Lipopolysaccharide(LPS)-Induction of the HTLV-1 LTR in Monocytes

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2167-2167
Author(s):  
Junichi Tsukada ◽  
Takehiro Higashi ◽  
Atsushi Iwashige ◽  
Takefumi Katsuragi ◽  
Naho Nomura ◽  
...  

Abstract Abstract 2167 The human leukemia virus type 1 (HTLV-1) gene expression is regulated by the viral proteins and various cellular transcription factors. HTLV-1 genome encodes not only structural proteins, but also non-structural proteins such as Tax, a transcriptional activator for STAT5 p12I, and HTLV-1 bZIP factor (HBZ) encoded by the minus strand of the viral genome. The functional analysis of the viral proteins such as Tax has shed light on the pathogenesis of adult T cell leukemia/lymphoma (ATL). Expression of Tax is enhanced by T-cell activation stimuli such as phorbol ester (PMA), phytohemagglutinin (PHA) or sodium butyrate in chronically HTLV-1-infected CD4+T-cells. Transgenic mouse studies with Tax expression under the control of the granzyme B promoter or the proximal Lck promoter showed that disease progression is associated with infiltration of activated T- and inflammatory cells, and dysregulated inflammatory cytokine production. More recently, a transgenic mouse model with Tax expression regulated by the LTR (LTR-Tax) showed that LTR-Tax CD4 positive T-cells are hyper-proliferative and hyper-responsive to immune stimulation and strongly produce Th1-, Th2- and Th17-associated cytokines. In addition, HTLV-1 infection causes inflammatory disease of the central nerve system, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as ATL. Aberrant cytokine gene expression is the hallmark of HTLV-1-associated diseases. HTLV-1 infection is widely distributed among mammalian cells. We previously demonstrated that Tax transactivates the promoter of human proIL-1β gene (IL1B) gene through association with two transcription factors, NF-IL6 (C/EBPβ) and Spi-1 (PU.1) in monocytes. Tax synergized with lipopolysaccharide (LPS) to induce IL1B promoter activity. Spi-1 is an Ets family protein restricted in expression to monocytes/myelocytes, B cells, mast cells and erythrocyte stem cells, while NF-IL6 is widely expressed. LPS, a component of the gram-negative bacterial cell wall involved in the activation of monocytes, binds to TLR4, leading to activation of TRAF6, IRAK and MyD88. We now extend these studies to elucidate roles of LPS and Tax on HTLV-1 LTR promoter regulation in monocytes. When HTLV-1 LTR reporter was transfected into THP-1 monocytic cells, LPS dose-dependently induced HTLV-1 LTR. The mid-LTR of the HTLV-1 gene possesses three potential Ets binding elements centered on a GGAA motif (PuB1, pets and PuB2). Elf-1 has been shown to be the predominant protein binding to the HTLV-1 Ets sites in Jurkat and peripheral blood T-cells. In the present study, mutation of the Ets sites, especially pets and PuB2 caused significant inhibition of LPS-induced LTR activity in THP-1 cells. EMSA studies using THP-1 nuclear extracts showed binding of Spi-1 to the HTLV-1 Ets sites in THP-1 cells. Anti-Spi-1 Ab, but not anti-Elf-1 Ab or anti-ets-1 Ab supershifted the complex generated by THP-1 nuclear extract and HTLV-1 LTR Ets site. However, when migration pattern of the complex was compared with recombinant Spi-1 in vitro translated in a reticulocyte lysate system, the THP-1 complex migrated slower than recombinant Spi-1 protein. In this regard, anti-IRF-8 Ab further recognized the slow complex. Several reports recently showed that IRF-8 functions as a heterodimeric complex with spi-1 for expression of relevant genes. On the other hand, when Tax expression vector was cotransfected into THP-1 cells along with HTLV-1 LTR reporter, Tax synergized with LPS to activate LTR. Spi-1 protein has three independent transcriptional activation domains (TAD); a TBP binding region, a Q domain, and a PEST region. GST pull-down studies using GST-Tax and 35S-labeled recombinant Spi-1 revealed that mutant Spi-1 lacking the TADs still retains the ability to interact with Tax. In contrast to THP-1 cells, Jurkat T-cells showed only a marginal increase in IL1B promoter activity following Tax expression. Mutations of the Spi-1 binding site in the IL1B promoter did not affect Tax-induced activity in Jurkat cells. Any factors did not bind to the IL1B Spi-1 site in Jurkat cells. Thus, our data suggest that LPS cooperates with Tax to activate the viral and various cellular genes in HTLV-1-infected monocytes. Spi-1 is a key player in the monocyte-specific gene regulation in HTLV-1 infection. Disclosures: No relevant conflicts of interest to declare.

2006 ◽  
Vol 290 (1) ◽  
pp. L66-L74 ◽  
Author(s):  
Joshua Rubenfeld ◽  
Jia Guo ◽  
Nitat Sookrung ◽  
Rongbing Chen ◽  
Wanpen Chaicumpa ◽  
...  

Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid with wide-ranging effects on multiple lung cells including airway epithelial and smooth muscle cells. LPA can augment migration and cytokine synthesis in lymphocytes, but its potential effects on Th2 cytokines have not been well studied. We examined the effects of physiological concentrations of LPA on IL-13 gene expression in human T cells. The Jurkat T cell line and human peripheral blood CD4+ T cells were incubated with LPA alone or with 1) pharmacological agonists of different signaling pathways, or 2) antibodies directed against the T cell receptor complex and costimulatory molecules. Luciferase-based reporter constructs driven by different lengths of the human IL-13 promoter were transfected by electroporation in Jurkat cells treated with and without LPA. The effects of LPA on IL-13 mRNA stability were examined using actinomycin D to halt ongoing transcription. Expression of mRNA encoding LPA2and LPP-1 increased with T cell activation. LPA augmented IL-13 secretion under conditions of submaximal T cell activation. This was observed using pharmacological agonists activating intracellular calcium-, PKC-, and cAMP-dependent signaling pathways, as well as antibodies directed against CD3 and CD28. LPA only slightly prolonged IL-13 mRNA half-life in submaximally stimulated Jurkat cells. In contrast, LPA significantly enhanced transcriptional activation of the IL-13 promoter via regulatory elements contained within proximal 312 bp. The effects of LPA on IL-13 promoter activation appeared to be distinct from those mediated by GATA-3. LPA can augment IL-13 gene expression in T cells, especially under conditions of submaximal activation.


1996 ◽  
Vol 184 (2) ◽  
pp. 397-406 ◽  
Author(s):  
J A Lederer ◽  
V L Perez ◽  
L DesRoches ◽  
S M Kim ◽  
A K Abbas ◽  
...  

The molecular basis for changes in cytokine expression during T helper (Th) cell subset differentiation is not well understood. We have characterized transcriptional events related to cytokine gene expression in populations of naive T cell receptor-transgenic T cells as they are driven in vitro toward Th1 or Th2 phenotypes by interleukin (IL)-12 or IL-4 treatment, respectively. Quantitative reverse transcriptase-polymerase chain reaction analysis of cytokine transcripts indicates that interferon (IFN) gamma, IL-4, and IL-2 mRNA are expressed with distinct kinetics after naive T cells are stimulated with antigen and either IL-4 or IL-12. IFN-gamma mRNA appears as early as 6 h in IL-12-treated cultures, IL-4 appears only after 48 h in IL-4-treated cultures, and IL-2 is equivalently expressed in both types of cultures. Analyses were performed to determine if there were any differences in activation of IL-2 or IL-4 transcription factors that accompanied Th1 versus Th2 differentiation. These studies demonstrated that signal transducer and activator of transcription 6 (STAT6) binds to a sequence in the IL-4 promoter and that this STAT6-binding site can support IL-4-dependent transcription of a linked heterologous promoter. Prolonged activation of STAT6 is characteristic of populations undergoing Th2 differentiation. Furthermore, STAT6 is activated in an autocrine manner when differentiated Th2 populations are stimulated by antigen receptor ligation. Th1 populations derived from IL-12 plus antigen treatment of naive T cells remain responsive to IL-4 as indicated by induction of STAT6 and IL-4 mRNA. These data indicate that Th1 and Th2 differentiation represents the combination of different, apparently independently regulated transcriptional events. Furthermore, among transcription factors that bind to the IL-4 or IL-2 promoters, STAT6 is the one whose activation distinguishes Th2 versus Th1 development.


2004 ◽  
Vol 78 (13) ◽  
pp. 6955-6966 ◽  
Author(s):  
Adrienne L. McNees ◽  
Jeff A. Mahr ◽  
David Ornelles ◽  
Linda R. Gooding

ABSTRACT Detection of adenovirus DNA in human tonsillar T cells in the absence of active virus replication suggests that T cells may be a site of latency or of attenuated virus replication in persistently infected individuals. The lytic replication cycle of Ad5 in permissive epithelial cells (A549) was compared to the behavior of Ad5 in four human T-cell lines, Jurkat, HuT78, CEM, and KE37. All four T-cell lines expressed the integrin coreceptors for Ad2 and Ad5, but only Jurkat and HuT78 express detectable surface levels of the coxsackie adenovirus receptor (CAR). Jurkat and HuT78 cells supported full lytic replication of Ad5, albeit at a level ∼10% of that of A549, while CAR-transduced CEM and KE37 cells (CEM-CARhi and KE37-CARhi, respectively) produced no detectable virus following infection. All four T-cell lines bind and internalize fluorescently labeled virus. In A549, Jurkat, and HuT78 cells, viral proteins were detected in 95% of cells. In contrast, only a small subpopulation of CEM-CARhi and KE37-CARhi cells contained detectable viral proteins. Interestingly, Jurkat and HuT78 cells synthesize four to six times more copies of viral DNA per cell than did A549 cells, indicating that these cells produce infectious virions with much lower efficiency than A549. Similarly, CEM-CARhi and KE37-CARhi cells, which produce no detectable infectious virus, synthesize three times more viral genomes per cell than A549. The observed blocks to adenovirus gene expression and replication in all four human T-cell lines may contribute to the maintenance of naturally occurring persistent adenovirus infections in human T cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A554-A554
Author(s):  
Rhodes Ford ◽  
Paolo Vignali ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Andrew Frisch ◽  
...  

BackgroundTumor-infiltrating CD8+ T cells have been characterized by their exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors, such as PD-1 and Tim-3. These receptors mark the progression towards exhaustion from a progenitor stage (PD-1Low) to a terminally exhausted stage (PD-1+Tim-3+). While the epigenetics of tumor-infiltrating T cells are unique compared to naïve, effector, and memory populations, how the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both activating (H3K4me3) and repressive (H3K27me3) epigenetic modifications that inhibit gene expression. In contrast to stem cells which exhibit bivalency, bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia. Secondly, we have also identified a unique set of enhancers, characterized by H3K27ac that do not drive gene expression. These enhancers are enriched for AP-1 transcription factors, whereas enhancers that correlate with gene transcription are enriched for nuclear receptor (NR) transcription factors. Intriguingly, while most AP-1 and NR transcription factors are not expressed in terminally exhausted cells, we found that Batf, an inhibitory AP-1 family member, and Nr4a2, a NR known to promote both exhaustion and modify chromatin were specifically expressed in terminally exhausted cells. These data suggest the balance of Batf and Nr4a2 may modulate the enhancer landscape to promote terminal exhaustion, while hypoxia simultaneously promotes hypermethylation and gene repression.ConclusionsOur study defines for the first time the features of epigenetic dysfunction in tumor-mediated T cell exhaustion and deepens our understanding of the epigenetic regulation of gene expression. These observations are the bases for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


Lupus ◽  
2018 ◽  
Vol 27 (9) ◽  
pp. 1499-1508 ◽  
Author(s):  
N-S Lai ◽  
H-C Yu ◽  
K-Y Huang ◽  
C-H Tung ◽  
H-B Huang ◽  
...  

Objective To investigate whether the aberrant expression of non-coding RNAs (ncRNAs) in T cells from patients with systemic lupus erythematosus (SLE) could contribute to the pathogenesis of lupus. Methods Expression profiles of RNA transcripts in T cells from three patients with SLE and three controls were analyzed by microarray analysis. Potentially aberrant-expressed ncRNAs were validated using T cell samples from 23 patients with SLE and 17 controls. Transfection studies and microarray analyses were conducted to search for any gene expression that is regulated by specific ncRNAs. Results Initial analysis revealed differential expression of 18 ncRNAs in SLE T cells. After validation, decreased expression of H/ACA box small nucleolar RNA 12 (SNORA12) was confirmed in SLE T cells (0.69-fold, P = 0.007) compared with normal T cells, and its expression level was inversely associated with higher SLE disease activity scores. Jurkat cells transfected with a plasmid encoding SNORA12 showed increased expression of two genes and decreased expression of 15 genes in Jurkat cells. These changes of gene expression were significantly associated with the SLE pathway in the Kyoto Encyclopedia of Genes and Genomes map using microarray analysis. Overexpression of SNORA12 altered the expression of CD69, decreased the expression of histone cluster 1 H4 family member k (HIST1H4K), inhibited the secretion of interferon gamma and the expression of HIST1H4K was increased in SLE T cells. Conclusion Among the ncRNAs, we found that the expression level of SNORA12, which belongs to the family of small nucleolar RNAs, was lower in SLE T cells and affected T cell function. This novel finding suggests that aberrant-expressed snoRNAs lead to dysfunction of T cells and may be involved in the immunopathogenesis of SLE.


2002 ◽  
Vol 156 (5) ◽  
pp. 771-774 ◽  
Author(s):  
Valerie Horsley ◽  
Grace K. Pavlath

The nuclear factor of activated T cells (NFAT) proteins are a family of transcription factors whose activation is controlled by calcineurin, a Ca2+-dependent phosphatase. Originally identified in T cells as inducers of cytokine gene expression, NFAT proteins play varied roles in cells outside of the immune system. This review addresses the recent data implicating NFAT in the control of gene expression influencing the development and adaptation of numerous mammalian cell types.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Syed Jafar Mehdi ◽  
Andrea Moerman-Herzog ◽  
Henry K. Wong

Abstract Background Mycosis fungoides (MF) is a primary cutaneous T-cell lymphoma (CTCL) that transforms from mature, skin-homing T cells and progresses during the early stages in the skin. The role of the skin microenvironment in MF development is unclear, but recent findings in a variety of cancers have highlighted the role of stromal fibroblasts in promoting or inhibiting tumorigenesis. Stromal fibroblasts are an important part of the cutaneous tumor microenvironment (TME) in MF. Here we describe studies into the interaction of TME-fibroblasts and malignant T cells to gain insight into their role in CTCL. Methods Skin from normal (n = 3) and MF patients (n = 3) were analyzed for FAPα by immunohistochemistry. MyLa is a CTCL cell line that retains expression of biomarkers TWIST1 and TOX that are frequently detected in CTCL patients. MyLa cells were cultured in the presence or absence of normal or MF skin derived fibroblasts for 5 days, trypsinized to detached MyL a cells, and gene expression analyzed by RT-PCR for MF biomarkers (TWIST1 and TOX), Th1 markers (IFNG, TBX21), Th2 markers (GATA3, IL16), and proliferation marker (MKI67). Purified fibroblasts were assayed for VIM and ACTA2 gene expression. Cellular senescence assay was performed to assess senescence. Results MF skin fibroblast showed increased expression of FAP-α with increasing stage compared to normal. Normal fibroblasts co-cultured with MyLa cells suppressed expression of TWIST1 (p < 0.0006), and TOX (p < 0.03), GATA3 (p < 0.02) and IL16 (p < 0.03), and increased expression of IFNG (p < 0.03) and TBX21 (p < 0.03) in MyLa cells. In contrast, MyLa cells cultured with MF fibroblasts retained high expression of TWIST1, TOX and GATA3. MF fibroblasts co-culture with MyLa cells increased expression of IL16 (p < 0.01) and IL4 (p < 0.02), and suppressed IFNG and TBX21 in MyLa cells. Furthermore, expression of MKI67 in MyLa cells was suppressed by normal fibroblasts compared to MF fibroblasts. Conclusion Skin fibroblasts represent important components of the TME in MF. In co-culture model, normal and MF fibroblasts have differential influence on T-cell phenotype in modulating expression of Th1 cytokine and CTCL biomarker genes to reveal distinct roles with implications in MF progression.


2005 ◽  
Vol 388 (1) ◽  
pp. 379-386 ◽  
Author(s):  
Stéphane RICHARD ◽  
Mélanie MOREL ◽  
Patrick CLÉROUX

Arginine methylation is a post-translational modification resulting in the generation of aDMAs (asymmetrical ω-NG, NG-dimethylated arginines) and sDMAs (symmetrical ω-NG, N′G-dimethylated arginines). The role of arginine methylation in cell signalling and gene expression in T lymphocytes is not understood. In the present study, we report a role for protein arginine methylation in regulating IL-2 (interleukin 2) gene expression in T lymphocytes. Leukaemic Jurkat T-cells treated with a known methylase inhibitor, 5′-methylthioadenosine, had decreased cytokine gene expression, as measured using an NF-AT (nuclear factor of activated T-cells)-responsive promoter linked to the luciferase reporter gene. Since methylase inhibitors block all methylation events, we performed RNA interference with small interfering RNAs against the major PRMT (protein arginine methyltransferases) that generates sDMA (PRMT5). The dose-dependent decrease in PRMT5 expression resulted in the inhibition of both IL-2- and NF-AT-driven promoter activities and IL-2 secretion. By using an sDMA-specific antibody, we observed that sDMA-containing proteins are directly associated with the IL-2 promoter after T-cell activation. Since changes in protein arginine methylation were not observed after T-cell activation in Jurkat and human peripheral blood lymphocytes, our results demonstrate that it is the recruitment of methylarginine-specific protein(s) to cytokine promoter regions that regulates their gene expression.


2021 ◽  
Author(s):  
Yuhui Yan ◽  
Senlin Wang ◽  
Chen Lin

Abstract BackgroundNF-κB is one of the most important inflammatory mediators in the tumour microenvironment promotes inflammation-induced cancer. Many studies report that NF-κB is activated in many kinds of leukaemia, so that some researchers by inhibiting NF-κB to treat leukaemia. The overexpression of BCL11B has been primarily reported in T cell malignancies. Some studies have reported that BCL11B is a potential transcriptional repressor which has several splice isoforms. MiR-21-5p promotes cell proliferation by targeting BCL11B in Thp-1 human monocytes. Both NF-κB and BCL11B transcription factors are related to inflammation and leukaemia. Whether there is correlation between NF-κB and BCL11B transcription factors? If BCL11B is a potential important transcription factor in treatment of T lymphocyte leukaemia? In this study, we stimulated Jurkat cells and normal peripheral blood T cells with staphylococcal enterotoxin A(SEA), and we detected the expression of both the BCL11B and NF-κB genes and their respective proteins at different stimulation times. Then, the BCL11B gene was suppressed by BCL11B-siRNA and detected at another stimulation time. ResultsWe found that the mRNA expression of BCL11B and NF-κB increased in two kinds of T cell lines over time which stimulated by SEA or PMA+IO. A similar result was confirmed for BCL11B and NF-κB protein expression. While the expression of the NF-κB protein did not increase on equal conditions in the BCL11B-knockdown group. ConclusionOur result suggested that the gene and protein expression levels of both BCL11B and NF-κB were related, and BCL11B regulates NF-κB expression in Jukat cells and healthy human peripheral blood through the TCR signalling pathway. This study reveals that BCL11B can be used as a new therapeutic target for chronic inflammation and T cell leukaemia pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document