miRNA29a Regulates Oncogenic SKI Expression in Acute Myeloid Leukemia (AML).

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1968-1968
Author(s):  
Sabine Teichler ◽  
Thomas Illmer ◽  
Thorsten Stiewe ◽  
Josephine Roemhild ◽  
Andreas Neubauer

Abstract Abstract 1968 Poster Board I-991 Introduction: AML patients with deletion of chromosome 7 (−7) or deletion of 7q (−7q) have a poor prognosis. We have found that the nuclear oncogene SKI is overexpressed in AML, especially in AML with −7/−7q. SKI acts in AML as a repressor of retinoic acid induced myeloid differentiation (Ritter et al., (2006) Leukemia). As we found SKI up regulated in AML, we asked how SKI expression may be regulated. The aim of our study was to find a molecular background for increased SKI level. On chromosome 7 is a cluster of micro-RNAs (miRNAs) localized particularly around the fragile site 7q32 (Calin et al., (2003) PNAS). Therefore we investigated whether there exists a link between expression of miRNAs localized on chromosome 7 and up regulation of SKI expression in AML. Methods: We used micro RNA profiling analysis, FACS, Western blot, RQ-PCR and luciferase assays to determine the role of miRNA29a in regulating SKI expression. Results: We found that the expression of miRNA25, miRNA29a, miRNA183 and miRNA335 was downregulated in AML patients with -7/-7q. Transfection studies with these four miRNAs in HL60 cells revealed in FACS that miRNA29a inhibits SKI expression (60,4%) compared to nonsense control (100%) and other miRNAs (miRNA25: 91%, miRNA183: 101%, miRNA335: 93%). Western blot experiments confirmed that miRNA29a reduces SKI level in HL60 cells. In keeping, miRNA29a also represses expression of the SKI target gene Nr-CaM in IFB melanoma cells. Knock down of miRNA29a using miRNA29a inhibitor molecules induces SKI expression in the high miRNA29a and low SKI expressing cell line NW1539. Luciferase assays in NW1539 and HeLa transfected with 3′UTR-constructs and HeLa cells cotransfected with miRNA29a demonstrated that miRNA29a binds to 3′UTR of SKI in vitro. Furthermore, comparison of SKI and miRNA29a expression of AML patient samples indicates that miRNA29a expression is associated with low SKI level in vivo. Conclusion: Our data show that miRNA29a which is located on 7q32 regulates expression of the oncogene SKI in vitro and in vivo. We suggest the deletion of miRNA29a as mechanism for up regulation of SKI in AML with -7/-7q and thus propose that in AML, this effect may contribute to the tumor suppressive function of miRNA29a. Disclosures: No relevant conflicts of interest to declare.

2019 ◽  
Vol 126 (2) ◽  
pp. 403-412
Author(s):  
Esther Barreiro ◽  
Antonio Sancho-Muñoz ◽  
Ester Puig-Vilanova ◽  
Anna Salazar-Degracia ◽  
Sergi Pascual-Guardia ◽  
...  

Quadriceps muscle weakness and wasting are common comorbidities in chronic obstructive pulmonary disease (COPD). Micro-RNA expression upregulation may favor muscle mass growth and differentiation. We hypothesized that the profile of muscle-enriched micro-RNAs in cultured myotubes differs between patients with COPD of a wide range of body composition and healthy controls and that expression levels of those micro-RNAs from patients with COPD and controls differ between in vivo and in vitro conditions. Twenty-nine patients with COPD [ n = 15 with muscle wasting and fat-free mass index (FFMI) 15 kg/m2 and n = 14 with normal body composition and FFMI 18 kg/m2] and 10 healthy controls (FFMI 19 kg/m2) were consecutively recruited. Biopsies from the vastus lateralis muscle were obtained in all study subjects. A fragment of each biopsy was used to obtain primary cultures, in which muscle cells were first proliferated to be then differentiated into actual myotubes. In both sets of experiments (in vivo biopsies and in vitro myotubes) the following muscle-enriched micro-RNAs from all the study subjects were analyzed using quantitative real-time PCR amplification: micro-RNA (miR)-1, miR-133a, miR-206, miR-486, miR-29b, miR-27a, and miR-181a. Whereas the expression of miR-1, miR-206, miR-486, and miR-29b was upregulated in the muscle biopsies of patients with COPD compared with those of healthy controls, levels of none of the studied micro-RNAs in the myotubes (primary cultured cells) significantly differed between patients with COPD and the controls. We conclude from these findings that environmental factors (blood flow, muscle metabolism, and inflammation) taking place in vivo (biopsies) in muscles may account for the differences observed in micro-RNA expression between patients with COPD and controls. In the myotubes, however, the expression of the same micro-RNAs did not differ between the study subjects as such environmental factors were not present. These findings suggest that therapeutic strategies should rather target environmental factors in COPD muscle wasting as the profile of micro-RNA expression in myotubes was similar in patients to that observed in the healthy controls. NEW & NOTEWORTHY Environmental factors taking place in vivo (biopsies) in the muscles may explain differences observed in micro-RNA expression between patients with chronic obstructive pulmonary disease (COPD) and controls. In the myotubes, however, the expression of the same micro-RNAs did not differ between the study subjects as such environmental factors were not present. These findings suggest that therapeutic strategies should rather target environmental factors in COPD muscle wasting and cachexia as micro-RNA expression profile in myotubes was similar between patients and controls.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5198-5198
Author(s):  
Ping Liu ◽  
Dan Ma ◽  
Jishi Wang

Background: Acute lymphoblastic leukaemia (ALL) is one of the most common clonal malignant diseases in children, and it stems from unchecked proliferation of lymphoid progenitor cells. Glucocorticoids (GCs) such as prednisolone and dexamethasone are used as a chemotherapeutic drug in the treatment of ALL. GC-induced cell mortality is first mediated by the activation of glucocorticoid receptor (GR), followed by its translocation into the nucleus to activate or inhibit gene transcription. However, up to ~20% patients with leukemia relapse and become resistant to GCs. Therefore, a better understanding the molecular basis of chemoresistance in ALL would provide novel therapeutic opportunities for patients. Methods: By analyzing the published mRNA expression profiles (GSE5280; GSE94302) obtained from NCBI (https://www.ncbi.nlm.nih.gov/geo/), we found that higher expression of ANXA1 was significantly associated with decreased overall survival of ALL patients. We also examined the expression of ANXA1 at mRNA and protein levels in a variety of ALL cell lines by using qRT-PCR and western blot analyses. The mRNA and protein expression of ANXA1 in ALL cell lines and patients were determined using Real-time PCR and Western blot respectively. Functional assays, such as CCK-8, FACS, and Tunel assay used to determine the oncogenic role of ANXA1 in ALL progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of ANXA1 promotes chemoresistance in ALL cells. Results: The expression of ANXA1 was markedly upregulated in ALL cell lines and patients, and high ANXA1 expression was associated with relapsed/refractory ALL patients. ANXA1 overexpression confers glucocorticoids (GCs) resistance on ALL cells; however, down-regulated of ANXA1 sensitized ALL cell lines to GC both in vitro and in vivo. Additionally, ANXA1 upregulated the levels of FPRs by promoting Wnt/β-catenin signalling. Conclusions: Our findings provided evidence that ANXA1 is a potential therapeutic target for patients with ALL. Targeting ANXA1 signaling may be a promising strategy to enhance GC response during ALL chemo-resistance. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3264-3264
Author(s):  
Enzi Jiang ◽  
Eugene Park ◽  
Cu Nguyen ◽  
James Yoon ◽  
Yao-Te Hsieh ◽  
...  

Abstract Abstract 3264 Survivin, an inhibitor of apoptosis protein (IAP) family, has been associated with poor prognosis in cancer including leukemia. Survivin can be downregulated in colon cancer cells by inhibition of the β-catenin/Creb-binding protein (CBP) interaction using ICG-001, a small molecule specific inhibitor of the β-catenin/CBP interaction. We have shown previously that combined ICG-001 and chemotherapy can downregulate Survivin and sensitize ALL cells to chemotherapy in vitro and in a pilot study in vivo. In this study, we determine the CBP interaction with ICG-001 in primary ALL cells and preclinically evaluate ICG-001 in vitro and in vivo as an adjuvant against primary ALL and. For this purpose, primary ALL cells were co-cultured with OP9 cells and treated for 4 days with ICG-001 (10mM, 20mM) or DMSO as vehicle control. Mean viability (trypan blue exclusion) of cells treated with ICG-001 was significantly lower (ICG-001 10mM: 75.12% ± 3.15%; 20mM: 41.18%± 7.88%) compared to cells treated with DMSO (84.99% ± 0.42%) (% cell viability relative to initial control) (p=0.03). Real time RT-PCR showed ICG-001 dose-dependent downregulation of Survivin in ALL compared to control (ICG10mM vs. control: p=0.0037 and 20mM vs. control: p=0.0031). Immunoblotting demonstrated reduction of Survivin after ICG-001 treatment. Primary ALL cells incubated with a combination of VDL (Vincristine, Dexamethasone and L-Asparaginase) and ICG-001 showed decreased viability (28.7%± 4.9%) versus VDL only (79.3%± 13.6%) (p=0.014) determined by MTT assay. To elucidate if ICG-001 interacts with β-catenin/CBP as shown previously in colon cancer, we analyzed ten primary pre-B ALL cells and found significantly greater γ-catenin and Survivin expression versus normal pre-B-Cells. β-catenin was absent or in some cases expressed only weakly. Expression of v-catenin and b-catenin in ALL xenograft cells were detected by Western blot. One primary ALL was selected and incubated with γ-catenin and β-catenin siRNA for 48hrs, followed by 6hrs incubation with Wnt3a. Wnt3a induced both of γ-catenin and β-catenin expression. Survivin was reduced by γ-catenin siRNA but not β-catenin siRNA treatment. Addition of Wnt3a partially recovered the decrease of Survivin. In addition, Survivin was knocked down in primary ALL using shRNA and non-silencing shRNA control or ICG-001 (2uM) and DMSO control. Western blot analysis showed that survivin shRNA or ICG-001 treatment lead to downregulation of Survivin and γ-catenin. Using a ChIP assay we could demonstrate occupancy of TCF4 and CBP association at the Survivin promoter, which was not altered by ICG-001 in primary ALL. Moreover, ICG-001 treatment of primary ALL cells prevents CBP but not p300 occupancy. For further preclinical in vivo evaluation of ICG-001, one Philadelphia chromosome positive ALLs (Ph+) and two Ph− primary ALL were injected into sublethally irradiated NOD/SCID IL2Rγ−/-mice and treated with ICG-001 (50mg or 100mg/kg/day per subcutaneous miniosmotic pump) with or without chemotherapy including VDL for Ph− ALL (per intraperitoneal injections) or Nilotinib for Ph+ ALL (per os). For analysis we pooled the survival of all three primary leukemias. The saline control group (n=10) (MST= 55.5.days) and the ICG-001 only groups (n=3) (MST=61 days) died rapidly. The group treated with chemotherapy (n=13) had a median survival time (MST) of 85 days. In marked contrast, the group treated with the combined chemotherapy+ICG-001 (n=15) lived significantly longer (MST=100) (p<0.05). Taken together, our data shows that Survivin transcription can be mediated by γ-catenin in primary ALL and that targeting CBP/γ-catenin by using ICG-001 ALL can sensitize ALL cells to chemotherapy in vitro and in vivo. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 50 (2) ◽  
pp. 83-105 ◽  
Author(s):  
K. Voglova ◽  
J. Bezakova ◽  
Iveta Herichova

AbstractMicro RNAs (miRNAs) are small regulatory molecules of increasing biologists’ interest. miRNAs, unlikely mRNA, do not encode proteins. It is a class of small double stranded RNA molecules that via their seed sequence interact with mRNA and inhibit its expression. It has been estimated that 30% of human gene expression is regulated by miRNAs. One miRNA usually targets several mRNAs and one mRNA can be regulated by several miRNAs. miRNA biogenesis is realized by key enzymes, Drosha and Dicer. miRNA/mRNA interaction depends on binding to RNA-induced silencing complex. Today, complete commercially available methodical proposals for miRNA investigation are available. There are techniques allowing the identification of new miRNAs and new miRNA targets, validation of predicted targets, measurement of miRNAs and their precursor levels, and validation of physiological role of miRNAs under in vitro and in vivo conditions. miRNAs have been shown to influence gene expression in several endocrine glands, including pancreas, ovary, testes, hypothalamus, and pituitary.


2021 ◽  
Author(s):  
Benoit Forget ◽  
Elena Martin Garcia ◽  
Arthur Godino ◽  
Laura Domingo Rodriguez ◽  
Vincent Kappes ◽  
...  

The persistent and experience-dependent nature of drug addiction may result in part from epigenetic alterations, including non-coding micro-RNAs (miRNAs), which are both critical for neuronal function and modulated by cocaine in the striatum. Two major striatal cell populations, the striato-nigral and striato-pallidal projection neurons, express respectively the D1 (D1-SPNs) and D2 (D2-SPNs) dopamine receptor, and display distinct but complementary functions in drug-evoked responses. However, a cell-type-specific role for miRNAs action has yet to be clarified. Here, we evaluated the expression of a subset of miRNAs proposed to modulate cocaine effects in the nucleus accumbens (NAc) and dorsal striatum (DS) upon sustained cocaine exposure in mice and showed that these selected miRNAs were preferentially up-regulated in the NAc. We then focused on miR-1 considering the important role of some of its predicted mRNA targets, such as fosb and npas4, in the effects of cocaine. We validated these targets in vitro and in vivo and further showed that overexpression of miR-1 in D1-SPNs of the DS reduced cocaine-induced CPP reinstatement, whereas it increased cue-induced reinstatement of cocaine-SA, without affecting other cocaine-mediated adaptive behavior. In addition, miR-1 overexpression in D2-SPNs of the DS reduced the motivation to self-administer cocaine but did not modify other measured behaviors. Together, our results highlight a precise cell-type- and region-specific control of relapse to cocaine-seeking behaviors by miR-1, and illustrate the importance of cell-specific investigations.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


2019 ◽  
Vol 16 (3) ◽  
pp. 175-180
Author(s):  
Fengjin Hao ◽  
Yueqin Feng ◽  
Yifu Guan

Objective: To verify whether the botulinum toxin heavy chain HCS has specific neuronal targeting function and to confirm whether TAT-EGFP-LC has hydrolyzable SNAP-25 and has transmembrane biological activity. Methods: We constructed the pET-28a-TAT-EGFP-HCS/LC plasmid. After the plasmid is expressed and purified, we co-cultured it with nerve cells or tumors. In addition, we used Western-Blot to identify whether protein LC and TAT-EGFP-LC can digest the protein SNAP-25. Results: Fluorescence imaging showed that PC12, BV2, C6 and HeLa cells all showed green fluorescence, and TAT-EGFP-HCS had the strongest fluorescence. Moreover, TAT-EGFP-LC can hydrolyze intracellular SNAP-25 in PC12 cells, C6 cells, BV2 cells and HeLa, whereas LC alone cannot. In addition, the in vivo protein TAT-EGFP-HCS can penetrate the blood-brain barrier and enter mouse brain tissue. Conclusion: TAT-EGFP-HSC expressed in vitro has neural guidance function and can carry large proteins across the cell membrane without influencing the biological activity.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


2021 ◽  
pp. 096032712110237
Author(s):  
L Zhou ◽  
S Li ◽  
J Sun

Endometrial cancer (EC) is the fourth most common malignancy in women in developed countries. The prognosis of EC is extremely poor, and it is an important factor that contributes to the death of patients. Therefore, studying EC pathogenesis and therapeutic targets, and exploring effective drugs are the primary tasks to improve the prognosis of EC. In the present study, we aimed to explore the function of ginkgolic acid (GA) in EC cell apoptosis and autophagy through PI3K/Akt/mTOR signal pathway in vitro and in vivo. Firstly, MTT assay and clone formation assay were employed to analyze the Ishikawa and HEC-1-B cell viabilities and proliferation after treatment with GA. The results showed that GA inhibited endometrial cancer cell survival. Flow cytometry assay and western blot assay were applied to examine the apoptosis and apoptosis related protein Bcl-2, Bax, Cleaved caspase-3 expression levels of Ishikawa and HEC-1-B cells after treatment with GA. Next, we applied western blot assay to analyze the autophagy associated proteins LC3I, LC3II, p62 and Beclin-1 in GA treated Ishikawa and HEC-1-B cells. We found that GA promoted apoptosis and induced autophagy of endometrial cancer cells. Meanwhile, western blot assay was also used to determine the expression levels of the PI3K/Akt/mTOR signal pathway related protein and the results revealed that GA inhibited the activity of PI3K/Akt/mTOR pathway. Finally, we found that GA inhibited tumor growth in vivo through immunohistochemistry assay. In conclusion, GA induces apoptosis and autophagy of EC cells via inhibiting PI3K/Akt/mTOR pathway in vivo and vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ning Zhou ◽  
Lei Wang ◽  
Ping Fu ◽  
Zihao Cui ◽  
Yuhang Ge ◽  
...  

Abstract Background Oligovascular niche mediates interactions between cerebral endothelial cells and oligodendrocyte precursor cells (OPCs). Disruption of OPC-endothelium trophic coupling may aggravate the progress of cerebral white matter injury (WMI) because endothelial cells could not provide sufficient support under diseased conditions. Endothelial progenitor cells (EPCs) have been reported to ameliorate WMI in the adult brain by boosting oligovascular remodeling. It is necessary to clarify the role of the conditioned medium from hypoxic endothelial cells preconditioned EPCs (EC-pEPCs) in WMI since EPCs usually were recruited and play important roles under blood-brain barrier disruption. Here, we investigated the effects of EC-pEPCs on oligovascular remodeling in a neonatal rat model of WMI. Methods In vitro, OPC apoptosis induced by the conditioned medium from oxygen-glucose deprivation-injured brain microvascular endothelial cells (OGD-EC-CM) was analyzed by TUNEL and FACS. The effects of EPCs on EC damage and the expression of cytomokine C-X-C motif ligand 12 (CXCL12) were examined by western blot and FACS. The effect of the CM from EC-pEPCs against OPC apoptosis was also verified by western blot and silencing RNA. In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia and treated with EPCs or EC-pEPCs at P7, and then angiogenesis and myelination together with cognitive outcome were evaluated at the 6th week. Results In vitro, EPCs enhanced endothelial function and decreased OPC apoptosis. Meanwhile, it was confirmed that OGD-EC-CM induced an increase of CXCL12 in EPCs, and CXCL12-CXCR4 axis is a key signaling since CXCR4 knockdown alleviated the anti-apoptosis effect of EPCs on OPCs. In vivo, the number of EPCs and CXCL12 protein level markedly increased in the WMI rats. Compared to the EPCs, EC-pEPCs significantly decreased OPC apoptosis, increased vascular density and myelination in the corpus callosum, and improved learning and memory deficits in the neonatal rat WMI model. Conclusions EC-pEPCs more effectively promote oligovascular remodeling and myelination via CXCL12-CXCR4 axis in the neonatal rat WMI model.


Sign in / Sign up

Export Citation Format

Share Document