF2 to a different promoter (IgH or P2RY8). Performing quantitative real-time PCR we tested pre-B ALL and acute myeloid leukemia (AML) cell lines for overexpression of CRLF2. AML cell lines were included in the screening because we knew from an earlier TSLP project that the AML cell line MUTZ-3 is TSLP-responsive, and thus positive for the cytokine receptor. Three of 63 (5%) pre-B ALL cell lines tested (INC, MHH-CALL4, MUTZ-5) overexpressed CRLF2 mRNA. CRLF2-high cell lines carry a t(14;Y). With respect to the 58 AML cell lines tested: some expressed CRLF2 mRNA, but none of them rivalled the aforementioned pre-B cell lines. Pre-B ALL cell lines show the association between chromosomal CRLF2 aberrations and JAK2 pseudokinase domain mutations that has been described for primary pre-B ALL cells: cell lines MHH-CALL4 (JAK2I682F) and MUTZ-5 (JAK2R683G) and – newly described - also the CRLF2-high pre-B ALL cell line INC express a mutated version of Janus kinase 2 (JAK2R683G). We established a PCR based assay system that allowed for the rapid detection of the JAK2R683G mutation: none of the CRLF2-low or –negative pre-B ALL cell lines exhibited this mutation. All three CRLF2-high/JAK2mu cell lines showed high phosphorylation levels of the JAK2 downstream target STAT5. Inhibition of the JAK kinase led to dephosphorylation of STAT5. However, repression of 3H-thymidine uptake and induction of apoptosis by inhibition of the JAK2/STAT5 pathway was weaker in the JAK2mu pre-B ALL cell lines than in the JAK2V617F positive essential thrombocythemia-derived cell line SET-2. Provided that these results reflect the situation in primary cells, mutated JAK2 seems to be of lesser importance for growth and survival of pre-B ALL cells than for cells from myeloproliferative neoplasms. The CRLF2-high/JAK2mu cell lines INC, MHH-CALL4 and MUTZ-5 are promising model systems for the study of the roles of high-level CRLF2 expression and of JAK2 mutations in pre-B ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4427-4427 ◽  
Author(s):  
Haiying Qin ◽  
Waleed Haso ◽  
Sang Minh Nguyen ◽  
Terry J Fry

Abstract Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Despite advances in upfront therapy, relapsed and refractory ALL remains a primary cause of cancer-related mortality in children. Immunotherapy using genetically engineered T cells expressing chimeric antigen receptors (CARs) targeting CD19 has demonstrated dramatic clinical results in children and young adults with pre-B cell ALL with a 70-90% complete remission rate in multiple clinical trials. However, not all patients respond and at least 10% of patients will relapse due to loss of the targeted CD19 epitope. CD22 is another pan-B cell surface antigen that is broadly expressed on ALL blasts and has been targeted successfully using immunoconjugates. We have recently developed a highly active CD22 CAR currently being tested in a clinical trial. Conceptually, dual targeting both CD19 and CD22 on Pre-B ALL with a single bispecific CAR may result in enhanced avidity and increased T cell activation which may result in additive or synergistic responses compared to targeting a single antigen. In addition, since there are heterogeneous expression levels of CD19 and CD22 on leukemic blasts, dual targeting may also provide a more broadly active therapy. Finally, simultaneously targeting of both CD19 and CD22 on the surface of pre-B cell ALL may reduce the likelihood of antigen escape due to downregulation or deletion. We describe the preclinical development of two novel CD19 and CD22 bispecific CARs assembled with CD19 and CD22 single chain fragment variable regions (scFv) binding domains on a single construct. T cells transduced the CD19/CD22 bispecific CARs have comparable CAR surface expression when compared to T cells expressing either the CD19 or CD22 CAR. T cells expressing the bispecific CAR are active in vitro against ALL cell lines expressing both CD19 and CD22 as measured by interferon gamma production and chromium release. In vitro activity is maintained against K562 cells expressing either CD19 or CD22 alone. Interestingly, the order and the linker between the CD19 and CD22 scFvs in the CAR construct has a major impact on the efficacy of the dual CAR with a membrane-distal CD22 binding scFv demonstrating improved efficacy. Finally, in xenograft models both bi-specific CARs efficiently eradicate ALL cell lines and patient derived xenografts. In vivo treatment of a Crisper-knockdown-CD19-negative leukemia line and a CD19-negative patient-derived xenograft is ongoing. In summary, CD19/CD22 bispecific CARs demonstrate robust pre-clinical activity against pre-B cell ALL and provides a strategy to improve the clinical efficacy of CAR therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document