Junctional Adhesion Molecule C (JAM-C) Constitutes a New Marker for the Differential Diagnosis of B Cell Lymphomas.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3940-3940
Author(s):  
Thomas Matthes ◽  
Christiane Ody ◽  
Beat Imhof ◽  
Carmen Donate ◽  
Dominique Cossali ◽  
...  

Abstract Abstract 3940 Poster Board III-876 Introduction Differentiation of naïve B cells into plasma cells or memory cells occurs in the germinal centres (GC) of lymph follicles or alternatively in the marginal zone via a GC- and T cell independent pathway. It is currently assumed that B cell lymphomas correspond to normal B cell differentiation stages, but the precise correlation of several B cell lymphomas to these two pathways remains controversial. We have previously shown that junctional adhesion molecule C (JAM-C) originally identified at the cell-cell border of endothelial cells, constitutes also a marker of B lymphocytes with a tightly regulated expression during B cell differentiation: immature B cells, GC-B cells and plasma cells stain negatively, whereas mature, memory and marginal zone derived B cells stain strongly positive. Here we test the expression of JAM-C on a series of patients with B cell lymphomas. Methods B lymphocytes from the peripheral blood of 158 untreated patients were analyzed using flow cytometry with standard antibody panels (CD5, CD10, CD11c, CD22, CD23, CD25, CD38, CD103, FMC7, sIg). Diagnosis of a B cell lymphoma was established according to WHO guidelines, using additionally RT-PCR, karyotyping, or FISH, if necessary. Expression of JAM-C was studied by flow cytometry with a polyclonal antibody obtained from a rabbit immunized with the soluble JAM-C molecule. Results MCL, HCL and MZBL with a supposed origin in the marginal zone stained mostly positive, whereas CLL and FL with a supposed origin in the germinal centre showed mostly a negative staining. No correlation was found in CLL between JAM-C expression and staining for ZAP70 or CD38. In 12 cases routine work-up was not able to precisely establish a diagnosis of CLL or MZBL, and CLL or MCL. In these cases the presence of JAM-C was considered a strong argument against a GC-origin of the malignant B cells. Addition of JAM-C to antibodies used in the Matutes score increased the sensitivity and specificity of this score for the diagnosis of CLL. Furthermore, it may help differentiating MZBL from LPL which otherwise display overlapping immunophenotypes. Conclusion JAM-C constitutes a new diagnostic marker for the differential diagnosis of B cell lymphomas, and is particularly useful for the distinction between CLL and LPL (negative staining) on the one hand and mantle cell and marginal zone B cell lymphomas (positive staining) on the other hand. Disclosures: No relevant conflicts of interest to declare.

Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2206-2210 ◽  
Author(s):  
Y Levy ◽  
S Labaume ◽  
MC Gendron ◽  
JC Brouet

Abstract We previously showed that clonal blood B cells from patients with macroglobulinemia spontaneously differentiate in vitro to plasma cells. This process is dependent on an interleukin (IL)-6 autocrine pathway. We investigate here whether all-trans-retinoic acid (RA) interferes with B-cell differentiation either in patients with IgM gammapathy of undetermined significance (MGUS) or Waldenstrom's macroglobulinemia (WM). RA at a concentration of 10(-5) to 10(-8) mol/L inhibited by 50% to 80% the in vitro differentiation of purified B cells from four of five patients with MGUS and from one of five patients with WM as assessed by the IgM content of day 7 culture supernatants. We next determined whether this effect could be related to an inhibition of IL- 6 secretion by cultured B cells and/or a downregulation of the IL-6 receptor (IL-6R), which was constitutively expressed on patients' blood B cells. A 50% to 100% (mean, 80%) inhibition of IL-6 production was found in seven of 10 patients (five with MGUS and two with WM). The IL- 6R was no more detectable on cells from patients with MGUS after 2 days of treatment with RA and slightly downregulated in patients with WM. It was of interest that B cells susceptible to the action of RA belonged mostly to patients with IgM MGUS, which reinforces our previous data showing distinct requirements for IL-6-dependent differentiation of blood B cells from patients with VM or IgM MGUS.


2014 ◽  
Vol 211 (5) ◽  
pp. 827-840 ◽  
Author(s):  
Stéphane Chevrier ◽  
Dianne Emslie ◽  
Wei Shi ◽  
Tobias Kratina ◽  
Cameron Wellard ◽  
...  

The transcriptional network regulating antibody-secreting cell (ASC) differentiation has been extensively studied, but our current understanding is limited. The mechanisms of action of known “master” regulators are still unclear, while the participation of new factors is being revealed. Here, we identify Zbtb20, a Bcl6 homologue, as a novel regulator of late B cell development. Within the B cell lineage, Zbtb20 is specifically expressed in B1 and germinal center B cells and peaks in long-lived bone marrow (BM) ASCs. Unlike Bcl6, an inhibitor of ASC differentiation, ectopic Zbtb20 expression in primary B cells facilitates terminal B cell differentiation to ASCs. In plasma cell lines, Zbtb20 induces cell survival and blocks cell cycle progression. Immunized Zbtb20-deficient mice exhibit curtailed humoral responses and accelerated loss of antigen-specific plasma cells, specifically from the BM pool. Strikingly, Zbtb20 induction does not require Blimp1 but depends directly on Irf4, acting at a newly identified Zbtb20 promoter in ASCs. These results identify Zbtb20 as an important player in late B cell differentiation and provide new insights into this complex process.


2020 ◽  
Vol 4 (12) ◽  
pp. 2821-2836
Author(s):  
Jennifer Shrimpton ◽  
Matthew A. Care ◽  
Jonathan Carmichael ◽  
Kieran Walker ◽  
Paul Evans ◽  
...  

Abstract Waldenström macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli. In this study, we assess WM B-cell differentiation using an established in vitro model system. Using T-cell–dependent conditions, we obtained CD138+ plasma cells from WM samples with a frequency similar to experiments performed with B cells from normal donors. Unexpectedly, a proportion of the WM B cells failed to upregulate CD38, a surface marker that is normally associated with plasmablast transition and maintained as the cells proceed with differentiation. In normal B cells, concomitant Toll-like receptor 7 (TLR7) activation and B-cell receptor cross-linking drives proliferation, followed by differentiation at similar efficiency to CD40-mediated stimulation. In contrast, we found that, upon stimulation with TLR7 agonist R848, WM B cells failed to execute the appropriate changes in transcriptional regulators, identifying an uncoupling of TLR signaling from the plasma cell differentiation program. Provision of CD40L was sufficient to overcome this defect. Thus, the limited clonotypic WM plasma cell differentiation observed in vivo may result from a strict requirement for integrated activation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2422-2422
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Takao Sudo ◽  
Tomohiko Ishibashi ◽  
Yukiko Doi ◽  
...  

Abstract A large body of research has demonstrated that the maternal immune system is elaborately regulated during pregnancy to establish immunological tolerance to the fetus. Although our previous works have revealed that female sex hormones, particularly estrogen, play pivotal roles in suppressing maternal B-lymphopoiesis, the precise molecular mechanisms that mediate their functions are largely unknown. Because T and B lymphocytes function coordinately in the adaptive immune system, the inhibition of B-lymphopoiesis during pregnancy should be involved, at least in part, in “maternal-fetal immune tolerance.” Understanding the molecular mechanisms of tolerance would contribute to the development of new methods to inhibit immune responses after organ transplantation, such as rejection by the host or graft-versus-host diseases. The goal of our present study is to identify the molecular pathways through which estrogen exerts its suppressive effect on B-lymphopoiesis. We performed global analyses of estrogen-inducible genes in bone marrow (BM) stromal cells and identified the secreted frizzled-related protein (sFRP) family. A sFRP1-immunoglobulin G (Ig) fusion protein inhibited early differentiation of B-cells originating from BM-derived hematopoietic stem/progenitor cells (HSPC) in culture (Yokota T. et al. Journal of Immunol, 2008). Conversely, sFRP1 deficiency in vivo caused dysregulation of HSPC homeostasis in BM and aberrant increase of peripheral B lymphocytes (Renström J. et al. Cell Stem Cell, 2009). Therefore, in the present study we generated sFRP1 transgenic chimera (TC) mice that produced high levels of circulating sFRP1 after birth to examine the influence of sFRP1 on adult lymphopoiesis in vivo. Further, we generated sFRP5 TC mice using the same procedure to determine whether there were functional differences or redundancies between sFRP1 and sFRP5. The two are most closely related isoforms among the sFRP family and are known to play redundant roles during embryonic development; however, their physiological function in the immune system is largely unknown. Unexpectedly, while only subtle change was detected in the lymphoid lineage of sFRP1 TC mice, we found that the number of B cells was significantly reduced in the sFRP5 TC mice. The frequency of B cells, which normally account for approximately 50% of peripheral leukocytes of wild-type (WT) mice, was reduced to less than 20% in the sFRP5 TC mice. The suppression was likely specific to the B lineage, because overexpression of sFRP5 did not affect myeloid, T, or NK cells. Compared with WT littermates, the body size of sFRP5 TC mice was slightly, but significantly smaller. Thymocyte counts were not affected. In contrast, the number of splenocytes, particularly those of the B lineage, significantly decreased. In BM of sFRP5 TC mice, early B-cell differentiation was inhibited, resulting in the accumulation of cells whose phenotype corresponds to those of common lymphoid progenitors (CLPs). Gene array analyses of the accumulated CLPs indicated that sFRP5 affects the expression of adaptive immune system-related genes. Further, the sFRP5 overexpression was found to induce the expression of Wnt and Notch-related molecules that regulate the integrity of HSPCs. To determine the physiological involvement of sFRP5 in the inhibition of early B-cell differentiation, we exploited mice lacking sFRP5. It is noteworthy that, although the level of sFRP5 expression was minimal in steady-state BM, it was markedly induced after estrogen treatment. We injected water-soluble β-estradiol into WT or sFRP5-null mice for 4 days and evaluated their lympho-hematopoiesis 12 h after the last injection. While the highly HSPC-enriched Lineage- Sca-1+ c-kitHi Flt3- fraction of WT mice was resistant to the treatment, the same fraction of sFRP5-null mice showed a declining trend. Further, although the CLP fraction was significantly reduced in both strains, CLPs of sFRP5-null mice were more sensitive to estrogen than those of WT. We also performed gene expression analyses of WT and sFRP5-null mice after the estrogen treatment. We found that estrogen induced the expression of Hes1 in HSPCs of WT but not sFRP5-null mice. Thus, we conclude that estrogen-inducible sFRP5 blocks the differentiation of HSPCs in BM to B-lymphocytes in the presence of high levels of estrogen, at least in part by activation of the Notch pathway. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 183 (5) ◽  
pp. 2075-2085 ◽  
Author(s):  
L Galibert ◽  
N Burdin ◽  
C Barthélémy ◽  
G Meffre ◽  
I Durand ◽  
...  

The antigen receptors on T and B lymphocytes can transduce both agonist and antagonist signals leading either to activation/survival or anergy/death. The outcome of B lymphocyte antigen receptor (BCR) triggering depends upon multiple parameters which include (a) antigen concentration and valency, (b) duration of BCR occupancy, (c) receptor affinity, and (d) B cell differentiation stages. Herein, using anti-immunoglobulin kappa and lambda light chain antibodies, we analyzed the response of human naive, germinal center (GC) or memory B cells to BCR cross-linking regardless of heavy chain Ig isotype or intrinsic BCR specificity. We show that after CD40-activation, anti-BCR (kappa + gamma) can elicit an intracellular calcium flux on both GC and non-GC cells. However, prolonged BCR cross-linking induces death of CD40-activated GC B cells but enhances proliferation of naive or memory cells. Anti-kappa antibody only kills kappa + GC B cells without affecting surrounding gamma + GC B cells, thus demonstrating that BCR-mediated killing of GC B lymphocytes is a direct effect that does not involve a paracrine mechanism. BCR-mediated killing of CD40-activated GC B cells could be partially antagonized by the addition of IL-4. Moreover, in the presence of IL-4, prestimulation through CD40 could prevent subsequent anti-Ig-mediated cell death, suggesting a specific role of this combination in selection of GC B cells. This report provides evidence that in human, susceptibility to BCR killing is regulated along peripheral B cell differentiation pathway.


2021 ◽  
Author(s):  
Ashley N. Barlev ◽  
Susan Malkiel ◽  
Annemarie L. Dorjée ◽  
Jolien Suurmond ◽  
Betty Diamond

AbstractFcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcγRIIB expression on B cell activation and plasma cell differentiation.Loss of FcγRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) and IgG3+ B cells had the highest expression of FcγRIIB and the increase in serum IgG3 was linked to increased MZ B cell signaling and activation in the absence of FcγRIIB. Likewise, human circulating MZ-like B cells had the highest expression of FcγRIIB, and their activation was most strongly inhibited by engaging FcγRIIB. Finally, marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses with both T-dependent and T-independent antigens in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice.Thus, we present a model where high FcγRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.Graphical abstract


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2946-2946
Author(s):  
Yangsheng Zhou ◽  
Xia Liu ◽  
Lian Xu ◽  
Zachary Hunter ◽  
Jenny Sun ◽  
...  

Abstract Abstract 2946 Poster Board II-922 Waldenström's macroglobulinemia (WM) is an incurable B cell disorder with a lymphoplasmacytic infiltrate in the bone marrow (BM) and IgM monoclonal gammopathy. WM tumor cells show variable differentiation, ranging from mature B-cells to plasma cells, which likely results from failure to fully undergo differentiation. In this study, we analyzed the expression of several genes involved in B cell differentiation by real time RT-PCR, such as Ets factors, the basic helix-loop-helix (bHLH) E proteins, as well as the inhibitors of DNA binding (Id) proteins which antagonize E protein activity. Comparison of BM CD19+ B cells obtained from 13 WM patients with 6 age-matched healthy donors showed that expression of the Ets factor Spi-B was increased four-fold, while Id2 was decreased three-fold. However, transcript levels of E proteins were similar between the two groups. Transduction of Spi-B in BCWM.1 WM cells resulted in two-fold higher levels of Id2 and five-fold lower levels of E2-2 compared with control. Id2 transduced BCWM.1 cells expressed two-fold lower levels of E2-2 and Spi-B. Taken together, these results implicate that increased expression of Spi-B alone cannot suppress Id2 transcription in the absence of E2-2 activity. Interestingly, overexpressing Spi-B while concomitantly knocking down Id2 increased the expression of the XBP-1 splicing isoform 2.5-fold without changing levels of Blimp-1 and IRF4. Moreover, inhibition of Spi-B expression by RNA interference or forced expression of Id2 in transduced BCWM.1 cells induced a significant decrease of anti-apoptotic Bcl-2. Importantly, we also showed that Spi-B co-immunoprecipated with Blimp-1 in nuclear extracts. Collectively, these data suggest that the regulatory network of the Spi-B, E2-2, and Id2 plays an essential role in B cell differentiation as well as the pathogenesis of WM, and suggests that Spi-B overexpression may block WM cell differentiation by sequestration of Blimp-1 while promoting tumor cell survival though up-regulation of Bcl-2. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 93-93
Author(s):  
Jamie P Nourse ◽  
Pauline Crooks ◽  
Do Nguyen Van ◽  
Kimberley Jones ◽  
Nathan Ross ◽  
...  

Abstract Abstract 93 Lymphomagenesis is a complex process, in part reflecting the nature of the transforming event, as well as the developmental stage of the cell. In the B-cell differentiation represents a continuum that is initiated when a naïve B-cell encounters antigen, undergoes a germinal centre (GC) reaction and ends with terminal differentiation into either a memory or plasma B-cell. Interruption of this process by a transforming event may result in a clonal proliferation where differentiation of the cell is blocked at this stage. The majority of B-cell lymphomas are derived from GC or post-GC B-cells. As physiologically relevant human models that emulate the various stages of B-cell differentiation are lacking we rationalized that in-vitro utilization of the B-cell lymphotrophic Epstein-Barr virus (EBV) would provide insights into this process. In one scenario, EBV infects naïve B-cells and drives a differentiation process paralleling the GC reaction through a well-characterized series of latency gene expression programs. EBV is also implicated in a range of GC and post-GC derived B-cell lymphomas (including Burkitt's, Hodgkin's, PTLD and DLBCL). Using high efficiency EBV infection of isolated naïve B-cells from EBV seronegative subjects, we have demonstrated that EBV infection provides a highly relevant in-vitro model that accurately reflects three distinct phases in the GC differentiation process. Alterations in the expression of a broad range of genes associated with the differentiation of the naïve B-cell were observed within 24 hours of infection and within four days of infection a process exhibiting many similarities to the GC reaction had taken place. These included BCL6, the levels of which were rapidly down-regulated within 24 hours indicating activation of the naïve B-cell. Levels of the memory cell marker CD27 steadily increased over 24 to 96 hours, while BLIMP1 expression increased, peaking at 48 hours. An increase in AID expression over 8 to 48 hours was consistent with somatic hypermutation and isotype switching. Finally a dramatic elevation in expression of the GC associated oncogene LMO2 was observed after two days followed by an equally dramatic downregulation after two weeks. Within two weeks of infection (phase 1), B-cells progressed through a GC-like phase followed by a one week transition state (phase 2) after which continued culture resulted in further differentiation to cells with the phenotypic hallmarks of post-GC cells (phase 3). MicroRNAs (miRNAs) are small non-coding RNAs, which act as negative regulators of gene expression. miRNA expression reflects the developmental lineage and differentiation state of several human cancers and over-expression is implicated in lymphomagenesis. They are also associated with the development of the GC reaction. EBV expresses at least 39 unique miRNAs from the BART and BHRF1 clusters within the viral genome. These EBV miRNAs are differentially expressed in tumour cell lines, suggesting roles during EBV-driven B-cell differentiation and lymphomagenesis. The relationship between EBV miRNAs and the kinetics of EBV driven B-cell differentiation has not been characterized. In our model we find distinct miRNA expression kinetics, coincidental with gene expression changes during B-cell differentiation, suggesting that these regulatory molecules may be involved in the GC process. Although a small number of EBV miRNAs were expressed at low levels early in the GC-like phase 1, the majority were up-regulated during the transition phase 2, exhibiting a subsequent partial down-regulation in the post-GC-like phase 3. The three phases were coincident with differential BART and BHRF1 promoter usage and alternate splicing. Strikingly, application of the infection model to primary patient samples and lymphoma cell-lines revealed that lymphomas clustered within distinct phases, reflecting the full continuum of the B-cell differentiation process. Interestingly, the majority of PTLD samples clustered within the transition phase, whereas Burkitt's and Hodgkin's lymphoma sample segregated with the GC stage. Application of our gene expression and miRNA data to cell-lines and a range of GC and post-GC EBV-positive lymphomas of various histological types indicate that our B-cell differentiation model can be used to accurately classify B-cell lymphomas in a physiologically relevant manner according to the stage of arrested B-cell differentiation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2781-2789 ◽  
Author(s):  
J Punnonen ◽  
G Aversa ◽  
JE de Vries

Abstract Studies on human B-cell development have been hampered by the lack of reproducible culture techniques to induce pre-B cells to differentiate into Ig-secreting plasma cells. Here, we describe that highly purified surface (s) mu-, cytoplasmic (c) mu+, CD10+, CD19+ human pre-B cells derived from fetal bone marrow (BM) differentiate with high frequencies into Ig-secreting plasma cells, when cocultured with activated, cloned CD4+ T cells and with interleukin-4 (IL-4). Production of IgM, total IgG, IgG4, and IgE in pre-B-cell cultures was detected, indicating that the cells also underwent Ig isotype switching. Pre-B-cell differentiation occurred in the absence of BM stromal cells, IL-7, and stem cell factor (SCF). However, IL-7 significantly enhanced the levels of Ig produced, whereas SCF was ineffective. Neutralizing anti-IL-4 monoclonal antibodies (MoAbs) completely inhibited pre-B-cell differentiation showing the specificity of the reaction. Intact CD4+ T- cell clones could be replaced by membrane preparations of these cells, indicating that the costimulatory signals provided by the activated CD4+ T cells are contact-mediated. In contrast, anti-CD40 MoAbs failed to provide the costimulatory signal required for pre-B-cell differentiation, which may be related to the very low expression of CD40 on fetal BM B cells. Activated CD4+ T cells and IL-4 also induced s mu expression and Ig synthesis in cultures initiated with pre-B cells that had been preincubated in medium for 2 days, and from which spontaneously emerging s mu+ B cells were removed by using a fluorescence-activated cell sorter. These results support the notion that the Ig synthesis observed in pre-B-cell cultures was not caused by outgrowth and differentiation of cells that spontaneously matured into s mu+ B cells. In addition, IL-4 and CD4+ T cells strongly enhanced CD40 and HLA-DR expression on the majority of cultured pre-B cells, further indicating that CD4+ T cells and IL-4 activate bona fide pre-B cells. Taken together, these data indicate that activated CD4+ T cells and IL-4 can provide all the necessary signals required for human pre-B cells to differentiate into Ig-secreting plasma cells.


Sign in / Sign up

Export Citation Format

Share Document