Thrombopoietin Stimulation Leads to Enhanced Polyploidization in p53-/- Bone Marrow Megakaryocytes: In Vivo and in Vitro Studies.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2531-2531
Author(s):  
Pani A. Apostolidis ◽  
Stephan Lindsey ◽  
William M. Miller ◽  
Eleftherios T. Papoutsakis

Abstract Abstract 2531 Poster Board II-508 BACKGROUND AND HYPOTHESIS. We have previously shown that tumor suppressor p53 is activated in differentiating megakaryocytic (Mk) cells and its knock-down (KD) leads to increased polyploidization and delayed apoptosis in CHRF, a human Mk cell line. Furthermore, bone marrow (BM)-derived Mks from p53−/− mice reach higher ploidy classes in culture. Accordingly, we hypothesized that the role of p53 during megakaryopoiesis is to delimit polyploidization and control the transition from endomitosis by inhibiting DNA synthesis and promoting apoptosis. Here, we test this hypothesis by examining the differential effect of mouse thrombopoietin (rmTpo) on the ploidy of p53−/− and p53+/+ mouse Mk cells. METHODS. 8–10 week-old, male p53−/− mice and p53+/+ littermates were injected once with 1.2 μg rmTpo or saline. On days 2 and 5 after Tpo/saline treatment, tail-bleeding assays were performed to measure bleeding times/volumes, mice were bled for platelet counts and sacrificed to harvest BM. We employed flow cytometry to examine baseline ploidy in BM-resident Mks in p53−/− and p53+/+ mice as well as Mk cells generated from BM progenitors after 4 and 6 days of culture with rmTpo. RESULTS. At steady state, ploidy in BM-resident CD41+ Mk cells was similar in p53−/− and p53+/+ mice: 11.8±2.3% and 10.7±1.3% of p53−/− and p53+/+ Mks, respectively, reaching a ploidy of ≥32N (n=3-4). Platelet counts were 1.3×106±1×105/μl (12.5±1.0% reticulated) and 1.1×106±5×104/μl (12.4±1.3% reticulated) in p53−/− and p53+/+ mice, respectively (n=8). Two days following Tpo treatment of the mice, we did not observe significantly increased platelet levels, while ploidy was marginally affected. However, 5 days following Tpo treatment, we found greater ploidy in the BM in the absence of p53: 22±1.6% 16N and 10.1±0.8% ≥32N Mks in the p53−/− versus 18.6±3.3% 16N and 7.1±1.4% ≥32N Mks in the p53+/+ (n=2). This was accompanied by increased platelet formation: 23.6±8.3% reticulated platelets in the p53−/− versus 17.8±2.6% in the p53+/+ (n=2). Culture of BM cells from non-Tpo treated mice with 50ng/ml rmTpo resulted in a 50% increase in total Mks and increased polyploidy by day 6 of culture: 38.6±4.6% of p53−/− versus 19.2±2.3% of p53+/+ Mks reached ploidy classes of ≥32N (n=3-4, p < 0.01). Lack of p53 led to hyperploid Mk cells; by day 6 of culture 10.3±2.2% of p53−/− Mks were in ploidy classes of 128N and higher, while only 0.6±0.1% p53+/+ Mks achieved such high ploidy (n=3-4). In addition, a 6 day culture with Tpo of BM cells derived from p53−/− and p53+/+ mice pre-treated with Tpo 5 days prior to sacrifice led to more profound polyploidization compared to Mks generated from the non-Tpo treated mice but only in the p53−/− Mks: 48.8±1.1% of p53−/− versus only 17.6±0.2% of p53+/+ Mks reached ploidy ≥32N (n=2). Microarray analysis comparing p53KD to control CHRF cells undergoing Mk differentiation revealed down-regulation of genes coding for platelet surface complex CD41/CD61 and CD62P in the p53KD cells. To examine the possibility of altered functionality of platelets in p53−/− mice, we performed tail-bleeding assays on the mice that did not receive Tpo. Bleeding times and volumes were generally prolonged in the absence of p53 (all p53−/− mice exceeded the 10 min duration of the assay; mean p53−/− and p53+/+ blood loss was 17μl and 10μl, respectively, n=3-4). CONCLUSIONS. Our data indicate that in vivo polyploidization and platelet formation from Mks is increased in the p53−/− relative to p53+/+ mice after Tpo administration. These data are in line with our hypothesis that p53 activation decreases the ability of Mks to respond to Tpo and undergo polyploidization. Additionally, our preliminary data on platelet functionality suggest that p53 may have a role in hemostasis. Disclosures: No relevant conflicts of interest to declare.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Yotis A Senis ◽  
Alexandra Mazharian ◽  
Silke Heising ◽  
Steve P Watson

We recently demonstrated that the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B plays a critical role in regulating platelet homeostasis. Mice lacking G6b-B exhibit a complex phenotype that includes severe macrothrombocytopenia, platelet surface immunoglobulins, reduced expression of the collagen activation receptor GPVI, and aberrant platelet function. In this study, we tested the effects of the thrombopoietin-mimetic romiplostim in ameliorating defects seen in G6b-B-deficient mice. Subcutaneous administration of romiplostim (100 μg/kg romiplostim every three days) restored platelet counts to normal levels in G6b-B-deficient mice within two weeks. Platelet surface GPVI expression was also elevated by five-fold in romiplostim-treated G6b-B-deficient mice compared with platelets from mice treated with vehicle alone, restoring platelet reactivity to the GPVI-specific agonist collagen-related peptide (CRP). In contrast, the same romiplostim regimen induced a 40% reduction in platelet surface GPVI expression in control mice, resulting in comparable levels of GPVI in romiplostim-treated G6b-B-deficient and control mice. Megakaryocyte counts were dramatically increased in the bone marrow and spleen of romiplostim-treated G6b-B-deficient and control mice, accompanied by severe myelofibrosis in both genetic backgrounds. Bone marrow-derived megakaryocytes from G6b-B-deficient mice grew normally in vitro in the presence of thrombopoietin, but exhibited reduced proplatelet formation on a fibrinogen-coated surface. Findings from this study demonstrate that romiplostim can be used to restore GPVI expression in addition to platelet counts in G6b-B-deficient mice, but has severe side-effects on bone marrow and spleen myelofibrosis. This approach can now be applied to further investigate the functional role of G6b-B in regulating platelet counts and reactivity. This work was funded by the British Heart Foundation.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 54-59 ◽  
Author(s):  
AM Farese ◽  
P Hunt ◽  
T Boone ◽  
TJ MacVittie

Megakaryocyte growth and development factor (MGDF) is a novel cytokine that binds to the c-mpl receptor and stimulates megakaryocyte development in vitro and in vivo. This report describes the ability of recombinant human (r-Hu) MGDF to affect megakaryocytopoiesis in normal nonhuman primates. r-HuMGDF was administered subcutaneously to normal, male rhesus monkeys once per day for 10 consecutive days at dosages of 2.5, 25, or 250 micrograms/kg of body weight. Bone marrow and peripheral blood were assayed for clonogenic activity and peripheral blood counts were monitored. Circulating platelet counts increased significantly (P < .05) for all doses within 6 days of r-HuMGDF administration and reached maximal levels between day 12 and day 14 postcytokine administration. The 2.5, 25.0, and 250.0 micrograms/kg/d doses elicited peak mean platelet counts that were 592%, 670%, and 449% of baseline, respectively. Bone marrow-derived clonogenic data showed significant increases in the concentration of megakaryocyte (MEG)- colony-forming unit (CFU) and granulocyte-erythroid-macrophage- megakaryocyte (GEMM)-CFU, whereas that of granulocyte-macrophage (GM)- CFU and burst-forming unit-erythroid (BFU-e) remained unchanged during the administration of r-HuMGDF. These data show that r-HuMGDF is a potent stimulator of thrombocytopoiesis in the normal nonhuman primate.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3622-3622
Author(s):  
Frederick Karl Racke ◽  
Maureen E Baird ◽  
Rolf Barth ◽  
Tianyao Huo ◽  
Weilian Yang ◽  
...  

Abstract Abstract 3622 Poster Board III-558 Despite recent advances in our understanding of megakaryocytic growth and platelet production, thrombocytopenia remains a difficult problem in the clinical management of patients with hematologic malignancies. Thrombopoietin (TPO) is the major cytokine involved in the normal production of platelets. However, the use of TPO has been relatively unsuccessful for the treatment of these patients and platelet transfusions remain the primary treatment for thrombocytopenia despite their significant cost and relatively short-lived responses. Thus, there remains an important clinical need for the development of novel approaches to generate platelets. Despite numerous reports on protein kinase C (PKC) agonists as promoters of megakaryocytic differentiation in leukemic cell lines and primary cells, little is known about their in vitro effects on primary CD34-selected progenitors or when administered in vivo. In the present study, we examine that effects of the novel PKC isoform agonist ingenol 3,20 dibenzoate (IDB) on megakaryocyte differentiation from CD34+ cells cultured in TPO and stem cell factor (SCF) or erythropoietin/SCF and its effects on platelet production in BALB/c mice. IDB potently stimulates early megakaryopoiesis and redirects the specificity of EPO to favor megakaryopoiesis over erythropoiesis. In contrast, broad spectrum PKC agonists such as phorbol myristate acetate, mezerein, and indolactam V fail to promote megakaryopoiesis. In vitro, IDB stimulates early expression of the promegakaryopoietic transcription factors egr1 and fli-1 and downregulates the proerythropoietic factors KLF1 and c-myb. Induction of the early megakaryocytic marker, CD9, was observed within the first 24 hrs of treatment with IDB and CD9 induction was blocked by the PKC inhibitor bisindolylmaleimide, which inhibits both novel and conventional PKC isoforms. In contrast, an inhibitor of conventional PKC isoforms, Gö6976, failed to block CD9 induction. In vivo, single intraperitoneal injections of IDB selectively increased platelet counts in BALB/c mice by 50% (plt= 630,000 vs. 985,000/μl; p<.005) at day 7 without affecting hemoglobin (Hgb) concentration or white counts (WBC). Mice treated with low dose radiation (2-4 Gy) had a transient drop in both platelet and WBC counts. Pretreatment with IDB 3 hrs prior to irradiation increased the platelet counts without improving WBC. More severe radiation exposure (6-8 Gy) causes pancytopenia. IDB treatment 3 hrs prior to 6 Gy irradiation significantly reduced the thrombocytopenia (plt=192,000 vs 594,000/μl; p<0.005) and anemia (hemoglobin=11.9 vs. 13.5gm/dl); p<0.005) without affecting the drop in WBC (WBC=1,200 vs. 1,300/μl; p=NS) at 14 days following irradiation. For mice treated with 8 Gy radiation, IDB pretreatment resulted in similar improvements in platelet counts (plt=111,000 vs. 443,000/μl; p<0.005) and hemoglobin (hgb=8.2 vs. 12.7 gm/dl; p<0.005) at 21 days following irradiation. The mitigation of thrombocytopenia is accompanied by marked increases in the megakaryocyte content in both the spleens and bone marrows of IDB-treated mice. Most importantly, IDB mitigated radiation-induced thrombocytopenia, even when administered 24 hrs after irradiation (plt=80,000 vs. 241,000/μl at 14 days following 6 Gy irradiation; p<0.01). Finally, IDB improved the survival of lethally irradiated mice. Our data suggest that the novel PKC isoform agonist IDB promotes the early differentiation of megakaryocytes from hematopoietic progenitors at the resulting in a significant improvement in platelet recovery following irradiation. IDB also improved Hgb levels following higher radiation doses. This may be due to improved hemostasis secondary to increased platelet numbers; however, an additional radioprotective effect on erythroid precursors cannot be excluded. These results strongly support our hypothesis that the novel PKC agonist IDB may be useful for the treatment of radiation and possibly drug-induced thrombocytopenia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1506-1506
Author(s):  
Marika Masselli ◽  
Serena Pillozzi ◽  
Massimo D'Amico ◽  
Luca Gasparoli ◽  
Olivia Crociani ◽  
...  

Abstract Abstract 1506 Although cure rates for children with acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, have markedly improved over the last two decades, chemotherapy resistance remains a major obstacle to successful treatment in a significant proportion of patients (Pui CH et al. N Engl J Med., 360:2730–2741, 2009). Increasing evidence indicates that bone marrow mesenchymal cells (MSCs) contribute to generate drug resistance in leukemic cells (Konopleva M et al., Leukemia, 16:1713–1724, 2002). We contributed to this topic, describing a novel mechanism through which MSCs protect leukemic cells from chemotherapy (Pillozzi S. et al., Blood, 117:902–914, 2011.). This protection depends on the formation of a macromolecular membrane complex, on the plasma membrane of leukemic cells, the major players being i) the human ether-a-gò-gò-related gene 1 (hERG1) K+ channel, ii) the β1integrin subunit and iii) the SDF-1α receptor CXCR4. In leukemic blasts, the formation of this protein complex activates both the ERK 1/2 MAP kinases and the PI3K/Akt signalling pathways triggering antiapoptotic effects. hERG1 exerts a pivotal role in the complex, as clearly indicated by the effect of hERG1 inhibitors to abrogate MSCs protection against chemotherapeutic drugs. Indeed, E4031, a class III antiarrhythmic that specifically blocks hERG1, enhances the cytotoxicity of drugs commonly used to treat leukemia, both in vitro and in vivo. The latter was tested in a human ALL mouse model, consisting of NOD/SCID mice injected with REH cells, which are relatively resistant to corticosteroids. Mice were treated for 2 weeks with dexamethasone, E4031, or both. Treatment with dexamethasone and E4031 in combination nearly abolished bone marrow engraftment while producing marked apoptosis, and strongly reducing the proportion of leukemic cells in peripheral blood and leukemia infiltration of extramedullary sites. These effects were significantly superior to those obtained by treatment with either dexamethasone alone or E4031 alone. This model corroborated the idea that hERG1 blockers significantly increase the rate of leukemic cell apoptosis in bone marrow and reduced leukemic infiltration of peripheral organs. From a therapeutic viewpoint, to develop a pharmacological strategy based on hERG1 targeting we must consider to circumvent the side effects exerted by hERG1 blockers. Indeed, hERG1 blockers are known to retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, an effect that in some cases leads to life threatening ventricular arrhythmias (torsades de points). On the whole, it is mandatory to design and test non-cardiotoxic hERG1 blockers as a new strategy to overcome chemoresistance in ALL. On these bases, we tested compounds with potent anti-hERG1 effects, besides E4031, but devoid of cardiotoxicity (e.g. non-torsadogenic hERG1 blockers). Such compounds comprise erythromycin, sertindole and CD160130 (a newly developed drug by BlackSwanPharma GmbH, Leipzig, Germany). We found that such compounds exert a strong anti-leukemic activity both in vitro and in vivo, in the ALL mouse model described above. This is the first study describing the chemotherapeutic effects of non-torsadogenic hERG1 blockers in mouse models of human ALL. This work was supported by grants from the Associazione Genitori contro le Leucemie e Tumori Infantili Noi per Voi, Associazione Italiana per la Ricerca sul Cancro (AIRC) and Istituto Toscano Tumori. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 893-893
Author(s):  
Po Yee Mak ◽  
Duncan H Mak ◽  
Yuexi Shi ◽  
Vivian Ruvolo ◽  
Rodrigo Jacamo ◽  
...  

Abstract Abstract 893 ARC (Apoptosis repressor with caspase recruitment domain) is a unique antiapoptotic protein that has been shown to suppress the activation of both intrinsic and extrinsic apoptosis. We previously reported that ARC is one of the most potent adverse prognostic factors in AML and that high ARC protein expression predicted shorter survival and poor clinical outcome in patients with AML (Carter BZ et al., Blood 2011). Here we report how ARC is regulated and its role in inhibition of AML apoptosis and in cell survival. We provide evidence that ARC expression is regulated by MAPK and PI3K signaling. Inhibition of MAPK and PI3K pathways decreased ARC mRNA and protein levels in AML cells. ARC expression in AML cells is upregulated in co-cultures with bone marrow-derived mesenchymal stromal cells (MSCs) and the upregulation is suppressed in the presence of MAPK or PI3K inhibitors. To investigate the role of ARC in apoptosis resistance in AML, we generated stable ARC overexpressing (O/E) KG-1 and stable ARC knock down (K/D) OCI-AML3 and Molm13 cells and treated them with Ara-C and agents selectively inducing intrinsic (ABT-737) or extrinsic (TRAIL) apoptosis. We found that ARC O/E cells are more resistant and ARC K/D cells more sensitive to Ara-C, ABT-737, and TRAIL-induced apoptosis: EC50s of Ara-C, ABT-737, or TRAIL treatment at 48 hours for ARC O/E KG-1 and control cells were 1.5 ± 0.1 μM vs. 83.5 ± 4.6 nM, 2.2 ± 0.2 μM vs. 60.2 ± 3.1 nM, or 0.97 ± 0.03 μg/mL vs. 0.17 ± 0.08 μg/mL, respectively and for ARC K/D OCI-AML3 and control cells were 0.33 ± 0.02 μM vs. 3.4 ± 0.2 μM, 0.24 ± 0.01 μM vs. 1.3 ± 0.1 μM, or 0.13 ± 0.09 μg/mL vs. 0.36 ± 0.03 μg/mL, respectively. Bone marrow microenvironment is known to play critical roles in AML disease progression and in protecting leukemia cells from various therapeutic agent-induced apoptosis. Leukemia cells were co-cultured with MSCs in vitro study to mimic the in vivo condition. ARC was found to be highly expressed in MSCs and stable ARC K/D MSCs were generated. AML cell lines and primary patient samples were co-cultured with ARC K/D or control MSCs and treated with Ara-C, ABT-737, or TRAIL. Interestingly, ARC K/D MSCs lost their protective activity for leukemia cells treated with these agents. EC50s for OCI-AML3 cells co-cultured with ARC K/D or control MSCs for 48 hours treated with Ara-C, ABT-737, or TRAIL were 1.0 ± 0.04 μM vs. 4.5 ± 0.2 μM, 0.15 ± 0.06 μM vs. 0.53 ± 0.02 μM, or 1.4 ± 0.8 μg/mL vs. 8.1 ± 0.3 μg/mL, respectively. In addition, ARC O/E KG-1 cells grew faster and ARC K/D OCI-AML3 and Molm13 cells and ARC K/D MSCs grew slower than their respective controls. We then injected KG-1 cells into mice and found that NOD-SCID mice harboring ARC O/E KG-1 had significantly shorter survival than mice injected with the vector control KG-1 (median 84 vs. 111 days) as shown in the figure. Collectively, results demonstrate that ARC plays critical roles in AML. ARC is regulated by MSCs through various signaling pathways in AML cells, protects leukemia cells from apoptosis induced by chemotherapy and by agents selectively inducing intrinsic and extrinsic apoptosis. ARC regulates leukemia cell growth in vitro and in vivo. The results suggest that ARC is a potential target for AML therapy. In addition, targeting ARC in MSCs suppresses microenvironmental protection of AML cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2428-2428
Author(s):  
Satoshi Nishimura ◽  
Koji Eto ◽  
Ryozo Nagai

Abstract Blood platelets are generated in the bone marrow (BM) from their precursors, megakaryocytes (MK). Although we know that MKs produce platelets throughout life, precisely how platelets are produced in vivo remains uncertain, largely because of the rarity of MKs in the BM and the lack an adequate visualization technique. In the present study, we were able to visualize MK dynamics leading to platelet release in living animals at high resolution. To clearly understand the nature of thrombopoiesis in BM MKs, we optimized an in vivo imaging technique based on two-photon microscopy that enabled us to visualize living BM in CAG- enhanced green fluorescent protein (eGFP) mice. By visualizing living bone marrow in vivo, we observed that two modes (fragmentation and proplatelet formation) can be ongoing simultaneously in the same mouse. We observed that these two modes detectable by different morphological behavior can be ongoing simultaneously in the same BM of mouse, and are regulated by specific cytokines. Short proplatelets from megakaryocytes predominated at steady state, and more elongated proplatelets were accelerated by thrombopoietin (TPO) with responding to chronic platelet needs including recovery form BM transplantations. In contrast, acute platelet needs by blood loss, 5-FU administration or pritoneal acute inflammation increased cytoplasmic fragmentation following rapid ‘rupture’. Observed two modes are both dependent on tubulin reorganization on platelet biogenesis. In addition, platelet increase at acute phase is independent of proliferation by MK progenitors and this factor might exert apoptosis machinery on already reserved mature type of MKs. This humoral factor was identified by combination of in vitro screening systems and in vivo MK visualization analysis. Factor serum levels were reduced independently of the thrombopoietin level in human subjects with low platelet counts. It thus appears the cytokine balance dynamically regulates the mode of thrombopoiesis and the cellular programming of MKs. Thus, these novel factor may be a novel therapeutic target in thrombocytopenic situations, especially when associated with acute loss of platelets or when platelet transfusion is limited or unsuccessful. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3677-3677
Author(s):  
Anne Schumacher ◽  
Till Braunschweig ◽  
Bernd Denecke ◽  
Tim H. Brümmendorf ◽  
Patrick Ziegler

Abstract The concerted action of hematopoiesis supporting cytokines such as G-CSF, GM-CSF or IL-6 regulates hematopoiesis during steady state and emergency situations. Respective knockout mice show defects both in production and function of myelopoietic effector cells. However, alternative pathways are likely to exist as mice with single or combined deficiencies for G-CSF, GM-CSF, and IL-6 or G-CSF and GM-CSF are still able to mount reactive neutrophilia responses during inflammatory conditions. In order to identify pathways for inflammation induced enhancement of hematopoiesis as well as to find new cytokines, which enhance myeloid cell regeneration, we analyzed the bone marrow (BM) of lipopolysaccharide (LPS) and vehicle injected wild type (WT) mice (single IP- injection) by gene expression microarray. Focusing on the identification of genes encoding for secreted or membrane proteins, we found 83 candidates to be up- and 14 to be downregulated after LPS treatment. Among known candiates, we found angiopoietin-like 4 (Angptl-4) as a predominantly upregulated gene in the BM of LPS-treated WT-mice. Upregulation was confirmed by RT-PCR as well as by Elisa in the BM of LPS treated mice and bone marrow stromal cells (BMSC) were identified as candidate producer cells. Functionally, we found recombinant Angptl-4 to stimulate the proliferation of myeloid colony-forming units (CFU) in vitro. In mice, repeated injections of Angptl-4 increased BM progenitor cell frequency and this was paralleled by a relative increase in phenotypically defined granulocyte-macrophage progenitors (GMPs). Furthermore, in vivo treatment with Angptl-4 resulted in elevated platelet counts both in untreated animals and after myelosuppressive therapy. After lethal irradiation and transplantation of syngeneic BM cells repetitive injections of recombinant Angptl-4 for 5 consecutive days resulted in an accelerated reconstitution of platelets starting at day 8 after transplantation. The 50% pre-treatment platelet count was reached on day 14 in Angptl-4-treated animals as compared to day 21 for transplanted controls receiving no Angptl-4 (n=8; p=0.03, student´s T test). In contrast, transplantation of BM cells from Angptl-4 pre-treated donor mice had no effect on the recovery of platelets in this setting. The frequency of CD41lowCD61+ immature megakaryocytes was significantly increased in the BM of Angptl-4 injected as compared to control mice (27% vs 19% of total megakaryocytes; p= 0.008, student´s T test). Furthermore, bone marrow cytology revealed local accumulation of megakaryocytes carrying dysplastic features in Angptl-4 injected mice. In summary, our data suggest that Angptl-4 plays a complementary role on hematopoiesis during emergency situations like sepsis. The use of Angptl-4 in the setting of autologous stem cell transplantation could represent a potential approach to accelerate the reconstitution of megakaryopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2488-2488 ◽  
Author(s):  
José Gabriel Barcia Durán

Unlike Jak1, Jak2, and Tyk2, Jak3 is the only member of the Jak family of secondary messengers that signals exclusively by binding the common gamma chain of interleukin receptors IL2, IL4, IL7, IL9, IL15, and IL21. Jak3-null mice display defective T and NK cell development, which results in a mild SCID phenotype. Still, functional Jak3 expression outside the hematopoietic system remains unreported. Our data show that Jak3 is expressed in endothelial cells across hematopoietic and non-hematopoietic organs, with heightened expression in the bone marrow and spleen. Increased arterial zonation in the bone marrow of Jak3-null mice further suggests that Jak3 is a marker of sinusoidal endothelium, which is confirmed by fluorescent microscopy staining and single-cell RNA-sequencing. We also show that the Jak3-null niche is deleterious for the maintenance of long-term repopulating hematopoietic stem and progenitor cells (LT-HSCs) and that Jak3-overexpressing endothelial cells have increased potential to expand LT-HSCs in vitro. In addition, we identify the soluble factors downstream of Jak3 that provide endothelial cells with this functional advantage and show their localization to the bone marrow sinusoids in vivo. Our work serves to identify a novel function for a non-promiscuous tyrosine kinase in the bone marrow vascular niche and further characterize the hematopoietic stem cell niche of sinusoidal endothelium. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-12-SCI-12
Author(s):  
Karin Vanderkerken ◽  
Kim De Veirman ◽  
Ken Maes ◽  
Eline Menu ◽  
Elke De Bruyne

Apoptosis plays a key role, not only in normal homeostasis but also in protection against genomic instability. Protection against apoptosis is a hallmark of cancer and is mainly regulated by the overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-Xl or Mcl-1. This results in increased survival of the tumor cells and resistance to therapy. This presentation will focus on MCL-1 (myeloid cell leukemia 1), its expression and its role as potential target in multiple myeloma (MM). MCL1 gene regions are one the most amplified gene regions in several human cancers and Mcl-1 activity is often associated with therapy resistance and relapse. Mcl-1 binds to and sequesters the pro-apoptotic BH3 proteins, thereby preventing apoptosis. Mcl-1 is overexpressed on MM cells from newly diagnosed patients compared to normal plasma cells and in MM cells at relapse. This overexpression is furthermore associated with a shorter survival of these patients. Increased Mcl-1 expression can result either from genetic lesions or by induction through interaction with the bone marrow microenvironment. Its expression is correlated with the molecular heterogeneity of the myeloma patients; while the CCDN1 group has high BCL2 and low MCL-1 expression; the MMSET and MAF group has high MCL-1 and low BCL2 expression. Unlike Bcl-2 and Bcl-Xl, Mcl-1 has a large unstructured aminoterminus and its activity is mainly dependent on posttranslational modifications. The bone marrow microenvironment, by producing high levels of interleukin 6, also induces the upregulation of Mcl-1. Furthermore, our group recently demonstrated that not only stromal cells in the bone marrow microenvironment, but also MDSC (myeloid derived suppressor cells) induce survival of MM cells by increasing Mcl-1 levels through the AMPK pathway. As such, these data suggest the potential therapeutic benefit of targeting Mcl-1 in MM patients. Developing the first-generation inhibitors appeared to be challenging, especially in view of the occurrence of unwanted off target effects. Recent preclinical data with new, selective Mcl-1 inhibitors show promising anti-tumor effects both in vitro and in in vivo myeloma models, either alone or in combination with the Bcl-2 selective inhibitor, venetoclax, especially as it was demonstrated that high levels of MCL-1 are associated with venetoclax resistance in MM. In addition, it was also shown that proteasome inhibition can trigger Mcl-1 accumulation, further pointing to the importance of Mcl-1 inhibition. Induction of NOXA, as an inhibitor of Mcl-1, is also suggested as a therapeutic option, especially in combinations with other drugs. Clinically, following preclinical results, several new Mcl-1 inhibitors have entered phase I trials. Most of them are still recruiting patients, and as such too early to have results. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2864-2864
Author(s):  
Anne Louise Sørensen ◽  
Viktoria Rumjantseva ◽  
Sara Nayeb-Hashemi ◽  
Sunita Patel-Hett ◽  
Jennifer Richardson ◽  
...  

Abstract Although sialic acid is considered a key determinant for the survival of circulating blood cells and glycoproteins, its role in platelet half-life is not fully clarified. We and others have previously provided evidence that thrombocytopenia in mice deficient in the ST3Gal-IV sialyltransferase gene (ST3Gal-IV−/− mice) is caused by rapid clearance of the platelets due to recognition of surface galactose by asialoglycoprotein receptor-expressing scavenger cells. Here we report new insight into clearance mechanisms, activation and production of sialic acid deficient platelets. Immunofluorescence staining of organ specimens harvested shortly after platelet transfusion demonstrated the predominant clearance of ST3Gal-IV−/− platelets by liver macrophages and, as previously reported, hepatocytes. The differential cellular clearance pathways were further explored following macrophage depletion in mice using clodronate encapsulated liposomes, a procedure that restored ST3Gal-IV−/− platelet circulation to approximately 40% of normal values, confirming that macrophages play a major role in the clearance of sialic acid deficient platelets and that other clearance pathways are equally important. Ingestion of ST3Gal-IV−/− platelets by hepatocytes was confirmed by in vitro HepG2 phagocytosis assays. We next investigated the function of desialylated platelets. Platelet binding of von Willebrand factor (vWf) upon botrocetin stimulation was 3 fold higher for ST3Gal-IV−/− platelet rich plasma compared to ST3Gal- IV+/+ platelet rich plasma. The circulation time of wild-type platelets transfused into ST3Gal-IV−/− mice was 20% reduced compared to control platelets, indicating that platelet removal could be accelerated due to binding of desialylated vWf to platelets. Loss of sialic acid did not affect platelet production in vitro and in vivo as cultivated megakaryocytes was found to produce proplatelets normally and measurements of reticulated platelets by flow cytometry showed a 3-fold increased thrombocytopoietic activity in the ST3Gal- IV−/− mice compared to wild-type mice. Interestingly, thiazole orange staining revealed a significant negative correlation between platelet size and platelet age for both genotypes, In conclusion, depletion of the ST3Gal-IV gene promotes binding of vWf to platelets, exposes platelet surface galactose residues to the lectin domain of asialoglycoprotein receptors on both hepatocytes and liver macrophages, resulting in rapid platelet clearance from the circulation and supporting previous findings that platelets decrease in size while aging in circulation.


Sign in / Sign up

Export Citation Format

Share Document