Dual Inhibition of Phosphatidylinositol 3-Kinase and Mammalian Target of Rapamycin with NVP-BEZ235 as a New Therapeutic Option for T-Cell Acute Lymphoblastic Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2025-2025
Author(s):  
Francesca Chiarini ◽  
Cecilia Grimaldi ◽  
Francesca Ricci ◽  
Pierluigi Tazzari ◽  
Camilla Evangelisti ◽  
...  

Abstract Abstract 2025 Poster Board II-2 Introduction: Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL) where it strongly influences cell proliferation and survival. Pathway activation could be due to several reasons which include Notch1 activation leading to HES1-mediated transcriptional suppression of PTEN gene, PTEN phosphorylation or oxidation, and inactivation of SHIP1 phosphatase. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. Rapamycin and its analogues have shown some promising effects in pre-clinical models of T-ALL. However, mTOR inhibitors are mainly cytostatic and could hyperactivate Akt due to the existence of feedback loops between mTOR, p70 S6 kinase, PI3K, and Akt. Recently, dual PI3K/mTOR inhibitors have been synthesized. Here, we have analyzed the therapeutic potential of the novel, dual PI3K/mTOR inhibitor, NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. Methods and Patients: We employed a panel of cell lines with up-regulated PI3K/Akt/mTOR signaling, including CEM-R cells [which overexpress high levels of the membrane transporter, 170-kDa P-glycoprotein (P-gp)], MOLT-4 and CEM-S cells (which lack PTEN expression), Jurkat cells (which do not express both PTEN and SHIP1), and RPMI-8402 and BE-13 cells. MOLT-4, CEM, and Jurkat cells have a non-functional p53 pathway. Moreover, both Jurkat and MOLT-4 cells have aberrant Notch1 signaling. Patients samples displayed pathway activation as documented by increased levels of p-Akt, p-4E-BP1, and p-S6 ribosomal protein, as well as low/absent PTEN expression. Results: NVP-BEZ235 was cytotoxic to the panel of cell lines as documented by MTT assays. NVP-BEZ235 IC50 ranged from 80 to 280 nM at 24 h. A comparison between NVP-BEZ235 and the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class with the same targets, demonstrated that NVP-BEZ235 was more effective than PI-103 when employed at equimolar concentrations. NVP-BEZ235 did not significantly affect the proliferation of peripheral blood T-lymphocytes from healthy donors stimulated with phytohemagglutinin and interleukin-2, whereas it blocked leukemic cells in the G1 phase of the cell cycle, and this was accompanied by decreased levels of phosphorylated Retinoblastoma protein. NVP-BEZ235 treatment also resulted in apoptotic cell death (about 20-30% at 6 h of exposure, when employed at 200 nM), as documented by Annexin V/propidium iodide staining and cytofluorimetric analysis. Moreover, NVP-BEZ235 activated caspase-8 and caspase-3, as demonstrated by western blot. Western blot documented a dose- and time-dependent dephosphorylation of Akt and its downstream target, GSK-3β, in response to NVP-BEZ235. mTOR downstream targets were also efficiently dephosphorylated, including p70S6 kinase, S6 ribosomal protein, and 4E-BP1. Remarkably, NVP-BEZ235 targeted the side population (SP, identified by Hoechst 33342 staining and ABCG2 expression) of T-ALL cell lines, which might correspond to leukemia initiating cells, and synergized with several chemotherapeutic agents (dexamethasone, vincristine, cyclophosphamide, Ara-C) currently employed for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by co-culturing with MS-5 stromal cells which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic (IC50: 10-15 nM at 96 h) to primary lymphoblasts from patients with T-ALL, where the drug dephosphorylated 4E-BP1, at variance with rapamycin. Of note, NVP-BEZ235 targeted the SP also in T-ALL patient samples. Conclusions: NVP-BEZ235 was cytotoxic to T-ALL cell lines and patient lymphoblasts (including SP cells) at concentrations that have been previously reported to be achievable in vivo. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with other drugs, may serve as an efficient treatment towards T-ALL cells (including those overexpressing P-gp and independently from p53 status) which require upregulation of this signaling pathway for their survival and growth. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1921-1921 ◽  
Author(s):  
Francesca Chiarini ◽  
Federica Fala ◽  
Francesca Ricci ◽  
PierLuigi Tazzari ◽  
Annalisa Astolfi ◽  
...  

Abstract Constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukaemia (T-ALL). Recently, it was demonstrated that activated Notch-1 leads to constitutive activation of the PI3K/Akt/mTOR pathway by HES1-mediated transcriptional suppression of the PTEN gene. In addition, PTEN is mutated in about 20% of T-ALL patients, and virtually all T-ALL cell lines that are resistant to Notch-1 inhibition with γ-secretase inhibitors, contain mutations leading to either no or low PTEN expression. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signalling in T-ALL is still limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have characterized PI3K/Akt/mTOR signalling in T-ALL cell lines (Jurkat, MOLT-4, CEM) lacking PTEN expression, including one (CEM-R) which over expresses high levels of the membrane transporter, 170-kDa P-glycoprotein (P-gp), one of the main determinants of multidrug-resistance. While MOLT-4 cells display wild-type p53, both Jurkat and CEM have a non-functional p53 pathway. Moreover, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor, PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples. T-ALL cell lines expressed p110α, p110β, p110γ, and p110α PI3K. Moreover, they expressed Akt1 and Akt2, both of which were found to be constitutively phosphorylated on Ser 473 and Ser 474, respectively, by immunoprecipitation experiments. Treatment of T-ALL cell lines with selective pharmacological inhibitors of p110 PI3K isoforms, demonstrated that only a p110α PI3K inhibitor (PIK75) was cytotoxic, resulting in a 40–50% reduction of cell growth when used at 2 μM. Consistently, only PIK75 induced Akt1 and Akt2 dephosphorylation on Ser 473 or Ser 474, respectively, hinting that p110α is the most important isoform for the activation of downstream signalling events. PI-103 was cytotoxic to all T-ALL cell lines including P-gp overexpressing cells, as it reduced cell growth by approximately 70% when employed at 2 μM for 24 h. PI-103 IC50 ranged from 0.5 to 1.0 μM at 24 h. PI-103 treatment resulted in apoptotic cell death (about 30% at 6 h of exposure, when employed at 0.75 μM), as demonstrated by Annexin V/propidium iodide staining and cytofluorimetric analysis. PI-103 caused both Akt1 and Akt2 dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase (GSK) -3β. Also mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. Moreover, PI-103 resulted in lower levels of c-Myc expression. PI-103 activated caspase-3, -8, and -9. In contrast, an mTOR inhibitor (rapamycin) was less cytotoxic than PI-103 (25–30% reduction of cell growth at 100 nM after 24 h), blocked cells in the G1 phase of the cell cycle, and was much less effective in inducing apoptosis (about 5% at 6 h of treatment). Remarkably, rapamycin was almost completely ineffective against CEM-R cells. A combination consisting of PIK75 and rapamycin was less cytotoxic to T-ALL cell lines than PI-103 alone. Furthermore, rapamycin treatment, at variance with PI-103, resulted in an overactivation of the Akt/ GSK-3β axis, as documented by increased phosphorylation levels of both Akt and GSK- 3β. PI-103 was also cytotoxic to primary lymphoblasts from patients with T-ALL (IC50: 0.15 nM at 96 h), displaying constitutive phosphorylation of Akt and 4E-BP1, as well as low/absent PTEN expression. These data indicate that multi-targeted therapy towards PI3K and mTOR, may serve as an efficient treatment towards T-ALL cells (including those over expressing P-gp and independently from p53 state) which require upregulation of PI3K/Akt/mTOR signaling for their survival and growth.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3646-3646
Author(s):  
Saara Laukkanen ◽  
Thomas Liuksiala ◽  
Matti Nykter ◽  
Merja Heinäniemi ◽  
Olli Lohi

Abstract Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and one of the leading causes of death in children with tumors. Genetic changes in T-cell acute lymphoblastic leukemia (T-ALL) are relatively well known, but the underlying molecular processes driving the disease remain insufficiently understood. Better knowledge of molecular events in T-ALL would improve our understanding of the development and maintenance of the disease and could also lead to the development of targeted and more effective treatments. We have compiled a large gene expression data-set from microarray studies of various hematological and lymphoid malignancies and healthy tissues that use a uniform technical platform (Affymetrix HG U133 Plus 2.0) (see abstract by Liuksiala et al). Data-set includes 1302 healthy samples and 4418 leukemia samples: 1713 acute myeloid leukemias, 1648 precursor B-ALLs, 801 chronic lymphocytic leukemias, 385 T-ALLs, and 215 chronic myeloid leukemias. From this data-set, we identified a number of transcription factors (TFs) that were differentially expressed in T-ALL, including high expression of NOTCH1 and BCL11B as previously reported (Weng et al Science 2004; Gutierrez et al Blood 2011). Several novel candidate TFs with specific expression in T-ALLs were also discovered, including strong expression of two poorly characterized TFs, SIX6 and PCBP3. These findings were validated using real-time quantitative PCR (RT-qPCR) in a cell line panel consisting of T-ALL and pre-B-ALL cell lines as well as healthy controls. We next sought to identify novel drug targets in T-ALL by comparing our leukemia expression data-set with the therapeutic target database (TTD). TTD is a database providing information about the known and explored therapeutic protein and nucleic acid targets, and the corresponding drugs aimed at these targets. We identified high expression of a nicotinic acetylcholine receptor (nAChR) subunit CHRNA3 (cholinergic receptor, nicotinic, alpha 3), which is a target of nAChR inhibitor bupropion. RT-qPCR confirmed the high expression of CHRNA3 in T-ALL cell lines but not in pre-B-ALL cells or healthy controls. The effect of bupropion was tested in Jurkat cells which represent T-ALL cell line with high expression of CHRNA3. Increasing concentrations of bupropion (1-100µM) resulted in dose-dependent decrease in proliferation of Jurkat cells as measured by cell viability assay AlamarBlue. As a control, cell lines with low level of CHRNA3 expression (CCRF-CEM and REH) were treated as well but these cells did not show any changes in the rate of proliferation. In summary, we have identified several candidate transcription factors which could have a leukemic role in T-ALL. Furthermore, we identified high expression of CHRNA3 in T-ALL, suggesting a role for the cholinergic system in T-cell leukemia, and thus a novel avenue in search of putative therapeutic options. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3242-3242
Author(s):  
Camilla Evangelisti ◽  
Francesca Chiarini ◽  
Francesca Ricci ◽  
Pierluigi Tazzari ◽  
Andrea Pession ◽  
...  

Abstract Abstract 3242 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia characterized by uncontrolled proliferation of lymphoblasts committed to the T-cell lineage. Despite improvements in therapy, 25% of children and 50%–70% of adults with T-ALL relapse and develop a polychemotherapy-resistant disorder, which carries a poor prognosis. Thus, major efforts are being made to develop targeted molecules against deregulated signaling pathways that sustain T-ALL cell growth and survival. The mTOR serine/threonine kinase belongs to two separate multi-protein complexes, referred to as mTORC1 and mTORC2. The mTORC1 complex, which is inhibited by rapamycin/rapalogs, controls mRNA translation through the phosphorylation of the translation repressor 4E-BP1, while mTORC2 could be involved in regulating proliferation and survival through phosphorylation of Akt on Ser 473. mTORC2 is usually considered to be rapamycin-resistant. Both mTORC1 and mTORC2 are activated in most of T-ALL patients underscoring these complexes as major targets for T-ALL treatment. However, the allosteric inhibition of mTORC1 by rapamycin/rapalogs has only modest effects in T-ALL cells. This could be due, among other things, to the fact that rapamycin/rapalogs are mainly cytostatic and do not dephosphorylate 4E-BP1 in preclinical models of T-ALL. Recently, however, ATP-competitive inhibitors specific for the mTOR kinase active site have been synthesized. These compounds target both mTORC1 and mTORC2 and are more active than rapamycin/rapalogs against p-4E-BP1. Here, we have explored the therapeutic potential of two active-site mTOR inhibitors, PP-242 and OSI-027, against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. OSI-027 is being now tested in clinical trials in patients with solid malignancies. PP-242 and OSI-027 affected T-ALL cell line viability as documented by MTT assays. IC50 for PP-242 ranged from 0.15 to 0.50 μM at 24 hours, whereas OSI-027 was less potent (IC50 ranging from 0.6 to 1.3 μM at 48 h). Of note, both the drugs were effective against CEM T-ALL cells overexpressing 170-kDa P-glycoprotein, one of the major determinants of drug-resistance. Overall, PP-242 was slightly more powerful than the dual PI3K/mTOR inhibitor, PI-103, whose IC50 ranged from 0.2 to 1.0 μM. When T-ALL patient samples were examined, PP-242 displayed an IC50 of 0.5–1.0 μM, while the IC50 for OSI-027 ranged between 2.3 and 4.8 μM. Both the inhibitors affected to a much lower extent the proliferation of peripheral blood T-lymphocytes from healthy donors stimulated with phytohemagglutinin and interleukin-2. Remarkably, PP-242 targeted the side population of T-ALL cell lines, which might correspond to leukemic stem cells. The drugs induced both cell cycle arrest in G0/G1 phase and apoptosis, as documented by flow cytometric analysis, western blot analysis for cleaved caspase-3, and transmission electron microscopy. Western blot analysis demonstrated that the inhibitors induced a dose- and time-dependent dephosphorylation of Akt on Ser 473 (indicative of mTORC2 inhibition) as well as a dephosphorylation of mTORC1 downstream targets including Thr 389 p70S6 kinase, Ser 235/236 S6 ribosomal protein, Thr 37/46 4E-BP1, and Ser 209 eIF4E. Also a dephosphorylation of the Akt downstream target GSK3β on Ser 21/9 was observed. In contrast, rapamycin failed to dephosphorylate Thr 37/46 4E-BP1 and Ser 209 eIF4E. At variance with rapamycin, we also found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors, as attested by a reduction in the incorporation of 3H-leucine and a shift from large to small polysomes.In MOLT-4 and Jurkat cells, the inhibitors, when used at subcytotoxic concentrations, strongly synergized with vincristine (combination index = 0.2–0.6), a traditional chemotherapeutic drug currently used for treating T-ALL patients, and with the Bcl-2 inhibitor, ABT-263 (combination index =0.15-0.19). In conclusion, both the inhibitors displayed a remarkable anti-leukemic activity through inhibition of mTORC1 and mTORC2 activity. The lower cytotoxicity against healthy T-lymphocytes ex-vivo suggests a favourable therapeutic index, which emphasizes the development of active-site mTOR inhibitors as clinical candidates for therapy in T-ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5197-5197
Author(s):  
Niroshaathevi Arumuggam ◽  
Nicole Melong ◽  
Catherine K.L. Too ◽  
Jason N. Berman ◽  
H.P. Vasantha Rupasinghe

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant disease that accounts for about 15% of pediatric and 25% of adult ALL. Although risk stratification has provided more tailored therapy and improved the overall survival of T-ALL patients, clinical challenges such as suboptimal drug responses, morbidity from drug toxicities, and drug resistance still exist. Plant polyphenols have therapeutic efficacy as pharmacological adjuvants to help overcome these challenges. They can be acylated with fatty acids to overcome issues concerning bioavailability, such as poor intestinal absorption and low metabolic stability. Phloridzin (PZ), a flavonoid found in apple peels, was acylated with an omega-3 fatty acid, docosahexaenoic acid (DHA), to generate a novel ester called phloridzin docosahexaenoate (PZ-DHA). The cytotoxic effect of PZ-DHA was studied in the human Jurkat T-ALL cell line. PZ-DHA significantly reduced the viability and cellular ATP levels of treated cells. PZ-DHA was found to selectively induce apoptosis in Jurkat cells, while sparing normal murine T-cells. Apoptosis was further confirmed by demonstrating the ability of PZ-DHA to induce morphological alterations, DNA fragmentation, caspase activation, and the release of intracellular lactate dehydrogenase. PZ-DHA also significantly inhibited cell division in Jurkat cells. Furthermore, interferon-α-induced phosphorylation of the transcription factor, STAT3, was downregulated following PZ-DHA treatment. The in vitro efficacy of PZ-DHA was recapitulated in vivo in an established zebrafish xenograft model, where the proliferation of transplanted Jurkat cells was inhibited when PZ-DHA was added to the embryo water. Overall, these findings provide evidence for PZ-DHA as a novel therapeutic agent with activity in T-ALL. Studies examining the effect of PZ-DHA on patient-derived ALL cells engrafted in zebrafish are currently underway. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document