Novel PI3K Inhibitor Compound A Induces Myeloma Cell Apoptosis and Shows Synergistic Cytotoxicity with Dexamethasone In Multiple Myeloma

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4080-4080
Author(s):  
Yuhuan Zheng ◽  
Jing Yang ◽  
Liang Zhang ◽  
Jianfei Qian ◽  
Jairo Matthews ◽  
...  

Abstract Abstract 4080 Phosphatidylinositol 3-kinase (PI3K) plays a central role in cell metabolism. PI3K is activated by growth factors, cytokines, and other stimulatory factors in association with their receptors. Activated PI3K in turn initiates signaling transduction to Akt-mTOR and leads to regulation of cell growth, proliferation, and apoptosis. Dysregulation of the pathway is widely seen in different types of human cancers, including multiple myeloma (MM). Therefore, PI3K-Akt inhibition is expected to exert broad anti-MM activity. Compound A (CA) is a novel pan-PI3K inhibitor, developed by Novartis Oncology. This compound has shown significant cell growth inhibition and induction of apoptosis in a variety of tumor cell lines. CA is currently being investigated in Phase I clinical trials in solid tumor patients. In this study, we investigated the in vitro and in vivo anti-MM activity of CA. Our findings showed that CA induces apoptosis in MM cell lines, ARP1, ARK, MM.1S, MM.1R, CAG and U266, and primary MM cells in both a time-dependent and a dose-dependent manner in vitro. Western blot analysis indicated activation of caspases after CA exposure. The presence of MM bone marrow stromal cells (BMSCs) or addition of IL-6, the growth cytokine for MM, did not attenuate CA-induced MM cell apoptosis. More importantly, CA only showed limited cytotoxicity toward normal lymphocytes or non-tumoric BMSCs. Results from mechanistic studies showed that CA treatment results in cell cycle arrest in G1 phase by upregulating cell cycle repressor p27 (Kip1) and downregulating cyclin D1. CA treatment also caused decreased anti-apoptotic XIAP expression, and increased cytotoxic small isoform of Bim, BimS expression, both of which may contribute to CA-induced cell apoptosis. In addition to its effect in vitro, CA showed potent anti-MM activity in vivo in an established MM model in SCID mice. CA treatment repressed tumor growth and prolonged the survival of tumor-bearing mice. To test the synergistic/addictive effect of CA with other MM chemotherapeutics, we combined CA with melphalan, dexamethasone, lenalidomide, or bortezomib to treat MM cells. Our results showed that low doses of CA and dexamethasone, either of which alone has only limited cytotoxicity, exhibited synergistic anti-MM activity in dexamethasone-sensitive cell lines ARP1 and MM.1S, but not in dexamethasone-resistant cell MM.1R. Western blot analysis suggested that CA and dexamethasone combined treatment in MM.1S results in accumulation of the cytotoxic BimS. Increased BimS expression may cause the synergistic effect of CA and dexamethasone. Thus, our findings suggest CA alone or together with dexamethasone may be a promising treatment for MM. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Author(s):  
Tao Yan ◽  
Xin Chen ◽  
Hua Zhan ◽  
Penglei Yao ◽  
Ning Wang ◽  
...  

Abstract BackgroundThe tumor microenvironment plays an important role in tumor progression. Hyaluronic acid (HA), an important component of the extracellular matrix in the tumor microenvironment, abnormally accumulates in a variety of tumors. Whereas the role of abnormal HA metabolism in glioma remains unclear. MethodsThe expression level of hyaluronic acid (HA) was analyzed by ELISA assay and proteins such as HAS3, CD44, P62, LC3, CCND1 and CCNB1 were measured with Western blot analysis. The cell viability and proliferation were measured by MTT and KI67 immunofluorescence staining respectively. Autophagic vesicles and autophagosomes were quantified by transmission electron microscopy (TEM) and GFP-RFP-LC3 fluorescence analysis respectively. Cell cycle was analyzed by flowcytometry and Western blot analysis. Immunohistochemical (IHC) staining was used to detect expression levels of HA, Ki67, HAS3 and CD44 in human and mouse tumor tissues. Lentivirus constructed HAS3 and CD44 knockout stable glioma cells were transplanted to BALB/C nude mice for in vivo experiments. 4-Methylumbelliferone (4MU) was also used to treat glioma bearing mice for verifing its anti-tumor ability. The expression curve of HAS3, CD44 and the disease-free survival (DFS) curves for HAS3, CD44 in patients with LGG and GBM was performed based on TCGA database. ResultsAs shown in the present study, HA, hyaluronic acid synthase 3 (HAS3) and a receptor of HA named CD44 are expressed at high levels in human glioma tissues and negatively correlated with the prognosis of patients with glioma. Silencing HAS3 or blocking CD44 inhibited the proliferation of glioma cells in vitro and in vivo. The underlying mechanism was attributed to the inhibition of autophagy flux and further maintaining glioma cell cycle arrest in G1 phase. More importantly, 4-Methylumbelliferone (4-MU), a small competitive inhibitor of UDP with the ability to penetrate the blood-brain barrier (BBB), also inhibited the proliferation of glioma cells in vitro and in vivo. ConclusionApproaches that interfere with HA metabolism by altering the expression of HAS3 and CD44 and the administration of 4-MU potentially represent effective strategies for glioma treatment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2576-2576
Author(s):  
Tobias Berg ◽  
Manfred Fliegauf ◽  
Jurij Pitako ◽  
Jan Burger ◽  
Mahmoud Abdelkarim ◽  
...  

Abstract Background: The translocation (8;21) is the most common chromosomal rearrangement in AML, resulting in the expression of the fusion protein AML1/ETO. We have developed an ecdysone-inducible U937 model, in which AML1/ETO is expressed in response to treatment with Ponasterone (Pon) A (Fliegauf et al, Oncogene 2004). This model system was used to determine the cellular effects of AML1/ETO and to identify its target genes in U937 cells. Methods: Effects of AML1/ETO expression upon cell growth, viability, cell cycle and apoptosis were analyzed by trypan blue exclusion, FACS analysis using propidium iodide and DiOC6 staining, DNA laddering and Western blot for PARP cleavage, respectively. The gene expression profile of U937 with and without conditional AML1/ETO expression was assessed using Affymetrix U133A microarrays. Wild-type U937 cells with and without PonA treatment as well as AML1/ETO-negative and AML1/ETO-positive myeloid cell lines served as controls. Northern and Western Blotting were used for validation of expression changes. Results: Induction of AML1/ETO expression in U937 resulted in reduced cell growth, G1 arrest and in apoptosis beginning 48–72 hours after PonA treatment. To investigate the underlying mechanisms, microarray analysis was performed. Expression profiles of AML1/ETO-positive and AML1/ETO-negative cell lines formed distinct clusters. Based on stringent criteria, 191 different genes were found upregulated, whereas 37 were downregulated upon expression of AML1/ETO in U937. The identified genes were screened for genes with known functions in cell cycle and apoptosis by automated and manual review and included 13 apoptosis-related genes. Among them, the CDK inhibitor p21/WAF/CIP1 was upregulated 19-fold upon induction of AML1/ETO, whereas the apoptosis regulator MCL-1 was induced 2.5-fold. Based on our criteria, no differential expression of other transcriptionally-controlled apoptosis regulators (such as BCL2, BAX, BAK1, BAD or c-flip) was noted. Northern and Western Blot analysis confirmed the strong induction of p21/WAF/CIP1 that paralleled the expression of AML1/ETO 10 hours after PonA treatment. Induction of p21/WAF/CIP1 was independent of the tumor suppressor protein p53 (Dou et al., Proc. Natl. Acad. Sci. 1995), and by Western blot, p53 was undetectable in U937. Northern Blot analysis revealed a higher expression of p21/WAF/CIP1 in the AML1/ETO-positive cell lines Kasumi-1 and SKNO-1 than in the AML1/ETO-negative cell lines HL-60, KG-1 and U937, supporting our finding that AML1/ETO may induce p21/WAF/CIP1. Conclusions: AML1/ETO expression resulted in increased expression of p21/WAF/CIP1, which might contribute to the observed growth arrest and induction of apoptosis caused by the conditional expression of AML1/ETO.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1653-1653
Author(s):  
Silvia Locatelli ◽  
Arianna Giacomini ◽  
Anna Guidetti ◽  
Loredana Cleris ◽  
Michele Magni ◽  
...  

Abstract Abstract 1653 Introduction: A significant proportion of Hodgkin lymphoma (HL) patients refractory to first-line chemotherapy or relapsing after autologous transplantation are not cured with currently available treatments and require new treatments. The PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in the majority of HL. These pathways can be targeted using the AKT inhibitor perifosine (Æterna Zentaris GmBH, Germany, EU), and the RAF/MEK/ERK inhibitor sorafenib (Nexavar®, Bayer, Germany, EU). We hypothesized that perifosine in combination with sorafenib might have a therapeutic activity in HL by overcoming the cytoprotective and anti-apoptotic effects of PI3K/Akt and RAF/MEK/ERK pathways. Since preclinical evidence supporting the anti-lymphoma effects of the perifosine/sorafenib combination are still lacking, the present study aimed at investigating in vitro and in vivo the activity and mechanism(s) of action of this two-drug combination. METHODS: Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P ≤.0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of apoptosis. In responsive cell lines, WB analysis showed that anti-proliferative events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P ≤.0001) as well as mice receiving perifosine alone (49 days, P ≤.03) or sorafenib alone (54 days, P ≤.007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P ≤.0001) and necrosis (2- to 8-fold, P ≤.0001), as compared to controls or treatment with single agents. CONCLUSIONS: Perifosine/sorafenib combination resulted in potent anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation in HL patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3168-3168
Author(s):  
Anamika Dhyani ◽  
João Agostinho Machado-Neto ◽  
Patricia Favaro ◽  
Sara Teresinha Olalla Saad

Abstract Introduction ANKHD1 is a multiple ankyrin repeats containing protein, highly expressed in cancers, such as acute leukemia. Earlier studies showed that ANKHD1 is highly expressed and plays important role in proliferation and cell cycle progression of multiple myeloma (MM) cells. It was also observed that ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irresepective of TP53 mutational status of MM cell lines. Objective The present study aimed to study the effect ofANKHD1 silencing on MM growth both in vitro (clonogenicity, migration) and in vivo (xenograft tumor mice model). The purpose was to investigate the feasibility of ANKHD1 gene therapy for MM. Methods In the present study, ANKHD1 expression was silenced using short hairpin RNA (shRNA)-lentiviral delivery vector in MM cell lines (U266 and MM1S). For control MM cells were tranduced by lentiviral shRNA against LacZ. Downregulation of ANKHD1 expression was confirmed by qPCR and Western blot. Colony formation capacity and migration of control and ANKHD1 silenced MM cells was determined by methylcellulose and transwell migration assays, respectively. For in vivo MM growth, NOD-SCID mice were divided in two groups injected with control and ANKHD1 silenced cells, separately. Mice were observed daily for tumor growth. Once the tumor size reached 1 mm3, mice in both groups were sacrificed and tumor was excised to measure tumor volume and weight. Results Corroborating the results obtained in our earlier studies, in the present study also inhibition of ANKHD1 expression suppressed growth of MM cells in vitro. MM cell lines tranduced with ANKHD1 shRNA showed significantly low number of colonies ten days after plating in methylcellulose medium as compared to control (p<0.05). Similarly, in transwell migration assay, cell lines transduced with ANKHD1 showed significantly less migration as in response to 10% FBS at lower chamber as compared to control group (p<0.05) in both the cell lines analyzed. Further in xenograft MM mice model, the growth of tumor was visibly suppressed in mice injected with ANKHD1 silenced cells compared to control group. There was significant difference in tumor size (volume) between these 2 groups (P< 0.006). The tumor weight of the inhibition group was 0.71 ±0.2 g, significantly lighter than those of the control group (1.211 ± 0.5 g, P =0.02) Conclusion Our data indicates ANKHD1 downregulation significantly inhibits colony-forming ability and migration of both glucocorticoid resistant (U266) and sensitive (MM1S) MM cells. Further, gene silencing of ANKHD1 also resulted in reduced in vivo tumor growth in NOD/SCID mice. Collectively, the result obtained indicates that ANKHD1 may be a target for gene therapy in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1496-1496 ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Enrico Derenzini ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 1496 Introduction: Although progress in the treatment of ALL has been remarkable in children, in adults ALL still carries a dismal outcome. Thus, there is a need to improve therapeutic options. In the last years, selective inhibitors of Chk1 and/or Chk2 have been discovered, developed and entered in clinical trials. However, so far, they have not yet been investigated in leukemia. Chk1 and Chk2 are serine/threonine kinases that play a critical role in response to DNA damage both by halting the cell cycle through checkpoint activation and by actively repairing DNA. Here, we explored the in vitro and in vivo activity of single-agent inhibition of Chk1/2 by PF-0477736 in B- and T-progenitor ALL and we investigated potential biomarkers of functional inhibition. Methods: Human B (BCR-ABL1-positive: BV-173, SUPB-15; BCR-ABL1- negative: NALM-6, NALM-19, REH) and T (MOLT-4, RPMI-8402, CEM) leukemia cell lines were incubated with increasing concentrations of drug (5–2000 nM) for 24, 48 and 72 hours (hrs). Results: Inhibition of Chk1/2 resulted in a dose and time-dependent cytotoxicity with RPMI-8402 and BV-173 cells being the most sensitive (IC50 at 24 hrs: 57 nM and 82 nM, respectively), while NALM-6 cells the most resistant (IC50 at 24 hrs: 1426 nM)(WST-1 assay, Roche). Sensitivity did not correlate with p53 status (BV-173, SUPB-15, NALM-6 and NALM-19 cells were p53 wild-type whereas REH, MOLT-4, RPMI-8402 and CEM cells were p53 mutated) and with baseline levels of Chk1/2 and ATR/ATM phosphorylation, indicative of intrinsic genetic stress. Consistent with the viability results, Annexin V/Propidium Iodide (PI) staining analysis showed a significant increase of apoptosis at 24 and 48 hrs in a dose and time dependent manner coupled to increased proteolytic cleavage of PARP-1. In all sensitive cell lines in addition to the induction of apoptosis, Chk1/Chk2 inhibition induced DNA damage as demonstrated by the increased number of γH2AX foci (western blot and immunofluorescence analysis) and by a marked phosphorylation of Chk1 (ser317 and ser345). Moreover, PF-0477736 efficiently triggered the Chk1-Cdc25-Cdk1 pathway as soon as 24 hrs of treatment with a decrease of the inhibitory phosphorylation of Cdc25c (ser216) and Cdk1 (tyr15), leading to the abrogation of cell cycle arrest as confirmed by PI staining analysis at 6 and 24 hrs. The efficacy of PF-0477736 was thereafter demonstrated in primary leukemic blasts separated from 14 ALL patients. Based on the viability results at 24 hrs, 3 groups of patients were identified: very good responders, 5/14, 36% (IC50: 100–500 nM); good responders, 6/14, 43% (IC50: 600–1000 nM); poor responders, 3/14, 21% (IC50 > 1000 nM). By contrast, PF-0477736 did not show efficacy in primary cultures of normal bone marrow mononuclear cells, demonstrating its specificity for leukemia cells. We extended the in vitro and ex-vivo studies by assessing the efficacy of Chk inhibition in mice transplanted with T-lymphoid leukemia, demonstrating that PF-0477736 increases the survival of treated mice compared with mice treated with vehicle (p = 0.0016). Finally, in order to elucidate the mechanisms of action of PF-0477736 and to determine biomarkers of response, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was performed on treated leukemia cells and their untreated counterparts (DMSO 0.1%) after 24 hrs of incubation with concentrations equal to the IC50. Treatment resulted in a differential expression (p < 0.05) of genes involved in chromatin assembly, nucleosome organization and DNA packaging (e.g. Histone H1-H2A, 2B family clusters), DNA damage (DDIT3, GADD34 and GADD45a) and apoptosis (e.g. CDKN1A, BAX, FAS, BTG1), confirming that PF-0477736 contributes to checkpoint replication abrogation, accumulation of DNA damage and subsequent apoptosis in leukemia cells. Interestingly, N-Myc and c-Myc expression strongly decreased after treatment, as also confirmed by western blot analysis, suggesting that a negative feedback loop may exist between Chk induction and Myc expression. Conclusions: Together, these results demonstrate the efficacy of PF-0477736 both in vitro and in vivo models of ALL, arguing in favor of its future clinical evaluation in leukemia. Supported by ELN, AIL, AIRC, Fondazione Del Monte di Bologna-Ravenna, PRIN2009, PIO program, Programma Ricerca Regione-Università 2007–2009. PF-0477736 provided by Pfizer. Disclosures: Baccarani: ARIAD, Novartis, Bristol Myers-Squibb, and Pfizer: Consultancy, Honoraria, Speakers Bureau. Martinelli:NOVARTIS: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; PFIZER: Consultancy; ARIAD: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 942-942 ◽  
Author(s):  
Naoya Mimura ◽  
Hiroto Ohguchi ◽  
Diana Cirstea ◽  
Francesca Cottini ◽  
Gullu Topal Gorgun ◽  
...  

Abstract Abstract 942 The PI3K/Akt pathway mediates multiple myeloma (MM) cell growth and drug resistance, and targeting this molecule is a promising therapeutic option. In this study, we examined anti-MM activities of TAS-117 (TAIHO PHARMACEUTICAL CO., LTD., JAPAN), a selective potent Akt inhibitor in MM cell lines including MM.1S, MM.1R, OPM1 and H929 cells with high level of baseline Akt phosphorylation. TAS-117 induced significant growth inhibition in these cell lines, associated with downregulation of phosphorylation (Ser473 and Thr308) of Akt and downstream molecule FKHR/FKHRL1, without cytotoxicity in normal peripheral blood mononuclear cells. TAS-117 triggered G0/G1 arrest followed by apoptosis, evidenced by increased annexin V-positive cells, in both MM.1S and H929 cell lines. Apoptosis was further confirmed by cleavage of caspase-8, -3 and PARP. Interestingly, TAS-117 also induced: autophagy, evidenced by increased LC3-II; as well as endoplasmic reticulum (ER) stress, confirmed by induction of phospho-eIF2α, phospho-IRE1α and a molecular chaperone BiP/GRP78. Since the bone marrow (BM) microenvironment plays a crucial role in MM cell pathogenesis including drug resistance, we further examined the effect of TAS-117 in the presence of BM stromal cells (BMSCs). TAS-117 induced significant cytotoxicity in MM cells even in the presence of BMSCs, associated with downregulation of phospho-Akt. Importantly, TAS-117 inhibited secretion of IL-6 from BMSCs, and exogenous IL-6 and IGF-1 did not block cytotoxicity induced by this agent. We have previously shown the bortezomib activates Akt, and that Akt inhibition with bortezomib triggers synergistic MM cell cytotoxicity. TAS-117 enhanced bortezomib-induced cytotoxicity in MM.1S cells, associated with increased CHOP followed by PARP cleavage, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. TAS-117 also enhanced cytotoxicity induced by other therapeutic agents (ie, rapamycin, dexamethasone, 17-AAG) in MM.1S cells. Finally, we examined anti-MM activities of TAS-117 in a xenograft murine model. Oral administration of TAS-117 for 14 days significantly inhibited growth of H929 plasmacytoma and was well tolerated. Taken together, the novel and selective Akt inhibitor TAS-117 blocks MM cell growth in vitro and in vivo, providing the preclinical framework for clinical evaluation of this agent to improve patient outcome in MM. Disclosures: Shimomura: TAIHO PHARMACEUTICAL CO., LTD.: Employment. Utsugi:TAIHO PHARMACEUTICAL CO., LTD.: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1945-1945
Author(s):  
Kylee H Maclachlan ◽  
Andrew Cuddihy ◽  
Nadine Hein ◽  
Carleen Cullinane ◽  
Simon J. Harrison ◽  
...  

Abstract Background: Multiple myeloma (MM) requires combination drug therapies to delay acquired drug resistance and clinical relapse. We co-developed CX-5461, a highly-selective inhibitor of RNA polymerase I-mediated rDNA transcription(1), currently in phase I trials for relapsed haematological malignancies (Peter Mac). CX-5461 produces a targeted nucleolar DNA damage response (DDR), triggering both a p53-dependent and -independent nucleolar stress response and killing malignant cells while sparing normal cells(2,3). Single-agent CX-5461 provides an impressive survival benefit in mouse models of B-cell lymphoma, acute myeloid leukaemia and now MM(2,4,5). However, drug resistance eventually occurs, confirming the need for combination therapies. Aim: To test the efficacy of CX-5461 in combination with the histone deacetylase inhibitor panobinostat, (prioritised from a boutique high-throughput screen of anti-myeloma agents), with a focus on the setting of resistance to proteasome-inhibitors (PIs). Methods: We assessed the impact of CX-5461 and panobinostat on overall survival in mouse models of MM, then surveyed the effects on cellular response and molecular markers of DDR. We developed bortezomib-resistant cell lines and an in vivo model of bortezomib-resistance to test this combination in the setting of PI-resistance. Results: CX-5461 in combination with panobinostat provides a significant survival advantage in both the transplanted Vk*MYC and the 5T33/KaLwRij models, with minimal bone marrow toxicity. The combination showed increased anti-proliferative effects and cell death in vitro. Interestingly, experiments interrogating the downstream cellular response of this combination suggest that the mechanism(s) driving synergy are complex and cell context-dependent. Cell cycle analysis indicates that both CX-5461- and panobinostat-driven cell cycle effects, i.e. G2/M and G1/S arrest, respectively, are dominant in the combination setting in a cell line-dependent manner, suggesting that context-dependent factors such as p53 may influence the cellular response. Mechanistically, in both p53-wild type and -null cell lines we observe an increase in DDR signalling with single agent CX-5461, with only moderate further increase with the combination. Moreover, CX-5461-mediated MYC downregulation is not universally observed, with the combination promoting further downregulation only in some cell lines. Given the potential for affecting global transcription programs downstream of panobinostat, we are performing transcriptome analyses in the combination setting compared to single agent treatment. We have generated bortezomib-resistant cell lines, sequentially increasing drug exposure to establish populations growing at concentrations above the IC90 of the parental lines. The resistant 5T33 cells retain their resistance to bortezomib in vivo and we have demonstrated that CX-5461 remains effective in this model, significantly increasing survival. We are currently examining the combination of CX-5461 with panobinostat in this model of bortezomib-resistance, which will give critical information guiding patient selection for future clinical trials. Conclusion: The rDNA transcription inhibitor CX-5461 synergises in vitro and in vivo with panobinostat, and CX-5461 retains efficacy in the setting of bortezomib-resistant myeloma. References Drygin et al., Cancer Research 2011 Bywater et al., Cancer Cell 2012 Quin et al, Oncotarget, 2016 Devlin et al., Cancer Discovery 2016 Hein et al., Blood 2017 Disclosures Harrison: Janssen-Cilag: Other: Scientific advisory board.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 508-508
Author(s):  
Carolina D. Schinke ◽  
Pingping Qu ◽  
Shmuel Yaccoby ◽  
Valeriy V Lyzogubov ◽  
Veronica MacLeod ◽  
...  

Introduction - Multiple Myeloma (MM) is a hematologic malignancy characterized by clonal growth of differentiated plasma cells (PCs). Despite improvement in MM therapy, the disease remains mostly incurable and is characterized by recurrent relapses with development of resistant clones that eventually lead to patient death. The pathways that lead to resistant and aggressive MM are not fully understood highlighting the need to improve our understanding of MM biology to identify potential new pathways and therapeutical targets. PHD Finger Protein 19 (PHF19) is a regulator of Polycomb Repressive Complex 2 (PRC2), the sole methyltransferase complex capable of catalyzing H3K27me3 to induce and enforce gene repression. PRC2 employs enhancer of zeste homolog 1 and 2 (EZH1/EZH2) as enzymatic subunits to hypermethylate H3K27. While overexpression and gain of function mutations of EZH1/2 have been observed in many cancers the role of this particular pathway in MM remains poorly understood. In the present study, we report on PHF19 as a new candidate gene to play a potential crucial role in MM oncogenesis. Methods- Gene expression profiling (GEP; Affymetrix U133 Plus 2.0) was performed on 739 MM patients (from total therapy trials [TT] 3-5; low risk MM n=636, high risk MM n=103), 42 patients with monoclonal gammopathy of undetermined significance (MGUS), 73 smoldering MM patients, 42 patients with primary plasma cell leukemia and 34 healthy donors. Myeloma risk was determined by the GEP 70 signature as previously defined. To test the implications of functional PHF19 knock down (KD) we used TRIPZ inducible PHF19 shRNA vs. scrambled control (Dharmacon) in two MM cell lines (JJN3 and ARP1). Real time PCR as well as western blotting was used to confirm PHF19 KD as well as to elucidate the effect on H3K27me3 (Cell Signaling). Functional in vitro studies included proliferation (Promega), clonogenic assays (StemCell), cell cycle and apoptosis assays (both Invitrogen). In vivo studies were performed using SCID mice that were subjected to tail vain injection with PHF19 KD JJN3 cells (n=10) or scrambled shRNA control (n=10). Weekly ELISA (Bethyl) and in vivo imaging (Xenogen) were performed and survival was recorded. Results- GEP of the previously mentioned patient populations and healthy controls identified PHF19 (chr9q33.2) as a candidate gene that was consistently dysregulated in MM patients. Mean expression levels at different MM stages correlated with disease aggressiveness (ANOVA, p&lt;0.0001), Figure 1. High expression of PHF19 (log2&gt;10.46) at diagnosis correlated significantly with adverse clinical parameters, including ISS III, anemia and elevated LDH, as well as worse overall survival (5 yr OS = 29% for patients with high PHF19 expression vs 77% for patients with low PHF19 expression [log2&lt;10.46], p&lt; 0.0001). These results led us to test the implications of functional PHF19 KD using TRIPZ inducible PHF19 shRNA vs. scrambled control in the JJN3 and ARP1 MM cell lines. PHF19 KD led to a drastic reduction of H3K27me3 thereby resulting in significantly reduced proliferation via cell cycle arrest, while apoptosis was not substantially altered. Clonogenic assays showed a significant reduction in colony numbers and size of MM cells with PHF19 KD compared to the control (&gt;75% reduction in both cell lines, p&lt;0.05). Xenograft studies showed consistently less tumor burden in the mice injected with PHF19 KD cells compared to scrambled control, evident through ELISA testing for IgG Kappa (Median =180 mg/ml for scrambled control vs 80 mg/ml for PHF19 KD at week 8, p=0.07) and bioimaging (Median bioilumisence 2.1x108 p/s for scrambled control vs. 0.8x108 p/s for PHF19 KD at week 8, non-significant). Median OS in mice injected with PHF19 KD cell was substantially longer (66 days) compared to mice subjected to scrambled control cells (54 days), p=0.052. Conclusion- In summary we show that PHF19 is upregulated in malignant plasma cells of MM patients and that PHF19 expression levels increase with advanced MM stages. High PHF19 expression was a marker of adverse prognosis in our total therapy (TT 3-5) cohort. Most importantly, in-vitro and in-vivo functional studies showed that PHF19 has important biological functions in MM. These results suggest that epigenetic regulation through histone methylation, in particular, H3K27 trimethylation, plays a crucial role in MM and the affected downstream pathways should be further elucidated. Disclosures Boyle: Janssen: Honoraria, Other: Travel; Abbvie: Honoraria; Amgen: Honoraria, Other: travel; Takeda: Honoraria, Other: travel; Celgene Corporation: Honoraria, Other: Travel. van Rhee:Kite Pharma: Consultancy; Adicet Bio: Consultancy; Karyopharm Therapeutics: Consultancy; Takeda: Consultancy; Sanofi Genzyme: Consultancy; Castleman Disease Collaborative Network: Consultancy; EUSA: Consultancy. Walker:Celgene: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4920-4920
Author(s):  
Michael Sebag ◽  
Xian-Fang Huang ◽  
Nicolas Garnier ◽  
Wilson H. Miller ◽  
Koren Mann

Abstract Abstract 4920 Arsenic trioxide (ATO) induces apoptosis and promotes differentiation of acute promyelocytic leukemia (APL) cells, but has less activity in other types of cancers. One factor that may impede ATO success outside of APL is its toxicity profile, which limits in vivo concentrations and therefore, therapeutic benefit. We have reported that trolox, an analogue of alpha tocopherol, can augment ATO sensitivity in a variety of malignant cells, while protecting non-malignant cells from ATO toxicity. In this current study, we have focused on Multiple Myeloma (MM), a plasma cell malignancy that often shows resistance to apoptosis, drug inhibition and remains incurable despite tremendous recent advances. Although ATO has activity against MM cells in vitro, clinical trials of ATO, given as a solo agent, in MM have shown limited promise. To see if the addition of trolox could augment ATO toxicity, a panel of human myeloma cell lines (HMCLs, n=9) representing the genetic diversity seen in this disease, were treated with increasing concentration of ATO with and without 100uM trolox. Cell growth was assessed by MTT viability assays and virtually all cell lines were sensitive to varying doses of ATO. Four cell lines (U266, KMS11, MM1R, MM1S) showed profound inhibition of cell growth with very low concentrations of ATO (<1uM). Trolox (100uM) alone had no effect on cell growth, but in concert with ATO further decreased cell growth by up to 50% as compared to the same dose of ATO alone in virtually all cell lines. To further elucidate the mechanism of growth inhibition, annexin V assays were performed by flow cytometry to measure apoptosis. In all cell lines (n=9), a clear increase in the apoptotic fraction was noted when trolox was added to varying doses of arsenic. To test whether oxidative stress plays a role in ATO-mediated apoptosis of myeloma cells, we looked at the induction of a stress response protein (HO-1), a marker of oxidative stress induced by ATO. Western blot analysis revealed that in all myeloma cells tested, HO-1 was dramatically and quickly induced by ATO and further induced by the addition of trolox, indicating a pro-oxidant activity of trolox in the malignant cells. While the mechanism of trolox enhancement of ATO function remains largely unknown, intracellular concentrations of ATO in MM cells, as measured by inductively coupled plasma mass spectrometry, suggest that trolox does not work by augmenting ATO import or intracellular accumulation. To test the efficacy of ATO with trolox in vivo, we used a novel transgenic mouse model of MM that has been shown to faithfully mimic the human disease and its response to treatment (Chesi et al, Cancer Cell 2008 Feb;13(2):167-80). We first treated MM afflicted mice with a low dose of ATO (5.0mg/kg) and Trolox (50mg/kg) to assess for toxicity and tolerability. This dose was well tolerated in all mice when given for 10 days with no obvious toxic effects. Serum protein electrophoresis performed at the end of the 10 day treatment period revealed that even at this low starting dose, one of three mice showed a 30% reduction in its paraprotein peak, while the others remained stable. Further studies with higher ATO concentrations in the same mouse model are underway. In conclusion, these data support the role of ATO plus Trolox, as a promising anti-myeloma therapy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document