B Cell Aplasia In a Patient with Relapsed B Cell Acute Lymphoblastic Leukemia Following Re-Induction and Consolidation with Autologous T Cells Genetically Targeted to the CD19 Antigen

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3268-3268
Author(s):  
Marco L Davila ◽  
Clare Taylor ◽  
Xiuyan Wang ◽  
Jolanta Stefanski ◽  
Malgorzata Olszewska ◽  
...  

Abstract Abstract 3268 Despite high initial remission rates following induction chemotherapy, most adults with B cell acute lymphoblastic leukemia (B-ALL) ultimately relapse and the overall prognosis is poor. In light of the overall poor outcomes seen with currently available chemotherapy regimens as well as allogeneic stem cell transplantation, novel and effective treatment approaches are needed for these patients. To this end, we have developed a program utilizing a patient's own T cells genetically modified ex vivo to express a chimeric antigen receptor (CAR), termed 19–28z, specific to the CD19 antigen expressed on normal B cells as well as most B-ALL tumors. In preclinical studies, human T cells modified to express the 19–28z CAR effectively eradicated systemic human B-ALL NALM-6 tumors in SCID-Beige mice. Based on these findings we have recently opened a phase I clinical trial (IRB #09-114) wherein patients with relapsed B-ALL are initially treated with re-induction chemotherapy followed by consolidation with high dose cyclophosphamide (3gm/m2) and a subsequent infusion of autologous T cells genetically modified to express the 19–28z CAR. Herein, we report the initial findings of the first patient treated on this clinical trial. This patient, a 67-year-old male, with B-ALL (normal cytogenetics), achieved a complete remission following induction chemotherapy with mitoxantrone and high-dose cytarabine. The patient remained in remission following treatment with vincristine (consolidation B) and cyclophosphamide (consolidation C). However, he was noted to have relapsed disease following consolidation cycle D with cytarabine and etoposide. At the time of relapse the patient was leukapheresed to obtain autologous T cells, and subsequently achieved a second remission following re-induction with a modified PEG-asparaginase, vincristine, and prednisone regimen. Upon recovery, the patient, as stipulated by the clinical trial, received lymphodepleting consolidation with high dose cyclophosphamide followed, 2 and 3 days later, by a split dose infusion of 3 × 106/kg autologous 19–28z+ T cells, the lowest planned T cell dose on this trial. Over the next 2 weeks, FACS and Q-PCR detected gene-modified T cells in the peripheral blood. Significantly, over the next 5 weeks, despite recovery of neutrophils and T cells, the patient exhibited a persistent B cell aplasia consistent with CD19-targeted cytotoxic activity of the infused autologous 19–28z+ T cells. The patient subsequently received an allogeneic stem cell transplant from a HLA-identical sibling effectively abrogating further analysis of modified T cell function. Despite this limitation, we conclude that following lymphodepleting chemotherapy, modified CD19-targeted T cells exhibit effective anti-CD19 cytotoxic activity, as demonstrated by the persistent B cell aplasia, in the clinical setting. These findings support the promise of this novel adoptive T cell therapy in patients with relapsed B-ALL. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 228-228 ◽  
Author(s):  
Shuangyou Liu ◽  
Biping Deng ◽  
Jing PAN ◽  
Zhichao Yin ◽  
Yuehui Lin ◽  
...  

Cytokine release syndrome (CRS) is the most prominent and potentially life-threatening toxicity caused by chimeric antigen receptor (CAR) T cell therapy, therefore, effectively controlling severe CRS is critical to ensure patient safety. Tocilizumab, an interleukin-6 receptor antagonist, has been widely used to treat CRS, whereas it is not clear if corticosteroids could be as another optimal choice for managing CRS. We applied corticosteroids instead of tocilizumab as the first-line agent to control CRS in patients with relapsed/refractory B-cell acute lymphoblastic leukemia during CAR-T therapy. The impacts of steroids on treatment efficiency and kinetics of CAR-T cells were assessed by comparing two groups of patients who did (42 cases) or did not (26 cases) receive steroids. Patients followed up less than one month (went to other hospitals for transplantation or died within one month) were excluded. Treatment effects were evaluated on day 30 after T-cell infusion and then monthly in follow-up patients. Minimal residual disease (MRD) was detected by multiparameter flow cytometry (FCM) and quantitative PCR for fusion genes. The dynamic monitoring of CAR-T cells was performed through flow cytometric quantitation of FITC+CD3+ T cells. B-cell aplasia (BCA) was assayed by FCM. Dexamethasone or methylprednisolone or both (alternately) were administrated. Dexamethasone was used in most cases especially for patients with neurologic symptoms; methylprednisolone was preferred for patients with pulmonary or liver dysfunction, and patients accepting high dose steroids. Steroids started with low dose and could be increased if symptoms were not resolved, for severe CRS, steroids would be escalated up to dexamethasone 20mg/m2/d or more higher up to methylprednisolone 10mg/kg/d. Once CRS was improved, steroids were rapidly reduced and stopped. A total of 68 patients (28 adults and 40 children younger than 18 years) were included, 22 (32.4%) presented with extramedullary diseases (EMD), bone marrow blasts in patients without EMD varied between 5%-96.5%, 31 (45.6%) patients had an allogeneic transplantation, 54 (79.4%) cases received CD19-specific and 14 (20.6%) received CD22-specific CAR-T therapy. Forty-two (61.8%) cases, including all (10) of grade III CRS, 68.2% (30/44) of grade II CRS and 2 patients with no CRS but with GVHD (1 case) or neurotoxicity (1 case), were administered steroids, among them, 23/42 (54.8%) received high dose steroids (>10mg/m2/d dexamethasone or equivalent), the duration of steroid use was 1-16 days (78.6% <= 7 days); whereas 26 (38.2%) patients were not given any steroids but the supportive care. We found that there was no difference either in complete remission (CR) rate (95.2% vs 92.3%, p=.344) or in MRD negative CR rate (80.0% vs 79.2%, p=.249) between steroid and non-steroid group, verified that corticosteroids even high dose steroids did not influence the treatment response. Furthermore, we investigated the dynamics of CAR-T cells. Firstly, the expansion of CAR-T cells in peripheral blood (PB) was evaluated, the average CAR-T cell counts in steroid group were significantly higher than those in non-steroid group on D11 (p=.0302), D15 (p=.0053), D20 (p=.0045) and D30 (p=.0028), except for D7 when CAR-T cells began to expand (p=.9815), this demonstrated that steroids did not suppress the proliferation of CAR-T cells in PB. Secondly, the percentages of patients with detectable CAR-T cells in bone marrow (BM) and cerebrospinal fluid (CSF) were compared between steroid and non-steroid group, there were no differences both in BM (85.2% vs 78.6%, p=.923) and in CSF (68.6% vs 57.9%, p=.433), which implied steroids did not influence the trafficking of T-cells to BM and CSF. Thirdly, we monitored B-cell aplasia (BCA) in part of patients followed-up more than 2 months without further treatments, the percentages of patients with BCA in steroid group had no significant differences compared to non-steroid group at 2-month (p=.086) and 3-month (p=.146). Later, although limited cases left, in the steroid group, 100% of patients (4-month, 7/7; 5-month, 7/7; 6-month, 5/5) still maintained BCA and CR, indicating that corticosteroids did not impact the duration of functional CAR-T cells. In conclusion, corticosteroids do not compromise the treatment efficacy and kinetics of CAR-T cells, could be as a feasible and effective approach to manage CAR-T associated CRS. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 13 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Hildegard T. Greinix

SummaryChimeric antigen receptor (CAR) T cells are genetically engineered cells containing fusion proteins combining an extracellular epitope-specific binding domain, a transmembrane and signaling domains of the T cell receptor. The CD19-CAR T cell product tisagenlecleucel has been approved by the US Food and Drug Administration and the European Medicines Agency for therapy of children and young adults under 25 years with relapsed/refractory B‑cell acute lymphoblastic leukemia (ALL) due to a high overall response rate of 81% at 3 months after therapy. The rates of event-free and overall survival were 50 and 76% at 12 months. Despite the high initial response rate with CD19-CAR‑T cells in B‑ALL, relapses occur in a significant fraction of patients. Current strategies to improve CAR‑T cell efficacy focus on improved persistence of CAR‑T cells in vivo, use of multispecific CARs to overcome immune escape and new CAR designs. The approved CAR‑T cell products are from autologous T cells generated on a custom-made basis with an inherent risk of production failure. For large scale clinical applications, universal CAR‑T cells serving as “off-the-shelf” agents would be of advantage. During recent years CAR‑T cells have been frequently used for bridging to allogeneic hematopoietic stem cell transplantation (HSCT) in patients with relapsed/refractory B‑ALL since we currently are not able to distinguish those CAR‑T cell induced CRs that will persist without further therapy from those that are likely to be short-lived. CAR‑T cells are clearly of benefit for treatment following relapse after allogeneic HSCT. Future improvements in CAR‑T cell constructs may allow longer term remissions without additional HSCT.


2021 ◽  
pp. JCO.21.00389
Author(s):  
Jing Pan ◽  
Yue Tan ◽  
Guoling Wang ◽  
Biping Deng ◽  
Zhuojun Ling ◽  
...  

PURPOSE Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (r/r T-ALL) have few options and poor prognosis. The aim was to assess donor-derived anti-CD7 chimeric antigen receptor (CAR) T-cell safety and efficacy in patients with r/r T-ALL. METHODS In this single-center, phase I trial, we administered anti-CD7 CAR T cells, manufactured from either previous stem-cell transplantation donors or new donors, to patients with r/r T-ALL, in single infusions at doses of 5 × 105 or 1 × 106 (±30%) cells per kilogram of body weight. The primary end point was safety with efficacy secondary. RESULTS Twenty participants received infusions. Adverse events including cytokine release syndrome grade 1-2 occurred in 90% (n = 18) and grade 3-4 in 10% (n = 2), cytopenia grade 3-4 in 100% (n = 20), neurotoxicity grade 1-2 in 15% (n = 3), graft-versus-host disease grade 1-2 in 60% (n = 12), and viral activation grade 1-2 in 20% (n = 4). All adverse events were reversible, except in one patient who died through pulmonary hemorrhage related to fungal pneumonia, which occurred at 5.5 months, postinfusion. Ninety percent (n = 18) achieved complete remission with seven patients proceeding to stem-cell transplantation. At a median follow-up of 6.3 months (range 4.0-9.2), 15 remained in remission. CAR T cells were still detectable in five of five patients assessed in month 6, postinfusion. Although patients' CD7-positive normal T cells were depleted, CD7-negative T cells expanded and likely alleviated treatment-related T-cell immunodeficiency. CONCLUSION Among 20 patients with r/r T-ALL enrolled in this trial, donor-derived CD7 CAR T cells exhibited efficient expansion and achieved a high complete remission rate with manageable safety profile. A multicenter, phase II trial of donor-derived CD7 CAR T cells is in progress ( NCT04689659 ).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nana Shi ◽  
Yingwan Luo ◽  
Ying Xu ◽  
Junyu Liang ◽  
An Ma ◽  
...  

B-cell acute lymphoblastic leukemia is the most common malignant tumor in children. About 10–15% of patients will relapse with a 5-year OS of 57.5% for the past 20 years. As tumor microenvironment plays an important role in the disease process, many types of immunotherapy are approached. New immunotherapies including CAR-T cells have been developed for refractory B-ALL treatment. However, CAR-T treatment faces several problems, including loss of the target antigen and in vivo T-cell persistence. Here, we analyzed the tumor microenvironment of pediatric B-ALL patients in TARGET database. Using Cox analysis and PPI network, we finally sorted out the DAP10 gene. We found that DAP10 was hardly expressed in leukemic B cells. DAP10 was downregulated in B-ALL compared with normal individuals, and low expression level of DAP10 predicted poor survival. Furthermore, we found the tumor microenvironment was different in DAP10 high and low expression children. The CD8+ T cells might be hard to activate and more likely to suffer from exhaustion in DAP10 lowly expressed children. In conclusion, our results showed that DAP10 was a well biomarker to indicate the prognosis and tumor microenvironment in pediatric B-ALL. The treatment strategy of immunotherapy for the leukemic children with DAP10 lowly expressed should be adjusted if needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asmaa M. Zahran ◽  
Azza Shibl ◽  
Amal Rayan ◽  
Mohamed Alaa Eldeen Hassan Mohamed ◽  
Amira M. M. Osman ◽  
...  

AbstractOur study aimed to evaluate the levels of MDSCs and Tregs in pediatric B-cell acute lymphoblastic leukemia (B-ALL), their relation to patients’ clinical and laboratory features, and the impact of these cells on the induction response. This study included 31 pediatric B-ALL patients and 27 healthy controls. All patients were treated according to the protocols of the modified St. Jude Children’s Research Hospital total therapy study XIIIB for ALL. Levels of MDSCs and Tregs were analyzed using flow cytometry. We observed a reduction in the levels of CD4 + T-cells and an increase in both the polymorphonuclear MDSCs (PMN-MDSCs) and Tregs. The frequencies of PMN-MDSCs and Tregs were directly related to the levels of peripheral and bone marrow blast cells and CD34 + cells. Complete postinduction remission was associated with reduced percentages of PMN-MDSCs and Tregs, with the level of PMN-MDCs in this subpopulation approaching that of healthy controls. PMN-MDSCs and Tregs jointly play a critical role in maintaining an immune-suppressive state suitable for B-ALL tumor progression. Thereby, they could be independent predictors of B-ALL progress, and finely targeting both PMN-MDSCs and Tregs may be a promising approach for the treatment of B-ALL.


2014 ◽  
Vol 36 (5) ◽  
pp. e265-e270 ◽  
Author(s):  
Rachel Kobos ◽  
Neerav Shukla ◽  
Thomas Renaud ◽  
Susan E. Prockop ◽  
Farid Boulad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document