The CALM/AF10 Interactor CATS Is a Substrate of KIS, a Positive Regulator of Cell Cycle Progression in Leukemia Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2549-2549
Author(s):  
Leticia Fröhlich Archangelo ◽  
Fabíola Traina ◽  
Philipp A Greif ◽  
Alexandre Maucuer ◽  
Valérie Manceau ◽  
...  

Abstract Abstract 2549 The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that interacts with and influences the subcellular localization of CALM/AF10, a leukemic fusion protein found in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and in malignant lymphoma. CATS is highly expressed in leukemia, lymphoma and tumor cell lines but not in non-proliferating T-cells or in peripheral blood lymphocytes (PBLs). The protein levels of CATS are cell cycle-dependent, induced by mitogens (e.g. PHA) and correlate with the proliferative state of the cell. Thus, CATS is as a marker for proliferation. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) as a CATS interacting partner. KIS is a serine/threonine kinase that positively regulates cell cycle progression through phosphorylation of p27KIP in leukemia cell lines. The interaction between CATS and KIS was confirmed by GST pull-down, and co-immunopreciptation. KIS interaction region was mapped to CATS N-terminal portion. Searching through the phosphorylation site databases PhosphoSitePlus™ (http://www.phosphosite.org) and Phosida (http://www.phosida.com/) we identified 9 residues within CATS shown to be subject of post-translational modification. Phosphorylation assay with recombinant KIS demonstrated that this kinase efficiently phosphorylated full length CATS and its N-terminal part, but not the C-terminal of the protein. To map the KIS phosphorylation site of CATS, peptides comprising all known phospho-sites of CATS N-terminal (S16, S129, S131, T133 and S135) and mutations of the putative KIS target motif (S129 and S131) were tested for KIS phosphorylation. Thereby, we identified CATS S131 as the unique target site for KIS phosphorylation. Western blot analysis of U2OS cells, which had undergone cell cycle synchronization by a double thymidine block, revealed that KIS fluctuated throughout the cell cycle and counteracted CATS levels. Furthermore, we analyzed KIS protein expression on bone marrow mononuclear cells (MNCs) of MDS and AML patients. We studied 5 healthy donors, 13 MDS patients (7 low-risk [RA/RARS] and 6 high-risk [RAEB/RAEBt] according to FAB classification) and 10 AML patients (7 de novo and 3 secondary). Western blot analysis revealed elevated levels of KIS in MDS and AML compared to the control samples. We used a reporter gene assay in order to determine the influence of KIS on the CATS-mediated transcriptional repression and to elucidate the role of KIS-dependent phosphorylation of CATS at serine 131 in this context. Coexpression of GAL4-DBD-CATS and KIS enhanced the inhibitory function of CATS on transactivation of the GAL4-tk-luciferase reporter. This effect of KIS was observed for both CATS wild type and CATS phospho-defective mutant (CATS S131A) but not when the kinase dead mutant KISK54R was used. Moreover, CATS phosphomimetic clone (CATSS131D) exerted the same transcriptional activity as the CATS wild type. These results demonstrate that KIS enhances the transcriptional repressor activity of CATS, and this effect is independent of CATS phosphorylation at S131 but dependent on the kinase activity of KIS. Finally, we investigated whether CATS would affect the CALM/AF10 function as an aberrant transcription factor. Coexpression of constant amounts of GAL4-DBD-CALM/AF10 and increasing amounts of CATS lead to reduced transactivation capacity of CALM/AF10 in a dose dependent manner. Our results show that CATS not only interacts with but is also a substrate for KIS, suggesting that CATS function might be modulated through phosphorylation events. The identification of the CATS-KIS interaction further supports the hypothesis that CATS plays an important role in the control of cell proliferation. Moreover the elevated levels of KIS in hematological malignances suggest that KIS could regulate CATS activity and/or function in highly proliferating leukemic cells. Thus our results indicate that CATS function might be important to understand the malignant transformation mediated by CALM/AF10. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3742-3742
Author(s):  
Jean-Marc Fontaine ◽  
Kojo S.J. Elenitoba-Johnson ◽  
Megan S Lim

Abstract The majority of anaplastic large cell lymphomas (ALCL) are characterized by the chromosomal translocation t(2;5)(p23;q35) leading to the expression of NPM/ALK. The constitutive activation of the NPM/ALK tyrosine kinase induces downstream mediators such as phosphoinositide 3-kinase (PI3-kinase)/AKT, JAK3 and STAT3 that result in increased cell proliferation and enhanced survival. Although the molecular mechanism by which these pathways deregulate the cell cycle machinery is not fully understood, previous studies have shown that NPM/ALK-mediated PI3K/AKT activation is required for cell cycle progression and that inhibition of PI3K/AKT results in decreased p27Kip1 degradation and cell cycle arrest. The expression of S-phase kinase protein 2 (SKP2), an F-box motif-containing protein which targets cell cycle regulators including cyclin-dependent kinase inhibitor p27Kip1 via ubiquitin-mediated degradation, was evaluated in a panel of ALCL cell lines. Western blot analysis of five t(2;5)-positive ALCL-derived cell lines demonstrated an inverse pattern of expression between F-box protein SKP2 and p27Kip1. We hypothesized that SKP2 deregulation contributes to the oncogenic activity of NPM/ALK by regulating the degradation of p27Kip1. In this study we investigated regulation of SKP2 and p27Kip1 expression as a consequence of inhibition of two well-known pathways downstream of NPM/ALK. Inhibition of PI3K/AKT with Ly294002 (20 mM) or JAK3 with WHI-P154 (10 mM) resulted in a dose and time-dependent decrease in cell viability (50% or 20% respectively at 24h). To determine the mechanism of SKP2 transcriptional regulation by PI3K, we performed quantitative RT-PCR and western blot analysis which demonstrated a decrease in both SKP2 transcript and protein levels after PI3K/AKT and JAK2 inhibition (33% or 47% at 24h respectively), with increase in the levels of p27 transcript and protein (47% or 71% at 24h respectively). Furthermore, the levels of E2F1 (a transcription factor associated with cell cycle progression) also decreased upon PI3K/AKT and JAK3 inhibition. Chromatin immunoprecipitation (ChIP) assays revealed that E2F1 binding to the SKP2 gene promoter was reduced as early as 4 hours after inhibition of PI3K/AKT or JAK3 (80% and 59% respectively) while no binding was detected with the GAPDH gene promoter (control). In conclusion, these results indicate that the expression of the F-box protein SKP2 is regulated by NPM/ALK mediators, PI3K/AKT and JAK3, and that E2F1 mediates the transcriptional control of SKP2 expression. Our data supports the role of SKP2–mediated regulation of p27Kip1 in ALCLs and implicates SKP2 and E2F1 as a potential therapeutic target in ALCLs.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Larissa Kido ◽  
Eun-Ryeong Hahm ◽  
Valeria Cagnon ◽  
Mário Maróstica ◽  
Shivendra Singh

Abstract Objectives Piceatannol (PIC) is a polyphenolic and resveratrol analog that is found in many vegetables consumed by humans. Like resveratrol, PIC has beneficial effects on health due to its anti-inflammatory, anti-oxidative and anti-proliferative features. However, the molecular targets of PIC in prostate cancer (PCa), which is the second most common cancer in men worldwide, are still poorly understood. Preventing cancer through dietary sources is a promising strategy to control diseases. Therefore, the aim of present study was to investigate the molecular mechanistic of actions of PIC in PCa cell lines with different genetic background common to human prostate cancer. Methods Human PCa cell lines (PC-3, 22Rv1, LNCaP, and VCaP) were treated with different doses of PIC (5–40 µM) and used for cell viability assay, measurement of total free fatty acids (FFA) and lactate, and cell cycle distribution. Results PIC treatment dose- and time-dependently reduced viability in PC-3 (androgen-independent, PTEN null, p53 null) and VCaP cells (androgen-responsive, wild-type PTEN, mutant p53). Because metabolic alterations, such as increased glucose and lipid metabolism are implicated in pathogenesis of in PCa, we tested if PIC could affect these pathways. Results from lactate and total free fatty acid assays in VCaP, 22Rv1 (castration-resistant, wild-type PTEN, mutant p53), and LNCaP (androgen-responsive, PTEN null, wild-type p53) revealed no effect of PIC on these metabolisms. However, PIC treatment delayed cell cycle progression in G0/G1 phase concomitant with the induction of apoptosis in both LNCaP and 22Rv1 cells, suggesting that growth inhibitory effect of PIC in PCa is associated with cell cycle arrest and apoptotic cell death at least LNCaP and 22Rv1 cells. Conclusions While PIC treatment does not alter lipid or glucose metabolism, cell cycle arrest and apoptosis induction are likely important in anti-cancer effects of PIC. Funding Sources São Paulo Research Foundation (2018/09793-7).


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2057-2057
Author(s):  
Vasiliki Leventaki ◽  
Elias Drakos ◽  
Megan Lim ◽  
Kojo S. Elenitoba-Johnson ◽  
Francois-Xavier Claret ◽  
...  

Abstract Anaplastic large cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35) resulting in aberrant expression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) chimeric protein. NPM-ALK mediates its oncogenic effects through phosphorylation of a number of proteins involved in known signal transduction pathways including PLC, PI3K-AKT and JAK-STAT. ALK+ ALCL cells also are known to overexpress c-Jun, a member of the activator protein-1 (AP-1) transcription factor family that controls cell proliferation, differentiation, growth and apoptosis. Phosphorylation of c-Jun at serine 73 and serine 63 residues substantially increases AP-1 transcriptional activity and the levels of c-Jun protein through an autoregulatory positive feedback loop. In this study, we hypothesized that NPM-ALK activates JNK which , in turn, phosphorylates and activates c-Jun, resulting in uncontrolled cell cycle progression in ALCL. 293T and Jurkat (T-acute lymphoblastic leukemia) cells were transfected with a vector expressing NPM-ALK with active kinase domain (pDest40-NPM-ALK) or a construct lacking NPM-ALK kinase activity (pDest40-K210R) or empty vector. Cells were harvested at 48 hours and analyzed for protein expression by Western blot analysis and for AP-1 activity by luciferase reporter assay. Two ALK+ ALCL cell lines Karpas 299 and SU-DHL-1, found to express high levels of serine phosphorylated and total c-Jun in immunoblots, were treated with JNK (SP600125), ERK (U0126), or ALK (WHI-P154) inhibitors or were transiently transfected with siRNAs specific for JNK1 and c-Jun. Cell proliferation was assessed by MTS assay, and cell cycle was analyzed by BrdU assay or propidium iodide staining and flow cytometry. Forced expression of NPM-ALK in 293T and Jurkat cells resulted in increased levels of JNK and c-Jun phosphorylation in immunoblots and a dramatic increase in AP-1 activity. Conversely, pharmacologic inhibition of ALK activity in Karpas 299 and SU-DHL1 resulted in a concentration-dependent decrease of JNK and c-Jun phosphorylation levels. Co-immunoprecipitation studies revealed that NPM-ALK physically binds to JNK1 and its upstream activator MKK7 in ALK+ ALCL cells. Selective inhibition of JNK, but not ERK, in Karpas 299 and SU-DHL1 decreased the level of c-Jun phosphorylation in a dose-dependent manner as shown by Western blot analysis and in vitro kinase assays. Inhibition of JNK by SP600125 or silencing of the JNK1 gene by siRNA also resulted in decreased cell proliferation associated with decreased AP-1 activity, cell cycle arrest mostly at G2 phase, and up-regulation of the cyclin-dependent inhibitor p21, a transcriptional target of c-Jun. Similarly, silencing of c-Jun by specific siRNA led to decreased S-phase fraction of cell cycle, which was associated with up-regulation of p21 and downregulation of cyclin D3. These findings reveal a novel function of NPM-ALK oncoprotein, phosphorylation and activation of JNK, which may contribute to uncontrolled cell cycle progression through activation of c-Jun. Modulation of JNK or c-Jun activity may be a target for therapy in patients with ALCL.


Author(s):  
Hu Chen ◽  
Lequn Bao ◽  
Jianhua Hu ◽  
Dongde Wu ◽  
Xianli Tong

BackgroundIn recent years, microRNA-1-3p (miR-1-3p) has been linked to the progression of multiple cancers, whereas little is known about its role in hepatocellular carcinoma (HCC). Herein, we investigated the function of miR-1-3p in HCC, and its regulatory function on origin recognition complex subunit 6 (ORC6).MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expression levels of miR-1-3p and ORC6 mRNA in HCC samples and cell lines. ORC6 expression at the protein level was quantified by Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8) assays, Transwell assays, flow cytometry, and 5-Ethynyl-2′-deoxyuridine (EdU) assay were performed for examining cell proliferation, migration, invasion, cell cycle, and apoptosis. The targeting relationship between miR-1-3p and ORC6 was confirmed with bioinformatic analysis and dual-luciferase reporter assays.ResultsThe expression of miR-1-3p was reduced in HCC samples and cell lines. Overexpression of miR-1-3p suppressed the proliferation, migration, and invasion, and induced cell-cycle arrest and apoptosis of HCC cells, whereas the opposite effects were induced by miR-1-3p inhibition. ORC6 is identified as a novel target of miR-1-3p, the expression of which is negatively correlated with miR-1-3p expression in HCC tissues. ORC6 overexpression facilitated the proliferation, migration, invasion, and cell cycle progression, and reduced apoptosis of HCC cells, whereas the opposite effects were induced by ORC6 knockdown. What is more, ORC6 overexpression counteracted the biological functions of miR-1-3p in HCC cells.ConclusionMiR-1-3p targets ORC6 to suppress the proliferation, migration, invasion, and cell cycle progression, and promote apoptosis of HCC cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4681-4681
Author(s):  
Byung-Su Kim ◽  
Chang Up Kim ◽  
Young-Ju Kim ◽  
Eun Kyung Bae ◽  
Jinhee Kim ◽  
...  

Abstract The proteasome is a multi-enzyme complex that provides the ubiquitin-dependent degradation of many cytoplasmic and nuclear proteins involved in cell cycle progression and apoptosis. Inhibition of the proteasome represents a promising approach for the treatment of cancer because it can lead to cell cycle arrest and activation of caspases in tumor cells. There are several proteasome inhibitors that have been reported to induce apoptosis in various tumors. However, the effect of proteasome inhibition in human myeloid leukemia has not been reported so far. In this study, we tested two peptide-aldehyde proteasome inhibitors (MG115, MG132) on two human CML cell lines (K562, KCL22). At first, we treated both cell lines for 24, 48 and 72 hours with different doses of MG115 and MG132 and cell viability was tested by MTT assay. It showed substantial time and dose dependent cytotoxicity in both CML cell lines. Acridine orange staining also revealed DNA fragmentation. We then performed caspase-3 colorimetric assay after treating both cell lines for 6, 12 and 24 hours with 0.78μM of MG115, MG132. K562 showed the continuous rising of caspase-3 activity, while KCL22 exhibited the initial increase and subsequent mild decrease of caspase-3 activity. In addition, western blot analysis showed the reduction of procaspase-3 expression. The expression of Bcl-2 and Bcl-XL was reduced by western blot. p21 expression was slightly increased and that of cyclin D1 was decreased. Additionally, the treatment of proteasome inhibitor in CML cell lines initially induced phosphorylation of Jun kinase. We next examined the expression of heat shock proteins (Hsp70, Hsp90) after treating for 6, 12, 24 hours with the same proteasome inhibitors. Western blot analysis results indicated that expression patterns were different between MG115 and MG132. MG115 induced the slight increase of Hsp70 and Hsp90 in K562, but the reduction of both in KCL22. Meanwhile, MG132 produced the decrease of Hsp70 and Hsp90 in both K562, KCL22. In summary, our work supports that a proteasome inhibitor can induce apoptosis in human CML cell lines. We are currently focusing on the combined effect of proteasome inhibitor and Hsp90 inhibitor on CML. IC50 of Proteasome Inhibitors Cell line Proteasome Inhibitor 24hr 48hr 72hr K562 MG115 3.01 μM 1.14 μM 0.59 μM K562 MG132 μ 2.13 M 1.03 μM 0.57 μM KCL22 MG115 156.92 μM 1.36 μM 0.73 μM KCL22 MG132 1.56 μM 0.93 μM μ 0.75 M


2002 ◽  
Vol 22 (8) ◽  
pp. 2703-2715 ◽  
Author(s):  
Kevin A. Walter ◽  
Mir Ahamed Hossain ◽  
Carey Luddy ◽  
Nidhi Goel ◽  
Thomas E. Reznik ◽  
...  

ABSTRACT Scatter factor/hepatocyte growth factor (SF/HGF) expression has been linked to malignant progression in glial neoplasms. Using two glioma cell lines, U373MG and SNB-19, we have demonstrated that SF/HGF stimulation allows cells to escape G1/G0 arrest induced by contact inhibition or serum withdrawal. SF/HGF induced effects on two mechanisms of cell cycle regulation: suppression of the cyclin-dependent kinase inhibitor p27 and induction of the transcription factor c-Myc. Regulation of p27 by SF/HGF was posttranslational and is associated with p27 nuclear export. Transient transfections of U373MG and SNB-19 with wild-type p27 and a degradation-resistant p27T187A mutant were insufficient to induce cell cycle arrest, and SF/HGF downregulation of p27 was not necessary for cell cycle reentry. Analysis of Cdk2 kinase activity and p27 binding to cyclin E complexes in the presence of exogenous wild-type p27 or p27T187A demonstrated that Cdk2 activity was not necessary for SF/HGF-mediated G1/S transition. Similarly, overexpression of dominant-negative forms of Cdk2 did not block SF/HGF-triggered cell cycle progression. In contrast, SF/HGF transcriptionally upregulated c-Myc, and overexpression of c-Myc was able to prevent G1/G0 arrest in the absence of SF/HGF. Transient overexpression of MadMyc, a dominant-negative chimera for c-Myc, caused G1/G0 arrest in logarithmically growing cells and blocked SF/HGF-mediated G1/S transition. c-Myc did not exert its effects through p27 downregulation in these cell lines. SF/HGF induced E2F1-dependent transcription, the inhibition of which did not block SF/HGF-induced cell cycle progression. We conclude that SF/HGF prevents G1/G0 arrest in glioma cell lines by a c-myc-dependent mechanism that is independent of p27, Cdk2, or E2F1.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1584-1584
Author(s):  
Margit Klier ◽  
Natasa Anastasov ◽  
Daniela Angermeier ◽  
Mark Raffeld ◽  
Falko Fend ◽  
...  

Abstract Introduction: Cyclin D1 overexpression is the hallmark of MCL. However, the importance of cyclin D1 for the maintenance of MCL still remains to be defined. Therefore, the aim of this study is to elucidate the role of cyclin D1 overexpression using the siRNA technology in well-characterized MCL cell lines, as a model system. Material and Methods: A highly efficient cyclin D1-shRNA (96% knockdown) was identified using a lacZ-cyclin D1 fusion gene reporter system in HEK-293T cells. This shRNA was cloned into a lentiviral transfer vector carrying GFP as a reporter gene, which enables the detection of infected cells by FACS analysis. Seven MCL cell lines were analyzed (Granta 519, Jeko-1, Rec-1, Z-138, UPN-1, Hbl-2 and JVM-2), using appropriate controls. Western Blot analysis and qRT-PCR were performed to quantitate the knockdown effect. The effect of cyclin D1 knockdown on proliferation, cell cycle, and viability was analyzed by MTT assay and FACS analysis. Results: The infection rates varied among the different MCL cell lines. Rec-1 and Hbl-2 showed low infection rates (50%) even at high MOI’s (multiplicity of infection), whereas UPN-1 and JVM-2 had moderate infection rates (80%). Jeko-1, Granta 519 and Z-138 showed high infection rates (almost 100% of the cells). Despite the good tranfection rate, the downregulation of cyclin D1, as measured by Western Blot and qRT-PCR, was about 80% in Granta 519, and 65% in Jeko-1 and Z-138. No IFN response, as secondary effect was identified. Interestingly, no apoptosis was observed, and there was only a moderate retardation of growth (60% of control cells) with 10% shift from the S phase to G1 phase of the cell cycle when compared to the controls, suggesting that other cell cycle proteins might compensate, at least partially, for the loss of cyclin D1. Accordingly, cyclin D2 showed upregulation in Western blot analysis and qRT-PCR, whereas the phosphorylation status of retinoblastoma protein on Ser780 was reduced and the expression of the CDK inhibitor p27Kip1 increased. No changes were observed in the expression of cyclin D3, Cyclin E, CDK4 and CDK2. Conclusions: In this study, a system that enables the specific downregulation of cyclin D1 in MCL cell lines was established. Surprisingly, the downregulation of cyclin D1 in MCL cell lines resulted in only a moderate inhibition on cell growth with no apoptosis. The reasons for this might be 1) that the upregulation of cyclin D2 compensates for cyclin D1 downregulation, and/or 2) that the chromosomal translocation leading to cyclin D1 overexpression is an initiating event in MCL lymphomagenesis followed by secondary genetic events at later stages of the disease, which make cyclin D1 dispensable. This finding has important implications for MCL therapy, as strategies targeting only cyclin D1 might be hampered by the redundancy of the system, resulting in a low probability of treatment response.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4213-4213
Author(s):  
Priya Khoral ◽  
Robert J Guo ◽  
Jahangir Abdi ◽  
Hong Chang

Abstract INTRODUCTION Multiple Myeloma (MM) is a plasma-cell malignancy characterized by dismal prognosis and a high level of relapse, thus novel therapeutic approaches are needed. PRIMA-1Met is a novel small molecule showing anti-tumour activity and currently in clinical phase I-II trials. We recently demonstrated that PRIMA-1Met has potent anti-MM activity in vitro and in vivo. Bortezomib (BTZ) is a proteasome inhibitor that has been successfully used for treating some cases of relapsed MM. The aim of the current study is to determine whether PRIMA-1Met could be used in combination with BTZ to enhance the cytotoxic effects in myeloma cells. METHODS Using three different MM cell lines (LP1, U266 and 8226), we established dose response curves for both PRIMA-1Met and BTZ, and tested drug cytotoxicity using MTT assays. We then tested drug cytotoxicity of a range of concentrations of the drugs in combination. The Chou Talay method was used to determine whether or not the drug combinations were synergistic. A gene expression array was used to investigate the mechanism of the drug combination's effects. Total RNA was isolated from MM cell pellets, then synthesized cDNAs were applied to real time RT-PCR gene expression arrays containing 84 genes of interest. The genes selected were involved in apoptotic as well as cell growth and proliferation pathways. After normalization to 4 different housekeeping genes, fold changes in gene expression were analyzed in both drug treated and control samples using the 2-ΔΔCt algorithm. Western blot analysis was used to further investigate proteins of interest. RESULTS Cell viability of 8226, LP1 and U266 cells treated with individual concentrations of PRIMA-1Met (10uM) and BTZ (10nM) was on average 65%, 45% and 72.5%, respectively. However, combination of above doses reduced viability to 20% in 8226 and LP1, and to 40% in U266. The Chou Talay method identified this drug combination as synergistic in 2 out of the three tested cell lines, with Combination Index (CI) values of 0.72 in 8226 and 0.582 in U266. The gene expression analysis in real time RT-PCR indicated that the drug combination resulted in downregulation of genes involved in cell cycle and proliferation (CCND1, CDK4, CDK6, CDK2, IGFIR), genes from the Bcl-2 family of apoptosis regulation (Bcl-2, Bcl-XL, Mcl-1), as well as MDM2 from the p53 signalling pathway, and MYC, which is involved in both apoptosis and cell cycle progression. Western blot analysis revealed up-regulation of cleaved caspase-3 and -9, implying involvement of the intrinsic apoptotic pathway in the drug combination's activity. CONCLUSION Our results reveal that PRIMA-1Met synergistically enhances the anti-MM effect of BTZ, leading to a significantly higher level of MM cell death. Real time RT-PCR gene array analysis offers some insight into the mechanism of this combination's effect, implicating apoptotic, cell cycle and growth regulating genes. Our study provides framework for further evaluation of this drug combination as a novel therapeutic strategy in MM. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 48 (16) ◽  
pp. 9067-9081
Author(s):  
Jonathan M Geisinger ◽  
Tim Stearns

Abstract While the mechanism of CRISPR/Cas9 cleavage is understood, the basis for the large variation in mutant recovery for a given target sequence between cell lines is much less clear. We hypothesized that this variation may be due to differences in how the DNA damage response affects cell cycle progression. We used incorporation of EdU as a marker of cell cycle progression to analyze the response of several human cell lines to CRISPR/Cas9 treatment with a single guide directed to a unique locus. Cell lines with functionally wild-type TP53 exhibited higher levels of cell cycle arrest compared to lines without. Chemical inhibition of TP53 protein combined with TP53 and RB1 transcript silencing alleviated induced arrest in TP53+/+ cells. Using dCas9, we determined this arrest is driven in part by Cas9 binding to DNA. Additionally, wild-type Cas9 induced fewer 53BP1 foci in TP53+/+ cells compared to TP53−/− cells and DD-Cas9, suggesting that differences in break sensing are responsible for cell cycle arrest variation. We conclude that CRISPR/Cas9 treatment induces a cell cycle arrest dependent on functional TP53 as well as Cas9 DNA binding and cleavage. Our findings suggest that transient inhibition of TP53 may increase genome editing recovery in primary and TP53+/+ cell lines.


2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background: Dysregulations of lncRNA are responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. Growing number of lncRNAs have been reported in HCC but their functional and mechanistic roles remain unclear. Methods: Gene Set Enrichment Analysis was used to investigate the molecular mechanism of lncRNA UPK1A antisense RNA 1 (UPK1A-AS1). CCK-8 assay, EdU assay, flow cytometry, western blot, and xenograft assay were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells both in vitro and in vivo. Bioinformatics analysis and qRT-PCR were performed to explore the interplay between UPK1A-AS1 and Enhancer of Zeste Homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA-pull down assay, western blot, qRT-PCR, and were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA-seq data from TCGA datasets.Results: We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle related genes including CCND1, CDK2, CDK4, CCNB1 and CCNB2 were significantly upregulated in HCC cells with UPK1A-AS1 overexpression. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to the increasing trimethylation of H27K3. Targeting EZH2 with specific siRNA impaired UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions: Our study reveals that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression via interacting with EZH2 and sponging miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document