Regulation of Flvcr by Macrophages in Response to Lipopolysaccharide

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2111-2111
Author(s):  
Mary Philip ◽  
Edison Y. Chiu ◽  
Janis L. Abkowitz

Abstract Abstract 2111 Pathogenic bacteria must acquire iron from their hosts to survive and have evolved multiple mechanisms to capture iron or iron-containing heme from the bloodstream or tissues. In response, mammals have developed defense mechanisms to keep iron from pathogens. For example, in response to inflammatory cytokines, hepcidin secreted by the liver binds to the iron exporter ferroportin (FPN1), leading to FPN1 internalization and degradation, decreasing gastrointestinal iron absorption and increasing macrophage iron storage. Much of the body's iron stores are complexed in heme. The Feline leukemia virus, subgroup C (FeLV-C) receptor, FLVCR, is a heme export protein. We showed previously that FLVCR is required for the normal development of the erythroid [Science (2008)319:825] and T cell lineages [Blood (ASH Annual Meeting Abstracts)114:913,2009]. Although macrophages express high levels of FLVCR, the role of FLVCR in regulating heme-iron after infection remains unexplored. Other heme regulatory proteins, such as heme oxygenase-1 (HMOX1), a heme-degrading enzyme, are known to be transcriptionally regulated in macrophages in response to infection. We hypothesized that macrophages dynamically regulate Flvcr in response to bacterial infection. To test this hypothesis, we stimulated J774, a murine macrophage cell line, with lipopolysaccharide (LPS from E. coli O111:B4) at varying concentrations and durations. LPS, an outer membrane component from gram-negative bacteria, binds to Toll-like receptor 4 (TLR4) on macrophages and activates downstream signaling pathways. Using multiplex quantitative reverse transcription polymerase chain reaction (qRT-PCR), we measured mRNA levels of Flvcr, Hmox1, and Fpn1. We found that J774 cells down-regulated Flvcr transcript levels in response to LPS with a maximal decrease (69%) seen at 6–8 hours of stimulation. While the extent of Flvcr down-regulation was dose-responsive, a significant decrease (57%) occurred even with the lowest LPS dose (10 ng/ml). Macrophages decreased Fpn1 expression (71%) and increased Hmox1 expression (55%) in response to LPS stimulation as previously reported. Similar results were obtained with LPS from a different bacterial source (Salmonella minnesota Re595). We also performed these studies using primary macrophages cultured from murine bone marrow mononuclear cells and observed a similar decrease in Flvcr and Fpn1 (64 and 72%) and an increase in Hmox1 (40%) transcripts after stimulation with both O111:B4 and Re595 LPS. While Fpn1 transcriptional regulation by heme and oxidative stress has been studied, the mechanism by which LPS regulates Fpn1 transcription is less clear. The similar pattern and kinetics of LPS-induced Flvcr and Fpn1 expression changes raise the possibility that the same regulatory mechanism is responsible. Analysis of the human and mouse Flvcr promoter regions revealed several putative LPS downstream transcription factor binding sites including NF-κB, AP1, and C/EBPβ. In addition to transcriptional regulation, LPS downstream signaling could alter Flvcr and Fpn1 mRNA stability and translation, so we compared the 5' untranslated regions (UTR) and 3'UTR of murine Flvcr and Fpn1. We found little similarity between the 5'UTR of Flvcr and the 5'UTR of Fpn1, known to contain an iron-responsive element (IRE) and be regulated by iron via iron regulatory proteins (IRP). However, alignment of the 3'UTR from Flvcr and Fpn1 showed similarity (pair wise score 65). Both the Flvcr and Fpn1 3'UTR are predicted to have a high degree of secondary structure based on their large negative fold energies (−421.25 and −300.74 kcal/mol), further suggesting that these 3'UTR may have a regulatory function. Studies are underway to determine the roles of the Flvcr promoter, 5'UTR, and 3'UTR in LPS-induced down-regulation. This work suggests that LPS-induced down-regulation of Flvcr and Fpn1 might act in concert to decrease heme and iron export from macrophages and sequester iron from bacterial pathogens. Heme export control through FLVCR could serve as a novel mechanism of iron regulation in response to infection. Disclosures: No relevant conflicts of interest to declare.

2002 ◽  
Vol 30 (4) ◽  
pp. 726-728 ◽  
Author(s):  
M. Neonaki ◽  
D. Cunninghame Graham ◽  
K. N. White ◽  
A. Bomford

Cellular iron homoeostasis is maintained by iron sensor proteins known as iron-regulatory proteins (IRPs), which act post-transcriptionally by binding RNA stem-loop structures, termed iron-responsive elements (IREs), present on the mRNAs of proteins involved in iron storage, utilization and transport. IRP1 is a bifunctional protein that can act either as a cytoplasmic aconitase or as an IRE-binding protein. The RNA-binding activity of IRP1 is regulated post-translationally by the insertion or extrusion of a 4Fe-4S cluster, without changes in the levels of protein. In hereditary haemochromatosis (HH) accumulation of iron in parenchymal tissues, including the liver, occurs, possibly through dysfunctional IRP1. Investigation of IRP1 expression in liver biopsies from HH patients showed that the protein is completely absent or markedly reduced in heavily iron-loaded HH patients. Real-time PCR was then conducted in an attempt to investigate the mRNA levels and establish the underlying mechanism behind the disappearing act of IRP1. The two possibilities are: transcriptional regulation (through the inhibition of transcription) or post-transcriptional regulation (either through increased turnover of protein or inhibition of translation) of IRP1. Preliminary data suggest that transcription of IRP1 is not affected by chronic iron overload, and down-regulation may be attributable instead to degradation of the protein.


2009 ◽  
Vol 419 (3) ◽  
pp. 533-543 ◽  
Author(s):  
Jaya P. Gnana-Prakasam ◽  
Ming Zhang ◽  
Pamela M. Martin ◽  
Sally S. Atherton ◽  
Sylvia B. Smith ◽  
...  

Haemochromatosis is a genetic disorder of iron overload resulting from loss-of-function mutations in genes coding for the iron-regulatory proteins HFE [HLA-like protein involved in iron (Fe) homoeostasis], transferrin receptor 2, ferroportin, hepcidin and HJV (haemojuvelin). Expression of the first four genes coding for these proteins in retina has been established. Here we report on the expression of HJV. Since infection of retina with CMV (cytomegalovirus) causes blindness, we also investigated the expression of HJV and other iron-regulatory proteins in retina during CMV infection. HJV (HJV gene) mRNA was expressed in RPE (retinal pigment epithelium)/eyecup and neural retina in mouse. In situ hybridization and immunohistochemistry confirmed the presence of HJV mRNA and protein in RPE, outer and inner nuclear layers, and ganglion cell layer. Immunocytochemistry with cell lines and primary cell cultures showed HJV expression in RPE and Müller cells. In RPE, the expression was restricted to apical membrane. Infection of primary cultures of mouse RPE with CMV increased HJV mRNA and protein levels. Under similar conditions, HFE (HFE gene) mRNA levels were not altered, but HFE protein was decreased. Hepcidin expression was, however, not altered. These findings were demonstrable in vivo with CMV-infected mouse retina. The CMV-induced up-regulation of HJV in RPE was independent of changes in HFE because the phenomenon was also seen in HFE-null RPE cells. CMV-infected primary RPE cells showed evidence of iron accumulation and oxidative stress, as indicated by increased levels of ferritin and hydroxynonenal. The observed changes in HJV expression and iron status during CMV infection in retina may have significance in the pathophysiology of CMV retinitis


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3582-3582
Author(s):  
Guangjun Nie ◽  
Guohua Chen ◽  
Alex Sheftel ◽  
Kostas Pantopoulos ◽  
Prem Ponka

Abstract Mitochondrial ferritin (MtFt) is a mitochondrial iron storage protein, whose function and regulation is largely unknown. Our previous results have shown that MtFt markedly affects intracellular iron distribution and homeostasis in mammalian cells (Blood105: 2161–2167, 2005). Using tumor xenografts, we examined the effects of expression MtFt on tumor iron metabolism and growth. H1299 parental or MtFt overexpressing cells were implanted into nude mice. As compared to control tumor xenografts, the expression of MtFt dramatically reduced the implanted tumor growth. A cytosolic iron starvation phenotype in MtFt expressing tumors was revealed by increased RNA-binding activity of iron regulatory proteins (IRPs) and, concomitantly, both an increase in transferrin receptor levels and a decrease in cytosolic ferritin. MtFt overexpression also led to a decrease in both total cellular heme content and heme oxygenase-1 levels. In addition, the expression of MtFt in tumors was associated with a decrease in aconitase activity and lower frataxin protein levels. Mitochondrial iron deposition in MtFt expressing tumors was directly observed by transmission electron microscopy. The pattern of iron accumulation in MtFt overexpressing tumor cells is remarkably similar to that observed in the mitochondria of sideroblastic anemia patients. In conclusion, our study shows that MtFt expression significantly affected tumor iron homeostasis by shunting iron into mitochondria; iron scarcity resulted in partial defects in heme and iron-sulfur cluster syntheses. It is likely that deprivation of iron in the cytosol is the cause of the significant inhibition of xenograft tumor growth.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2428-2434 ◽  
Author(s):  
Guangjun Nie ◽  
Guohua Chen ◽  
Alex D. Sheftel ◽  
Kostas Pantopoulos ◽  
Prem Ponka

Abstract Mitochondrial ferritin (MtFt) is a mitochondrial iron-storage protein whose function and regulation is largely unknown. Our previous results have shown that MtFt overexpression markedly affects intracellular iron homeostasis in mammalian cells. Using tumor xenografts, we examined the effects of MtFt overexpression on tumor iron metabolism and growth. The expression of MtFt dramatically reduced implanted tumor growth in nude mice. Mitochondrial iron deposition in MtFt-expressing tumors was directly observed by transmission electron microscopy. A cytosolic iron starvation phenotype in MtFt-expressing tumors was revealed by increased RNA-binding activity of iron regulatory proteins, and concomitantly both an increase in transferrin receptor levels and a decrease in cytosolic ferritin. MtFt overexpression also led to decreases in total cellular heme content and heme oxygenase-1 levels. In addition, elevated MtFt in tumors was also associated with a decrease in total aconitase activity and lower frataxin protein level. In conclusion, our study shows that high MtFt levels can significantly affect tumor iron homeostasis by shunting iron into mitochondria; iron scarcity resulted in partially deficient heme and iron-sulfur cluster synthesis. It is likely that deprivation of iron in the cytosol is the cause for the significant inhibition of xenograft tumor growth.


2018 ◽  
Vol 46 (01) ◽  
pp. 191-207 ◽  
Author(s):  
Hun Min Song ◽  
Gwang Hun Park ◽  
Su Bin Park ◽  
Hyun-Seok Kim ◽  
Ho-Jun Son ◽  
...  

Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yunkyoung Lee ◽  
Hee-Sook Jun ◽  
Yoon Sin Oh

The extract of Psoralea corylifolia seeds (PCE) has been widely used as a herbal medicine because of its beneficial effect on human health. In this study, we investigated the protective effects and molecular mechanisms of PCE on palmitate- (PA-) induced toxicity in PC12 cells, a neuron-like cell line. PCE significantly increased cell viability in PA-treated PC12 cells and showed antiapoptotic effects, as evidenced by decreased expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, and bax protein as well as increased expression of bcl-2 protein. In addition, PCE treatment reduced PA-induced reactive oxygen species production and upregulated mRNA levels of antioxidant genes such as nuclear factor (erythroid-derived 2)-like 2 and heme oxygenase 1. Moreover, PCE treatment recovered the expression of autophagy marker genes such as beclin-1 and p62, which was decreased by PA treatment. Treatment with isopsoralen, one of the major components of PCE extract, also recovered the expression of autophagy marker genes and reduced PA-induced apoptosis. In conclusion, PCE exerts protective effects against lipotoxicity via its antioxidant function, and this effect is mediated by activation of autophagy. PCE might be a potential pharmacological agent to protect against neuronal cell injury caused by oxidative stress or lipotoxicity.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1987
Author(s):  
Eleni Mavrogonatou ◽  
Adamantia Papadopoulou ◽  
Asimina Fotopoulou ◽  
Stathis Tsimelis ◽  
Heba Bassiony ◽  
...  

Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.


Author(s):  
Yingying Xing ◽  
Ning Xu ◽  
Deepak D Bhandari ◽  
Dmitry Lapin ◽  
Xinhua Sun ◽  
...  

Abstract Acquisition of nutrients from different species is necessary for pathogen colonization. Iron is an essential mineral nutrient for nearly all organisms, but little is known about how pathogens manipulate plant hosts to acquire iron. Here, we report that AvrRps4, an effector protein delivered by Pseudomonas syringae bacteria to plants, interacts with and targets the plant iron sensor protein BRUTUS (BTS) to facilitate iron uptake and pathogen proliferation in Arabidopsis thaliana. Infection of rps4 and eds1 by P. syringae pv. tomato (Pst) DC3000 expressing AvrRps4 resulted in iron accumulation, especially in the plant apoplast. AvrRps4 alleviates BTS-mediated degradation of bHLH115 and ILR3(IAA-Leucine resistant 3), two iron regulatory proteins. In addition, BTS is important for accumulating immune proteins Enhanced Disease Susceptibility1 (EDS1) at both the transcriptional and protein levels upon Pst (avrRps4) infections. Our findings suggest that AvrRps4 targets BTS to facilitate iron accumulation and BTS contributes to RPS4/EDS1-mediated immune responses.


Sign in / Sign up

Export Citation Format

Share Document