PI-103, a Dual Inhibitor of Class IA Phosphatidylinositol 3-Kinase and Mammalian Target of Rapamycin, Has Cytotoxic Activity in T-Cell Acute Lymphoblastic Leukemia Cells: A New Therapeutic Strategy in T-Cell Acute Lymphoblastic Leukemia.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1921-1921 ◽  
Author(s):  
Francesca Chiarini ◽  
Federica Fala ◽  
Francesca Ricci ◽  
PierLuigi Tazzari ◽  
Annalisa Astolfi ◽  
...  

Abstract Constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukaemia (T-ALL). Recently, it was demonstrated that activated Notch-1 leads to constitutive activation of the PI3K/Akt/mTOR pathway by HES1-mediated transcriptional suppression of the PTEN gene. In addition, PTEN is mutated in about 20% of T-ALL patients, and virtually all T-ALL cell lines that are resistant to Notch-1 inhibition with γ-secretase inhibitors, contain mutations leading to either no or low PTEN expression. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signalling in T-ALL is still limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have characterized PI3K/Akt/mTOR signalling in T-ALL cell lines (Jurkat, MOLT-4, CEM) lacking PTEN expression, including one (CEM-R) which over expresses high levels of the membrane transporter, 170-kDa P-glycoprotein (P-gp), one of the main determinants of multidrug-resistance. While MOLT-4 cells display wild-type p53, both Jurkat and CEM have a non-functional p53 pathway. Moreover, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor, PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples. T-ALL cell lines expressed p110α, p110β, p110γ, and p110α PI3K. Moreover, they expressed Akt1 and Akt2, both of which were found to be constitutively phosphorylated on Ser 473 and Ser 474, respectively, by immunoprecipitation experiments. Treatment of T-ALL cell lines with selective pharmacological inhibitors of p110 PI3K isoforms, demonstrated that only a p110α PI3K inhibitor (PIK75) was cytotoxic, resulting in a 40–50% reduction of cell growth when used at 2 μM. Consistently, only PIK75 induced Akt1 and Akt2 dephosphorylation on Ser 473 or Ser 474, respectively, hinting that p110α is the most important isoform for the activation of downstream signalling events. PI-103 was cytotoxic to all T-ALL cell lines including P-gp overexpressing cells, as it reduced cell growth by approximately 70% when employed at 2 μM for 24 h. PI-103 IC50 ranged from 0.5 to 1.0 μM at 24 h. PI-103 treatment resulted in apoptotic cell death (about 30% at 6 h of exposure, when employed at 0.75 μM), as demonstrated by Annexin V/propidium iodide staining and cytofluorimetric analysis. PI-103 caused both Akt1 and Akt2 dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase (GSK) -3β. Also mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. Moreover, PI-103 resulted in lower levels of c-Myc expression. PI-103 activated caspase-3, -8, and -9. In contrast, an mTOR inhibitor (rapamycin) was less cytotoxic than PI-103 (25–30% reduction of cell growth at 100 nM after 24 h), blocked cells in the G1 phase of the cell cycle, and was much less effective in inducing apoptosis (about 5% at 6 h of treatment). Remarkably, rapamycin was almost completely ineffective against CEM-R cells. A combination consisting of PIK75 and rapamycin was less cytotoxic to T-ALL cell lines than PI-103 alone. Furthermore, rapamycin treatment, at variance with PI-103, resulted in an overactivation of the Akt/ GSK-3β axis, as documented by increased phosphorylation levels of both Akt and GSK- 3β. PI-103 was also cytotoxic to primary lymphoblasts from patients with T-ALL (IC50: 0.15 nM at 96 h), displaying constitutive phosphorylation of Akt and 4E-BP1, as well as low/absent PTEN expression. These data indicate that multi-targeted therapy towards PI3K and mTOR, may serve as an efficient treatment towards T-ALL cells (including those over expressing P-gp and independently from p53 state) which require upregulation of PI3K/Akt/mTOR signaling for their survival and growth.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2025-2025
Author(s):  
Francesca Chiarini ◽  
Cecilia Grimaldi ◽  
Francesca Ricci ◽  
Pierluigi Tazzari ◽  
Camilla Evangelisti ◽  
...  

Abstract Abstract 2025 Poster Board II-2 Introduction: Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL) where it strongly influences cell proliferation and survival. Pathway activation could be due to several reasons which include Notch1 activation leading to HES1-mediated transcriptional suppression of PTEN gene, PTEN phosphorylation or oxidation, and inactivation of SHIP1 phosphatase. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. Rapamycin and its analogues have shown some promising effects in pre-clinical models of T-ALL. However, mTOR inhibitors are mainly cytostatic and could hyperactivate Akt due to the existence of feedback loops between mTOR, p70 S6 kinase, PI3K, and Akt. Recently, dual PI3K/mTOR inhibitors have been synthesized. Here, we have analyzed the therapeutic potential of the novel, dual PI3K/mTOR inhibitor, NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. Methods and Patients: We employed a panel of cell lines with up-regulated PI3K/Akt/mTOR signaling, including CEM-R cells [which overexpress high levels of the membrane transporter, 170-kDa P-glycoprotein (P-gp)], MOLT-4 and CEM-S cells (which lack PTEN expression), Jurkat cells (which do not express both PTEN and SHIP1), and RPMI-8402 and BE-13 cells. MOLT-4, CEM, and Jurkat cells have a non-functional p53 pathway. Moreover, both Jurkat and MOLT-4 cells have aberrant Notch1 signaling. Patients samples displayed pathway activation as documented by increased levels of p-Akt, p-4E-BP1, and p-S6 ribosomal protein, as well as low/absent PTEN expression. Results: NVP-BEZ235 was cytotoxic to the panel of cell lines as documented by MTT assays. NVP-BEZ235 IC50 ranged from 80 to 280 nM at 24 h. A comparison between NVP-BEZ235 and the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class with the same targets, demonstrated that NVP-BEZ235 was more effective than PI-103 when employed at equimolar concentrations. NVP-BEZ235 did not significantly affect the proliferation of peripheral blood T-lymphocytes from healthy donors stimulated with phytohemagglutinin and interleukin-2, whereas it blocked leukemic cells in the G1 phase of the cell cycle, and this was accompanied by decreased levels of phosphorylated Retinoblastoma protein. NVP-BEZ235 treatment also resulted in apoptotic cell death (about 20-30% at 6 h of exposure, when employed at 200 nM), as documented by Annexin V/propidium iodide staining and cytofluorimetric analysis. Moreover, NVP-BEZ235 activated caspase-8 and caspase-3, as demonstrated by western blot. Western blot documented a dose- and time-dependent dephosphorylation of Akt and its downstream target, GSK-3β, in response to NVP-BEZ235. mTOR downstream targets were also efficiently dephosphorylated, including p70S6 kinase, S6 ribosomal protein, and 4E-BP1. Remarkably, NVP-BEZ235 targeted the side population (SP, identified by Hoechst 33342 staining and ABCG2 expression) of T-ALL cell lines, which might correspond to leukemia initiating cells, and synergized with several chemotherapeutic agents (dexamethasone, vincristine, cyclophosphamide, Ara-C) currently employed for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by co-culturing with MS-5 stromal cells which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic (IC50: 10-15 nM at 96 h) to primary lymphoblasts from patients with T-ALL, where the drug dephosphorylated 4E-BP1, at variance with rapamycin. Of note, NVP-BEZ235 targeted the SP also in T-ALL patient samples. Conclusions: NVP-BEZ235 was cytotoxic to T-ALL cell lines and patient lymphoblasts (including SP cells) at concentrations that have been previously reported to be achievable in vivo. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with other drugs, may serve as an efficient treatment towards T-ALL cells (including those overexpressing P-gp and independently from p53 status) which require upregulation of this signaling pathway for their survival and growth. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4630-4630
Author(s):  
Samuel D Gusscott ◽  
Florian Kuchenbauer ◽  
Andrew P Weng

Abstract Abstract 4630 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of the Notch1 signaling pathway. Several studies have utilized mRNA expression profiling to identify downstream mediators of oncogenic Notch signaling in this context. Since microRNAs (miRNAs) have in recent years been shown to play important roles in hematological maliganancy, we performed a microarray-based screen for Notch-dependent miRNA expression in T-ALL. Jurkat and P12-Ichikawa cell lines were treated with gamma-secretase inhibitor to block Notch signaling vs. DMSO control for 4 days and profiled using Exigon miRCURY LNA miRNA microarrays. Surprisingly few miRNAs were found to be regulated by this approach; however, one of the hits, miR-223, showed consistent upregulation after gamma-secretase treatment in Jurkat cells and 5 additional human T-ALL cell lines assessed by miRNA qPCR. This observation was unique to human T-ALL as murine models of T-ALL showed no evidence for Notch-dependent miR-223 expression. Given that canonical Notch signaling results in transcriptional activation, our observation that Notch signaling is associated with reduced miR-223 expression suggests an intermediary repressor may be involved. miR-223 has been reported to play an important role in normal granulopoiesis, to be expressed relatively highly in T-ALL with myeloid-like gene features, and most recently to accelerate Notch-mediated T-cell leukemogenesis. To explore potential functional consequences for Notch-dependent miR-223 repression in T-ALL, candidate miR-223 targets identified by TargetScan software were analyzed with Ingenuity Pathway Analysis software, which indicated IGF-1, insulin receptor, PTEN, and ERK5 signaling pathways as the top hits. We recently reported IGF1R signaling to be important for growth and viability of bulk T-ALL cells as well as for leukemia-initiating cell activity. Additionally, we reported that Notch signaling directly upregulates IGF1R transcription by binding to an intronic enhancer which is present between exons 21/22 in the human, but not mouse IGF1R locus. As miR-223 has previously been reported to target IGF1R mRNA and reduce its translation, we hypothesized that Notch signaling may also upregulate net IGF1R protein expression by repressing miR-223. To test this hypothesis, we transduced several human T-ALL cell lines with miR-223 retrovirus and observed a modest decrease in total IGF1R protein levels by western blot; however, no significant change was observed in surface IGF1R levels as assessed by flow cytometry. Addtionally, knockdown of miR-223 by lentiviral expression miR-223 target sequences (miR-223 “sponge”) resulted in modestly increased total IGF1R protein levels, but again showed no demonstrable effect on surface IGF1R levels. Of note, we also observed no apparent effect of either overexpression or knockdown of miR-223 on bulk cell growth or viability. We interpret these findings to suggest that Notch signaling does not have major effects on the miR transcriptome, and that up- or down-modulation of miR-223 in established T-ALL cells does not have significant effects on overall cell growth/viability. Further studies will be required to determine if miR-223 may act in concert with other Notch target genes to modulate cell physiology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2440-2440
Author(s):  
Tian Yuan ◽  
Yaling Yang ◽  
Jeffrey You ◽  
Daniel Lin ◽  
Kefeng Lin ◽  
...  

Abstract Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy accounting for 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. With current chemotherapies and transplantation therapy, there are still 25-50% T-ALL patients that suffer from relapse and have a poor outcome. MicroRNAs (miRNAs or miRs) are endogenous small non-coding RNAs (containing about 22 nucleotides in length). miRs function at posttranscriptional level as negative regulators of gene expression and exert their regulatory function through binding to target mRNAs and silencing gene expression. To better understand the pathogenesis and develop the new therapeutic targets of T-ALL, we have developed a Pten tumor suppressor knockout T-ALL mouse model and profiled miRs from the mouse Pten deficient T-ALL. miR-26b was one of the miRs that were found down-regulated in the mouse Pten deficient T-ALL. Recent studies showed that the aberrant expression of miR-26b is implicated in several types of cancer. The expression level of miR-26b and its role of in T-ALL, however, are unknown. We investigated if the expression level of miR-26b is aberrant in T-ALL and the effect of potentially altered expression on the growth of human T-ALL cells. Methods: We conducted miR array profiling to identify differentially expressed miRs in the mouse Pten deficient T-ALLs compared with preneoplastic thymocyte controls. We validated expression levels of several miRs, including miR-26b, that are differentially expressed in mouse and human T-ALL cells using quantitative RT-PCR. We also overexpressed miR-26b using a lentivirus based vector in human T-ALL cell lines to assess its effect on cell growth and apoptosis. Results: Employing miR array profiling, we identified a subset of miRs that exhibited marked altered expression in the mouse Pten deficient T-ALL cells. Quantitative RT-PCR validated that the expression level of miR-26b in the mouse Pten deficient T-ALL cells was markedly lower in comparison to that of preneoplastic thymocytes. To determine if miR-26b expression level is also altered in human T-ALL, we performed quantitative RT-PCR on a panel of human T-ALL cell lines. Indeed, the expression level of miR-26b is significantly lower in the human T-ALL cell lines when compared with that of normal thymocytes. To functionally assess if miR-26b plays a role in the cell growth of human T-ALL cells, we expressed exogenous miR-26b in a panel of human T-ALL cell lines. We demonstrated that the expression of exogenous miR-26b significantly reduced the proliferation and promoted apoptosis of several human T-ALL cell lines. Conclusions: Our results demonstrated that miR-26b is down-regulated in T-ALL and the expression of exogenous miR-26b elicits deceased cell proliferation and increased apoptosis of human T-ALL. These results suggest that miR-26b may function as a tumor suppressor in the development of T-ALL and further characterization of the target and regulation of miR-26b may have therapeutic implications. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 710-710
Author(s):  
Alfonso Quintas-Cardama ◽  
Weigang Tong ◽  
Taghi Manshouri ◽  
Jan Cools ◽  
D. Gary Gilliland ◽  
...  

Abstract The fusion of ABL1 with BCR results in the hybrid BCR-ABL1 oncogene that encodes the constitutively active Bcr-Abl tyrosine kinase encountered in the majority of patients with chronic myeloid leukemia (CML) and in approximately 30% of pts with B-cell acute lymphoblastic leukemia (B-ALL). Recently, the episomal amplification of ABL1 has been described in 6% of pts with T-ALL (Nat Genet2004;36:1084–9). Molecular analysis demonstrated the oncogenic fusion of ABL1 with the nuclear pore complex protein NUP214 (NUP214-ABL1). We screened 29 pts with T-cell lymphoblastic lymphoma (T-LBL) and T-ALL for the presence of the NUP214-ABL1 fusion transcript by RT-PCR using specific primers for the 5 different transcripts thus far described. Three (10%) pts were found to express this fusion transcript, including 2 with T lymphoblastic lymphoma (NUP214 exon 31) and 1 with T-ALL (NUP214 exon 29). This was confirmed by direct sequencing in all cases. All pts received therapy with hyperCVAD and achieved a complete remission (CR). However, 2 of them died 6 and 9 months into therapy, respectively. One other pt remains in CR (19+ months) by morphologic and flow cytometry criteria. However, NUP214-ABL1 is still detectable in peripheral blood by nested PCR, thus suggesting minimal residual disease (MRD). We then studied the activity of the tyrosine kinase inhibitors imatinib and nilotinib in the NUP214-ABL1-expressing cell lines PEER and BE-13. Although PEER and BE-13 cell viability was reduced with both agents, the IC50 was almost 10-fold higher for imatinib (643 nM) than for nilotinib (68 nM) (F test, p<0.001), which parallels the 10− to 30− fold higher Abl kinase inhibitory activity of nilotinib compared to imatinib in BCR-ABL-expressing cells. Nilotinib also potently inhibited the cell proliferation of BE-13 cells (IC50 131 nM). In contrast, Jurkat cells, a T-ALL cell line which does not carry NUP214-ABL1, were remarkably resistant to both imatinib and nilotinib with an IC50 values greater than 5 μM indicating that the cytotoxicity mediated by both TKIs is not related to a general toxic effect on T-ALL cell lines. The inhibition of cellular proliferation by imatinib and nilotinib was associated with a dose- and time-dependent induction of apoptosis in both PEER and BE-13 cells. In Western blotting, higher inhibition of phospho-Abl and phospho-CRKL (a surrogate of Bcr-Abl kinase status) was observed in PEER cells upon exposure to nilotinib as compared with imatinib at their respective IC50 concentrations for cell growth inhibition. We conclude that NUP214-ABL1 can be detected in 10% of pts with T-cell malignancies and its detection can be used as a sensitive marker of MRD. Imatinib and nilotinib potently inhibits the growth of NUP214-ABL1-expressing cells. Given the higher Abl kinase inhibitory activity of nilotinib with respect to imatinib, this agent must be further investigated in clinical studies targeting patients with T-ALL and T-LBL expressing the NUP214-ABL1 fusion kinase.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2372-2372
Author(s):  
Kam Tong Leung ◽  
Karen Kwai Har Li ◽  
Samuel Sai Ming Sun ◽  
Paul Kay Sheung Chan ◽  
Yum Shing Wong ◽  
...  

Abstract Despite progress in the development of effective treatments against T-cell acute lymphoblastic leukemia (T-ALL), about 20% of patients still exhibit poor response to the current chemotherapeutic regimens and the cause of treatment failure in these patients remains largely unknown. In this study, we aimed at finding mechanisms that drive T-ALL cells resistant to chemotherapeutic agents. By screening etoposide sensitivity of a panel of T-ALL cell lines using DNA content and PARP cleavage as apoptosis markers, we identified an apoptosis-resistant cell line, Sup-T1. Western blot analysis and caspase activity assay showed that Sup-T1 cells were deficient in etoposide-induced activation of caspase-3 and caspase-9. In addition, mitochondrial cytochrome c release was not evident in etoposide-treated Sup-T1 cells. However, addition of exogenous cytochrome c in cell-free apoptosis reactions induced prominent caspase-3 activation, indicating that the chemoresistance observed in Sup-T1 cells was due to its insusceptibility to the drug-induced mitochondrial alterations. Analysis of the basal expression of the Bcl-2 family proteins revealed that the levels of Bcl-2 was higher in Sup-T1 cells, while Bax and BimEL levels were lower, when compared to etoposide-sensitive T-ALL cell lines. Gene silencing using antisense oligonucleotide to Bcl-2 and overexpression of Bax did not resensitize cells to etoposide-induced apoptosis. On the contrary, transient transfection of BimEL into Sup-T1 cells significantly restored etoposide sensitivity. Further experiments revealed that the lack of BimEL expression in Sup-T1 cells was due to the rapid degradation of newly-synthesized BimEL by the proteosomal pathway, as treatment of Sup-T1 cells with a proteosome inhibitor significantly restored the protein level of BimEL. Moreover, treatment with proteosome inhibitor resulted in mobility shift of BimEL, which was sensitive to phosphatase digestion. Furthermore, treatment of Sup-T1 cells with JNK inhibitor resulted in accumulation of BimEL, and pretreatment with JNK inhibitor restored sensitivity of Sup-T1 cells to etoposide-induced apoptosis, indicating that constitutive activation of the JNK pathway in Sup-T1 cells was responsible for promoting BimEL phosphorylation, and this may serve as a signal targeting BimEL to the proteosome for degradation. Altogether, our findings provide the first evidence that JNK activation correlates inversely with BimEL level by promoting its phosphorylation and degradation. This, in turn, reduces the sensitivity of T-ALL cells to chemotherapeutic agents.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1350-1350
Author(s):  
Nakhle Saba ◽  
Magdalena Angelova ◽  
Patricia Lobelle-Rich ◽  
Laura S Levy

Abstract Abstract 1350 Precursor B-Cell acute lymphoblastic leukemia (B-ALL) is the most common leukemia in children and accounts for 20% of acute leukemia in adults. The intensive induction–consolidation–maintenance therapeutic regimens used currently have improved the 5-year disease free survival to around 80% in children and to 25%-40% in adults. The poorer response in adults is due to the inability to tolerate the intensive chemotherapy, and to the biology of adult disease which is associated with poor-risk prognostic factors. In the present era of target-specific therapy, protein kinase C beta (PKCß) targeting arose as a new, promising, and well-tolerated treatment strategy for a variety of neoplasms, especially in B-cell malignancies. The most frequently examined drug candidate to date is enzastaurin (LY317615.HCl) (ENZ), an acyclic bisindolylmaleimide that is orally administered and selectively inhibits PKCß. PKCß plays a major role in B-cell receptor signaling, but studies describing the role of PKCß in B-ALL are primitive. In the present study, we investigate the effect of ENZ on a variety of B-ALL cells representing the wide spectrum of the disease. Seven B-ALL cell lines were studied: RS4;11 and SEM-K2 [both Pro-B ALL with t(4;11)(q21;q23)], TOM-1 and SUP-B15 [both Ph-positive Pro-B ALL with t(9;22)(q34;q11)], HB-1119 [Pre-B ALL with t(11;19)(q23;p13)], NALM-6 [Pre-B ALL with t(5;12)(q33;p13)], and Reh [Pre-B ALL with t(12;21)(p13;q22)]. Cells were tested against serial dilutions of ENZ (final concentrations: 0.5–20μM) for 24, 48, and 72 hours in flat bottom 96-well plates. MTS assay was performed to quantify cell viability. ENZ induced a dose and time-dependent cell growth inhibition in B-ALL cell lines. RS4;11, SEM-K2, and HB-1119 (all with translocations involving the MLL gene) showed the greatest sensitivity to ENZ, with statistically significant cell growth inhibition starting at 1 μM, a concentration easily achieved in-vivo. TOM-1 and SUP-B15, both Ph-positive ALL, showed the lowest sensitivity to ENZ. The mechanism of ENZ cell growth inhibition was shown by flow cytometric TUNEL assay to involve apoptotic induction and cell cycle inhibition. Because of its relatively high sensitivity to inhibition among B-ALL cells, RS4;11 was selected for further analysis of the effect of ENZ on phosphorylation of AKT and its downstream target GSK3ß. RS4;11 cells were treated with the corresponding IC50 of ENZ for 0.5, 1, 2, 4, 24, and 48 hours. Treatment resulted in a time-dependent loss of AKT phosphorylation, at both ser473 and thr308, and a decrease in GSK3ß phosphorylation starting after 30 minutes and continuing to 48 hours. No effect on total AKT and GSK3ß was observed. By activating GSK3ß, its downstream target ß-catenin was expected to be diminished secondary to phosphorylation and proteasomal degradation. Surprisingly, ENZ induced a rapid and sustained ß-catenin accumulation, in both its nuclear and cytoplasmic forms. This was explained by a transient loss of ß-catenin phosphorylation at ser33-37; no effect on the proteasome activity was observed. Similar effect on total and phosphorylated ß-catenin was observed in all other cell lines. ß-catenin represents a central component of Wnt/ß-catenin canonical pathway which is found to be implicated in ALL pathogenesis. To investigate the effect of ENZ on Wnt/ß-catenin pathway, total RNA (1 μg) from RS4;11 treated for 24 hours with ENZ was profiled on RT2 Profiler™ PCR Array Human WNT Signaling Pathway (SABiosciences) and compared to untreated control. There were 8 genes whose expression changed >3-fold, most prominently c-Myc, c-Jun, and several genes encoding Wnt proteins. This was confirmed by western blot analysis showing that treatment with ENZ resulted in decreased c-Myc and increased c-Jun proteins expression. The latter showed a preliminary effect on p73, a p53 homologue, and is a subject for further investigation. These results indicate that PKCß plays an important role in the malignant process in B-cell ALL, and suggest that ENZ should be considered as a potential treatment, whether in combination or as a single agent monotherapy. Ongoing studies in our lab will detail the mechanism of PKCß inhibition, explain the contribution of ß-catenin accumulation to the cytotoxic effect of ENZ, and possible relationships between PKCß signaling and 11q23 translocation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document