Effect of Hepcidin on Hypoxia-Induced Erythropoietin Production

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3219-3219
Author(s):  
Gail A Dallalio ◽  
Robert T. Means

Abstract Abstract 3219 The anemia of chronic disease (ACD) is the major etiology of the anemia observed in in chronically ill patients. ACD typically manifests itself as a hypoproliferative anemia accompanied by a low serum iron concentration despite adequate reticuloendothelial iron stores. In ACD, a slight shortening of red cell survival creates a demand for a small increase in red cell production by the bone marrow. The marrow cannot respond adequately to this demand due to impaired erythropoiesis and impaired mobilization of reticuloendothelial system iron stores. Increased production of the iron regulatory peptide hepcidin has been proposed as the primary factor resulting in ACD. Hepcidin has also been reported to decrease erythroid colony formation in vitro under conditions of restrictive Epo concentration. A blunted erythropoietin (Epo) response to anemia is a characteristic feature of ACD. If hepcidin is the major factor responsible for ACD, then it should also contribute to the impaired Epo production observed in this syndrome. The effect of hepcidin on hypoxia-induced Epo production was evaluated in HepG2 cells exposed to 5% oxygen for 24 hr. 24 hr exposure to hepcidin during hypoxia at the concentrations studied (up to 100 ng/mL) had no adverse effect on HepG2 cell viability compared to controls as evaluated by cell number and Trypan blue exclusion or on cellular synthetic function as measured by alpha fetoprotein. Epo production (whether measured by Western blot or by ELISA) was increased by hypoxia; however, this increase was blunted by the addition of hepcidin to the incubation medium. Impairment of hypoxia-induced Epo production by hepcidin showed a dose-response relationship. The addition of iron-replete transferrin to the incubation mixture did not significantly alter hepcidin effects, suggesting that these effects do not primarily reflect changes in iron availability. In order to evaluate mechanisms by which hepcidin might decrease Epo production, effects of hepcidin 0–100 ng/mL on hypoxia-inducible factor (HIF)-1α protein expression were evaluated in HepG2 cells (HIF expression was normalized to actin expression). The increment in HIF-1α caused by hypoxia was decreased by hepcidin in a dose-dependent manner. The ratio of Epo to HIF was not altered by hepcidin, suggesting that hepcidin effects on HIF may be the mechanism of its effects on Epo production. In conclusion, hepcidin appears to blunt the increment in Epo production induced by hypoxia in vitro. This mechanism does not appear to be reversible by exposure to increased quantities of transferrin-bound iron. This finding is consistent with a role for hepcidin in the impaired Epo production of ACD independent of its effects on iron flux. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4607-4607
Author(s):  
Oscar F. F Ballester ◽  
Johannes Fahrmann ◽  
Theodore Witte ◽  
Gabriela Ballester ◽  
W. Elaine Hardman

Abstract Abstract 4607 Introduction: Nuclear factor kappa B (NFkB) is a critical transcription factor involved in the growth and survival of CLL cells. NFkB is recognized as an important target for the development of novel therapies for the treatment of various malignancies. In vitro and in experimental animal models, OMEGA-3 fatty acid (O3FA) supplementation has been shown to inhibit NFkB activity. Patients and Methods: Patients with early stage CLL (Rai stages 0-II) who required no therapy, where accrued to this phase I-II trial. O3FA supplements were given for a total of 12 months at doses ranging from 2250 mg (EPA plus DHA), escalated to 4500 mg and 6750 mg per day as tolerated. NFkB activity was measured in peripheral blood samples after separation of mononuclear cell by gradient centrifugation and expressed as luminescence units/μ g of protein. Baseline and multiple serial samples were obtained during the study period. In-vitro cytotoxicity assays to doxorubicin were conducted using standard LD50 methods. Compliance was monitored by analysis of red cell and lymphocyte membrane lipid composition by gas chromatography. Results: Fifteen patients have been accrued to the trial, 8 of them have currently completed the planned 12 months of the study period. No significant clinical changes in disease activity were noted. O3FA was well tolerated. Supplementation resulted in a dose-dependent increase of O3FA composition of red cell and lymphocyte membranes in a dose dependent manner. At baseline, CLL patients had NFkB above the range observed in normal controls (2.05 × 104 to 2.32 × 105 NFkB lum units/μ g). The median value in CLL patients at baseline was 11.60 × 106 NFkB lum units/μ g (range 0.9 × 105 to 23.12 × 106). Among 5 patients with the highest baseline levels of NFkB, a decrease in NFkB activity ranging from 0.02 to 0.19 of the baseline value, was noted at the 2 higher doses of O3FA supplementation. Similar results were seen in patients with relatively lower levels of baseline NFkB activity (0.9 × 105 to 2.96 × 106 lum units/μ g). In vitro, significant doxorubicin cytotoxicity (>50%) was noted in samples obtained during supplementation, at μ gM concentrations which produced no detectable cell kill in baseline samples. Conclusions: O3FA supplementation resulted in significant inhibition of NFkB activity in leukemic cells from patients with CLL. In-vitro, after O3FA supplementation CLL cells became more sensitive to doxorubicin. Preliminary analysis of whole genome micro arrays revealed significant down-regulation of multiple genes associated with O3FA supplementation. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


Drug Research ◽  
2017 ◽  
Vol 68 (03) ◽  
pp. 153-158 ◽  
Author(s):  
Rahmaniah Rahmaniah ◽  
Yuyuntia Yuyuntia ◽  
Vivian Soetikno ◽  
Wawaimuli Arozal ◽  
Radiana Antarianto ◽  
...  

Abstract Background Alpha mangostin has been reported to have activity for the treatment of liver fibrosis in the rats. However, the mechanisms of action are poorly understood. This study was aimed to investigate the effect of alpha mangostin on hepatic stellate cells (HSC) activation and proliferation through TGF-β/Smad and Akt signaling pathways. Methods Immortalized HSC, LX2 cells, were incubated with TGF-β with or without alpha mangostin (5 or 10 μM). Sorafenib 10 µM was used as positive control. LX2 viability was counted using trypan blue exclusion method. The effect of alpha mangostin on TGF-β concentrations, and the expressions of proliferation and fibrogenic markers were evaluated. Results Alpha mangostin treatment resulted in a reduced proliferation of HSC, decreased Ki-67 and p-Akt expressions. These findings were followed with decreased concentrations of TGF-β in the medium of cells treated with alpha mangostin, decreased expressions of COL1A1, TIMP1, PAI1, α-SMA, and p-Smad3 as fibrogenic markers. These effects were shown to be dose-dependent. Conclusions Alpha mangostin inhibits hepatic stellate cells proliferation and activation through TGF-β/Smad and Akt signaling pathways in dose dependent manner.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4038-4038
Author(s):  
Jerod Hairston ◽  
Keon Combi ◽  
Altreisha Foster ◽  
Bak Kim ◽  
Victor R. Gordeuk ◽  
...  

Abstract Abstract 4038 Poster Board III-974 Protein phosphatase-1 (PP1) has been implicated in the regulation of KCC (K:Cl) transporters, which transport K+ and Cl- ions from red blood cells (RBCs) and in the setting of sickle cell disease may contribute to RBC dehydration and sickling. We have studied host cell protein phosphatase-1 (PP1) in the context of HIV-1 replication and designed novel small molecule non-competitive inhibitors of PP1 that are efficient in the inhibition of HIV-1 but not toxic for cultured cells. We analyzed the effect of our novel non-competitive PP1 inhibitors and the conventional competitive PP1 inhibitor, ocadaic acid, on the sickling of hemoglobin SS RBCs in vitro. We cultured hemoglobin SS RBCs overnight at 1% O2 in the presence of the PP1 inhibitors and then photographed the RBCs and counted the percentage of sickled RBCs. We found that the non-competitive PP1 inhibitor, 1E7-04 prevented RBC sickling by 40% at 10 mM concentration. The 1E7-04 was not toxic at 10 mM concentration for cultured CEM T cells as determined by trypan blue exclusion assay using an automatic cell counter. Our study suggests that small molecular inhibitors of PP1 might be candidates for the future design of anti-sickling drugs. Acknowledgments. This work was supported by NHLBI grant U54HL090508-02; NHLBI grant R25 HL003679-08 from the National Institute of Helath and The Office of Research on Minority Health and by U.S. Civilian Research & Development Foundation grant. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3376-3376
Author(s):  
Romain Gioia ◽  
Cedric Leroy ◽  
Claire Drullion ◽  
Valérie Lagarde ◽  
Serge Roche ◽  
...  

Abstract Abstract 3376 Nilotinib has been developed to overcome resistance to imatinib, the first line treatment of chronic myeloid leukemia (CML). To anticipate resistance to nilotinib, we generate nilotinib resistant CML cell lines in vitro to characterize mechanisms and signaling pathways that may contribute to resistance. Among the different mechanisms of resistance identified, the overexpression of the Src-kinase Lyn was involved in resistance both in vitro, in a K562 cell line (K562-rn), and in vivo, in nilotinib-resistant CML patients. To characterize how Lyn mediates resistance, we performed a phosphoproteomic study using SILAC (Stable Isotope Labelling with Amino acid in Cell culture). Quantification and identification of phosphotyrosine proteins in the nilotinib resistant cells point out two tyrosine kinases, the spleen tyrosine kinase Syk and the UFO receptor Axl. The two tyrosine kinase Syk and Axl interact with Lyn as seen by coimmunopreciptation. Syk is phosphorylated on tyrosine 323 and 525/526 in Lyn dependent manner in nilotinib resistant cells. The inhibition of Syk tyrosine kinase by R406 or BAY31-6606 restores sensitivity to nilotinib in K562-rn cells. In parallel, the inhibition of Syk expression by ShRNA in K562-rn cells abolishes Lyn and Axl phosphorylation and then interaction between Lyn and Axl leading to a full restoration of nilotinib efficacy. In the opposite, the coexpression of Lyn and Syk in nilotinib sensitive K562 cells induced resistance to nilotinib whereas a Syk kinase dead mutant did not. These results highlight for the first time the critical role of Syk in resistance to tyrosine kinase inhibitors in CML disease emphasizing the therapeutic targeting of this tyrosine kinase. Moreover, Axl, which is already a target in solid tumor, will be also an interesting pathway to target in CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2699-2699 ◽  
Author(s):  
E. Du ◽  
Laurel Mendelsohn ◽  
James S. Nichols ◽  
Ming Dao ◽  
Gregory J. Kato

Abstract Background: Under hypoxic conditions, sickle hemoglobin (HbS) polymerizes, causing morphologic distortion (sickling) of red blood cells (RBCs) in sickle cell disease (SCD). Aes-103 (5-hydroxymethylfurfural, 5-HMF) can stabilize the R-state and increase the oxygen affinity of hemoglobin, inhibiting the intracellular polymerization of HbS. Using a microfluidics-based hypoxia assay, we were able to track sickling of individual cells and quantify the anti-sickling effect of Aes-103 at millimolar (mM) levels in blood from SCD patients on hydroxyurea treatment (on-HU) and not on hydroxyurea treatment (off-HU). Method: We have developed a microfluidic assay that utilizes a gas permeable polydimethylsiloxane (PDMS) film 150 µm in thickness, to create a severe hypoxia microenvironment in a 5 µm deep chamber to measure cell sickling in vitro at 37°C. The hypoxia condition was 5 minutes in total, consisting of an initial oxygen-rich stage (20% O2), a transient deoxygenating stage (O2 concentration decreased to 5% within 15 second), and a steady-stage stage (O2 concentration decreased further and maintained at 2% for the rest of time). Blood samples from 3 on-HU and 3 off-HU patients were incubated with Aes-103 at concentrations of 0.5, 1, 2, and 5 mM for one hour at 37 degrees C, washed with Phosphate Buffered Saline and suspended in RPMI-1640 containing 1% w/v Bovine Serum Albumin for in vitro testing. Sickle RBCs undergoing sickling typically form spiky edges and a dark coarse texture due to intracellular HbS polymerization visually enhanced by a bandpass filter (Fig. 1A). The anti-sickling effect of Aes-103 was then quantified by the maximum sickled fraction (fraction of all RBCs that were morphologically distorted) under the hypoxia condition. Results: In the absence of Aes-103, the sickled fractions varied from 34% to 73% (Mean ± SD: 54% ± 18%). With the presence of Aes-103, the mean sickled fraction decreased with drug concentration (Fig. 1B), which can be well fitted with linear regression (R2= 0.95). With 2 mM Aes-103 incubation, each patient sample showed a significant decrease in cell sickling from its baseline. Addition of Aes-103 at 5 mM concentration prevented majority of RBCs from sickling (sickled fraction ≤ 5%). The sickled fraction of one patient sample was nearly zero. The distribution of sickled fractions does not completely correlate with the patient's HU status in this limited sample size (Fig. 1C). We also observed that hypoxia-induced sickling at baseline showed an apparent bimodal distribution, although the slope of response to Aes-103 concentration was similar. Conclusions: Our microfluidic assay enabled a rapid, quantitative characterization of cell sickling in vitro within a few minutes and using a single drop of whole blood patient sample. We confirmed the anti-sickling efficacy of Aes-103 for both on-HU and off-HU patient samples in a dosage-dependent manner. This assay has potential as a biomarker for drug development and monitoring for in vivo effect of potential anti-sickling therapeutics. Figure 1. (A) Identification of cell sickling from a microscopic image (arrows indicate the sickled RBCs). (B) Sickled fraction as a function of Aes-103 concentration. (C) Variation in response among different on-HU and off-HU patient samples. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Maria Francesca Armentano ◽  
Faustino Bisaccia ◽  
Rocchina Miglionico ◽  
Daniela Russo ◽  
Nicoletta Nolfi ◽  
...  

The main goal of this study was to characterize thein vitroantioxidant activity and the apoptotic potential ofS. birreamethanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochromecrelease from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract ofS. Birreais able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.


2016 ◽  
Vol 99 (5) ◽  
pp. 1240-1246
Author(s):  
Noura M Darwish ◽  
Ahmed S Sultan ◽  
Ahmed M Malki ◽  
Hossam Khamis ◽  
Mohamed El-Ziady

Abstract This study aimed to investigate the inhibitory effect of novel 3D-organocopper supramolecular coordination polymers (SCPs) on the invasive potential of HepG2 cells. Chemoprevention could represent an important means to inhibit the process of hepatocarcinogenesis. The inhibitory effect of an SCP compound on the proliferation of HepG2 hepatoma cells was evaluated by cell vibility assay. DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of the SCP compound on phosphorylated ERK1/2, Bcl-2, and β-catenin protein expression of HepG2 cells was analyzed by Western blot. The SCP compound exerted an inhibitory effect on HepG2 cell proliferation in a dose-dependent manner. This inhibitory effect was confirmed by examination of cell morphology and DNA fragmentation. Furthermore, Western blot analysis revealed that phosphorylated ERK1/2 and β-catenin protein expression was inhibited after 24 h of treatment with the SCP compound, and that this event was associated with decreased Bcl-2 expression. We concluded that SCP can effectively inhibit the invasive potential of the ERK signaling pathway in HepG2 cells by altering apoptosis and by inhibiting Bcl-2 and β-catenin, which may play a significant role in this process.


2017 ◽  
Vol 92 (6) ◽  
pp. 674-680
Author(s):  
S.S. Santa Rosa ◽  
F.O. Santos ◽  
H.G. Lima ◽  
I.M.A. Reis ◽  
D.S.A. Cassiano ◽  
...  

AbstractThis study describes the effects of extracts and fractions of Persea willdenovii leaves against goat gastrointestinal nematodes and their cytotoxicity on Vero cells. The in vitro ovicidal and larvicidal activities of the crude ethanolic, hexane, ethyl acetate (EAE), butanolic and residual hydroethanolic extracts were assessed through the inhibition of egg hatching and larval motility assays. The most active extract (EAE) was then fractionated by chromatography in an open column containing silica gel, to furnish six fractions (Fr1–Fr6), which were also tested. The cytotoxicity of active extracts and fractions was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and trypan blue exclusion assay. The EAE and two fractions (Fr1 and Fr2) showed inhibitory activity in the egg hatching of gastrointestinal nematodes of goats in a concentration-dependent manner. The effective concentrations for 50% inhibition (EC50) of egg hatching were 2.3, 0.12 and 2.94 mg/ml for EAE, Fr1 and Fr2, respectively. All extracts and fractions were not effective in inhibiting 50% of motility of infective larvae. EAE and Fr2 had IC50 values (50% inhibitory concentration) of 4.95 and 2.66 mg/ml, respectively. Fr1 showed a slight cytotoxic effect (cellular inviability <30%) only after 48 h of treatment (MTT test). Gas chromatography–mass spectrometry (GC–MS) analysis showed the presence of six fatty acid ethyl esters, a fatty acid methyl ester and a long-chain ketone in the most active fraction. These constituents identified in P. willdenovii can be related to the high ovicidal activity and relatively non-toxic effect of the extracts.


2021 ◽  
Author(s):  
Xin-Yu Li ◽  
Xin Zhou ◽  
Yu- Liu ◽  
Feng Qiu ◽  
Qing-Qing Zhao

Abstract Purpose: NeosedumosideIII (Neo) is a megastigmanes and belongs to monocyclic sesquiterpenoids compound with antioxidant, anti-inflammatory and other pharmacological activities. In order to explore the anti-cancer effect and possible mechanism of Neo, the study examined the anti-proliferation and apoptosis effect of Neo against human hepatocellular carcinoma HepG2 cells and SMMC-772 cells and related mechanism in vitro. Methods :The anti-proliferation effect of Neo was detected on HepG2 cells and SMMC-772 cells by MTT assay and IC50 with increasing dose and time. Cell cycle and apoptosis were detected by flow cytometer. The changes of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 proteins were detected by western blotting.Results :The results indicated that Neo could inhibited proliferation of HepG2 cells and SMMC-772 cells in vitro and promoted apoptosis, it significantly induced apoptosis of HepG2 cells and SMMC-772 cells arrested cell cycle at G0/G1 phase in a dose-dependent manner, reduce the expression of Bcl-2 protein, and increase the expression of Bax and Caspase-3, Caspase-8 and Caspase-9 proteins. Conclusion:Neo could inhibit proliferation and induce apoptosis of HepG2 cells and SMMC-7721 cells in vivo which suggested that it might be served as a promising candidate for the treatment of liver cancer.


Sign in / Sign up

Export Citation Format

Share Document